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Signal amplification by reversible 
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Several drug candidates have been proposed and tested as the latest clinical treatment for coronavirus 
pneumonia (COVID-19). Chloroquine, hydroxychloroquine, ritonavir/lopinavir, and favipiravir are 
under trials for the treatment of this disease. The hyperpolarization technique has the ability to 
further provide a better understanding of the roles of these drugs at the molecular scale and in 
different applications in the field of nuclear magnetic resonance/magnetic resonance imaging. This 
technique may provide new opportunities in diagnosis and research of COVID-19. Signal amplification 
by reversible exchange-based hyperpolarization studies on large-sized drug candidates were carried 
out. We observed hyperpolarized proton signals from whole structures, due to the unprecedented 
long-distance polarization transfer by para-hydrogen. We also found that the optimal magnetic 
field for the maximum polarization transfer yield was dependent on the molecular structure. We can 
expect further research on the hyperpolarization of other important large molecules, isotope labeling, 
as well as polarization transfer on nuclei with a long spin relaxation time. A clinical perspective of 
these features on drug molecules can broaden the application of hyperpolarization techniques for 
therapeutic studies.

Coronavirus pneumonia (COVID-19) is a serious respiratory infectious disease that has emerged recently. 
Patients with coronavirus infection demonstrate fever with body temperature exceeding 38 °C, and symptoms, 
such as dry cough, fatigue, dyspnea, difficulty in breathing, and frosted glass-like symptoms in the lungs1. The 
disease is known to be highly transmittable without the occurrence of severe symptoms. The number of cases 
has reached over tens of millions worldwide.

To overcome this pandemic, many researchers have started working on developing a vaccine. However, 
ongoing vaccine developments are estimated to take over a year before becoming available for public use. As a 
result, the global clinical community is attempting to repurpose existing drugs to tackle the COVID-19 crisis. 
Recently, several drugs that can inhibit specific functions of the virus have been proposed and tested as part of 
the latest clinical treatment approaches. These drugs include chloroquine and hydroxychloroquine. Although 
the role of these drugs in the treatment of COVID-19 is controversial, hydroxychloroquine is more soluble than 
chloroquine and produces relatively less toxic metabolites2–4. Although chloroquine (7-chloro-4-(4-diethyl-
amino-1-methylbutylamino)-quinoline) and hydroxychloroquine (2-[4-[(7-chloroquinolin-4-yl)amino]pentyl-
ethylamino]ethanol), which have been in clinical usage for the last seventy years, are drugs for the treatment of 
autoimmune disease, they are also used as antimalarial drugs. These compounds have recently been reported 
as potential broad-spectrum antiviral drugs for COVID-195; however, their benefits against COVID-19 are 
controversial, with no evident effect on hospitalized patients6. From a molecular perspective, these drugs are 
reported to inhibit viral infection by increasing the endosomal pH required for virus and cell fusion and interfere 
with the glycosylation of the cellular receptors of SARS-CoV7. They also play a role in the immune-modulating 
activity, potentially having a synergistic antiviral effect in vivo8. Chloroquine is administered orally, upon which 
it is distributed across the whole body, including the lungs. The EC90 value of chloroquine against 2019-nCoV in 
Vero E6 cells was 6.90 μM. This could be clinically achieved after a 500 mg dosage9,10. For COVID-19 treatment, 
further in vivo studies investigating dosage and/or a dynamic distribution under specific clinical conditions 
may be warranted.
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Ritonavir/lopinavir (1,3-thiazol-5-ylmethyl N-[(2S,3S,5S)-3-hydroxy-5-[[(2S)-3-methyl-2-[[methyl-[(2-
propan-2-yl-1,3-thiazol-4-yl)methyl]carbamoyl]amino]butanoyl]amino]-1,6-diphenylhexan-2-yl]carbamate/
(2S)-N-[(2S,4S,5S)-5-[[2-(2,6-dimethylphenoxy)acetyl]amino] -4-hydroxy-1,6-diphenylhexan-2-yl]-3-methyl-
2-(2-oxo-1,3-diazinan-1-yl)butanamide), the combination drug marketed as Kaletra, is a relatively new medi-
cation for the treatment and prevention of HIV. This compound has also been suggested as a potential drug 
candidate against COVID-19 due to its role as a proteinase inhibitor in association with the polyprotein pro-
cessing of the coronavirus11,12. Recent reports have provided evidence in favor of this drug for the treatment of 
COVID-19, however, its beneficial effects remain a topic of controversy13. It is known to lessen viral loads and 
improve clinical symptoms14,15. However, compared to chloroquine and hydroxychloroquine, the interactions 
of this drug in the body at the molecular scale have not been elucidated so far.

Favipiravir (5-fluoro-2-oxo-1H-pyrazine-3-carboxamide), which has been approved in Japan for the treat-
ment of influenza since 201416,17, has also shown effectiveness in accelerating viral clearance in Chinese trials 
of hundreds of patients18.

To further understand the interactions of drugs with proteins, their metabolism, and other activities, nuclear 
magnetic resonance (NMR) spectroscopy has been widely used in pharmacokinetics. However, NMR is an inher-
ently insensitive technique due to the small population differences in the spin states. Hyperpolarization, which 
generates a non-Boltzmann distribution of the spin state populations, may provide a breakthrough in addressing 
this challenge. Moreover, magnetic resonance imaging (MRI) is used as a solution to understand drug distribu-
tion throughout the body in vivo and study its activity. To visualize MRI signals, the drug must be tagged with 
specific compounds, such as chelating agents (e.g., Gd-chelate and Mn-chelate) with T1/T2 contrast. However, 
the fusion of additional compounds with the drug may have unpredictable effects due to their different molecu-
lar structures. This limitation may be overcome by using the hyperpolarization technique, which enhances the 
visualization of the hyperpolarized signal through MRI. The use of this state-of-the-art technology can address 
several challenges and could be a key to visualizing and understanding the in vivo real-time distribution and 
activity of drugs. This may provide an opportunity to further elucidate the antiviral activities of drugs used in 
the COVID-19 therapy.

Of the several methods to hyperpolarize drugs, the para-hydrogen-based signal amplification by reversible 
exchange (SABRE) method is the most promising for the hyperpolarization of several key structures with nitro-
gen. Although a remarkably high signal amplification is achieved using dynamic nuclear polarization, it requires 
extreme conditions (low temperature and high magnetic field) and a long hyperpolarization time (more than 
2–3 h). Para-hydrogen-induced polarization provides a much higher signal enhancement than SABRE; however, 
molecules cannot be hyperpolarized continuously by parahydrogen. In this context, SABRE does not require 
harsh conditions, and substrates can be constantly hyperpolarized without any structural changes during the 
polarization transfer. Furthermore, in this method, the polarization can be real-time transferred from protons 
to other isotopes such as 13C19, 15N20–23, 31P24, 19F25, 119Sn26, and 29Si27 without chemical changes.

Recently, several breakthrough studies that develop hyperpolarized drugs or metabolites28–32, including those 
in pharmacokinetics, confirmed that SABRE33 could be useful for a wide-scale application. This is particularly 
important at a time when scientific remedies are the only means to conquer this pandemic. However, hyperpo-
larized drugs or metabolites are limited to small-sized molecules, which constrain their practical applications in 
many studies. Hyperpolarization studies using SABRE may be useful and important in facilitating future appli-
cations of MRI scanning using hyperpolarized COVID-19 drug candidates, which mostly have high molecular 
weights. It is anticipated that SABRE-based hyperpolarization studies on such large molecules may enable further 
research on a higher number of drugs and metabolites. To the best of our knowledge, this study is the first to 
evaluate the SABRE-based hyperpolarization of specific COVID-19 drug candidates in real-time.

Results and discussion
Favipiravir SABRE.  The pyrazine moiety in favipiravir is recognized as the polarization source for SABRE34. 
However, its complex structure with several functional groups (fluorine, alcohol, and amide) has not been previ-
ously examined for SABRE hyperpolarization (Fig. 1).

Figure 2 depicts an estimate of its complex with an Ir catalyst, forming an exchangeable bond between Ir(I) 
and the pyrazine moiety. This form is expected for favipiravir to transfer polarization from para-hydrogen. 
As predicted, we successfully obtained a hyperpolarized signal from the aromatic proton of favipiravir with 
a ~ 20-fold enhanced signal after SABRE. An additional polarized signal was observed around 6–7 ppm and 
was attributed to the protons in the hydroxy and amide groups of the structure. The SABRE-based polarization 
trend with the magnetic field was maximized at approximately 50 G, which is consistent with previous reports 
(Fig. 3)35–37.

Chloroquine SABRE.  Chloroquine (hydroxychloroquine) contains a quinoline structure, which may 
potentially be hyperpolarized using SABRE. However, chloroquine has a long attachment (Fig. 4), which could 
not be operable as SABRE is dependent on the chemical exchange reaction. It is assumed that the transfer of its 
binding and kinetics to hyperpolarization with sufficient time from para-hydrogen may be challenging. (Fig. 2).

Interestingly, the polarization transfer from para-hydrogen to chloroquine (hydroxychloroquine) was note-
worthy as the polarization transfer occurred across a long distance of 11 bonds (from nitrogen to hydrogen 
number 10). If nitrogen in quinoline is the only group ligating with the Ir catalyst, this is the first observation 
of such long-range hyperpolarization via SABRE (Fig. 5). It will be worth conducting further studies on the 
polarization transfer mechanism in SABRE with other molecules, as discussed later in this study.

To understand the mechanisms at play, the enhancement of chloroquine (hydroxychloroquine) by hyperpo-
larization was measured by changing the magnetic field during the polarization transfer period (Fig. 6).
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Although the degree of the polarization enhancement was similar, the protons in carbon (H-9 in hydroxy-
chloroquine and H-8 in chloroquine) had the highest and second-highest enhancement, respectively, which 
differed greatly from the nitrogen in the quinoline moiety. This difference may stem from the direct polarization 
transfer from the hydride, which bonds to the Ir catalyst through H-9 (hydroxychloroquine) and H-8 (chloro-
quine) via a dipolar coupling or through the polarization transfer from H-5 to H-9/H-8 by a dipolar coupling 
or by a J-coupling network38,39. The clarification of this mechanism requires further detailed future research. 
Similarly, the H-5 proton in quinoline on both structures showed high enhancement. These results indicate that 
the mechanism of polarization transfer is dependent on even a small change in structure and solubility.

It is assumed that the relatively small polarization enhancement can be increased by using higher para-
hydrogen concentrations, higher partial pressures, and optimal SABRE catalysts40. These modifications might 

Figure 1.   Favipiravir molecular structure and the normal 1H NMR signal (30° pulse, single scan in 300 MHz 
NMR).

Figure 2.   Ir catalyst and Chloroquine (hydroxychloroquine) / Favipiravir complex structures for SABRE in 
methanol. (wiggle denotes binding with the Ir-catalyst and L represents the binding drug structures).
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drastically improve the enhancement. As Fig. 6 indicates, the polarization was maximized around 70 G, and 
exhibited a similar trend as that revealed by previous reports on polarization transfer mechanisms35.

Ritonavir/Lopinavir SABRE.  Ritonavir/Lopinavir does not contain any well-known functional groups in 
the structure, which can be harnessed to efficiently undergo polarization transfer from para-hydrogen. Further-
more, Lopinavir does not contain sp2 nitrogen in the structure, which has been widely used for polarization 
transfer. However, both structures contain a carbonyl group, which can transfer polarization from para-hydro-
gen to the carbonyl group with the ester group/amide group in the neighborhood. A recent study demonstrated 
that the carbonyl group can bind to the Ir catalyst, and polarization can be transferred to pyruvate41. Moreover, 
we demonstrated that the Ir catalyst was binding with carbonyl and phenyl ether by detecting the chemical shift 
of the lopinavir protons of 1 (Fig. 7) after the formation of the complex.

Figure 3.   (a) Hyperpolarized signals from favipiravir after SABRE in the presence of a 50 G magnetic field; 
and (b) Amplification number of H-1 from the hyperpolarized favipiravir structure (single scan in 300 MHz 1H 
NMR, 30° pulse of 1H after polarization in each magnetic field).
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This is the first case in which a binding trend was identified among many functional groups in the structure 
and, interestingly, polarization was transferred to nearly all protons of lopinavir through this binding site. This 
behavior should be explored further to understand the polarization transfer mechanism because other functional 
groups could also participate in binding with the Ir catalyst via a fast exchange, which would mitigate the chemi-
cal shift. However, it is noteworthy that the important functional group of lopinavir for polarization transfer 
could be identified from the chemical shift difference.

The polarization transfer from para-hydrogen to ritonavir/lopinavir is noteworthy as the polarization trans-
ferred across a long distance of more than 12 bonds in lopinavir. This is also the first case in which extremely 
long-range hyperpolarization via SABRE was observed after binding with the carbonyl group (Fig. 8).

Figure 4.   The molecular structure of Chloroquine (upper structure) and Hydroxychloroquine (low structure) 
molecular structure and those normal 1H NMR signals (30° pulse, single scan in 300 MHz NMR).
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The enhancement of the proton NMR signal on lopinavir by hyperpolarization was measured by changing 
the magnetic field in the polarization transfer period to understand the SABRE mechanism (Fig. 9).

This enhancement was also relatively small; however, it was expected to increase when higher para-hydrogen 
concentrations and partial pressures were used. As Fig. 9 shows, polarization was maximized around 70 G, which 
exhibits a similar trend to previous reports on polarization transfer mechanisms, including chloroquine. Interest-
ingly, H-8 and H-10 exhibited the highest polarization enhancement during SABRE. This may be attributed to the 
dipolar coupling, the polarization transfer through space, and the SABRE-RELAY mechanism. Understanding 
the exact mechanism will require further detailed studies in the future24.

In terms of the results associated with ritonavir SABRE, 30–50 G was the optimum external magnetic field 
to match the polarization transfer (Fig. 10). This is a low magnetic field compared to the results of the previous 
antiviral drug SABRE, which indicates that the optimum magnetic field for polarization transfer is dependent 
on the binding site with the Ir catalyst and the structure, which can induce different scalar coupling constants. 

Figure 5.   Hyperpolarized signals from chloroquine (upper structure, single scan in 300 MHz 1H NMR, 30° 
pulse of 1H after polarization in 90 G magnetic field) and hydroxychloroquine (low structure, single scan in 
300 MHz 1H NMR, 30° pulse of 1H after polarization in 110 G magnetic field) after SABRE.
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As such, we need to optimize the magnetic field to yield the maximum polarization enhancement in different 
materials, including the target materials, the solvent, and the catalysts. It was difficult to identify the binding 
site of ritonavir with the Ir catalyst, as there were several possible binding sites to consider. We observed a small 
chemical shift in almost all protons of ritonavir after mixing with the Ir catalyst. This implies that there may be 
more than one binding site for ritonavir with the Ir catalyst. This finding is supported by that there are various 
possible binding sites, such as two thiazole moieties and three carbonyl sites. Despite the presence of several 
binding sites in ritonavir, note that hyperpolarization occurred on all protons in the structure, and its enhance-
ment of polarization was almost identical in the higher field. This offers a good explanation for the presence of 
several binding sites with the Ir catalyst. Ritonavir’s polarization characteristics in the whole structure were only 
attributable to long-range polarization transfer, the main polarization transfer mechanism for SABRE.

These long-range polarization transfers imply ritonavir’s potential use with hyperpolarized signals in NMR/
MRI. This may provide a better understanding of the molecular dynamics of targeted proteins and pharmacoki-
netics. Importantly, it is anticipated that it may be used for tracking the hyperpolarized signal through MRI. 
Examples of this include isotope labeling (such as carbon to 13C isotope and nitrogen into 15 N), in the structures 
of the studied drugs, which may have a long T1 time. This is not only due to the lower gyromagnetic ratio but 
also because of its smaller relaxation effect from the Ir catalyst owing to its relatively unstable complex structure.

Figure 6.   Amplification number of protons from hyperpolarized chloroquine (hydroxychloroquine) structure.
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Methods
Favipiravir, hydroxychloroquine sulfate, and ritonavir were purchased from Shanghai Alkynechem Co., Ltd. 
(Shanghai, China) and were used without further purification. Chloroquine diphosphate salt (98.5%) and lopi-
navir (98%) were acquired from Sigma-Aldrich and were used as received. Methanol-d4(CD3OD, 99.8 atom % 
D, Eurisotop) was also used in the form it was obtained. 1H NMR spectra used for the characterization of favi-
piravir, chloroquine, hydroxychloroquine, lopinavir, and ritonavir were acquired on a Bruker Avance Ш NMR 
spectrometer operating at a 1H resonance frequency of 300 MHz, and were referenced to the residual CH3 peak 
of CD3OD (δ = 3.31). Hyperpolarization studies were conducted in the same manner. A home-built instrument 
was designed as a para-hydrogen generator, in which hydrogen gas (Hanmi gas, > 99.9%, a mixture of the spin 
isomers ortho-hydrogen and para-hydrogen) was allowed to pass through a heat exchanger filled with a FeO(OH) 
catalyst (Sigma Aldrich)42. This structure was filled with liquid nitrogen in a Dewar flask and produced ca. 
50% para-hydrogen. In each experiment, para-hydrogen continuously flowed into the drug sample at a rate of 

Figure 7.   Lopinavir (upper structure) and ritonavir (low structure) molecular structures and their respective 
normal 1H NMR signals (30° pulse, single scan in 300 MHz NMR). The lopinavir proton of 1 shifted after 
binding with the Ir catalyst (blue spectrum).
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6 mL/min at 23 °C and 1 atm. To obtain various magnetic field data, the following system was established and 
developed: the power supply was GPS-1850D (Bench Power Supply, Linear DC). A shielded coil wound with 
copper-coated wire and a shielded coil outside the first consisted of a 200 mm diameter and 190 mm height. The 
magnetic field through the shielded coil was regulated by setting the current, which was in the range of 0–5 A. 
The magnetic field generated by the controlled current was measured using a Lakeshore Gaussmeter.

Favipiravir (5 mg, 3.1 × 10−2 mmol) and the pre-catalyst ([Ir(IMes)(COD)Cl], 2 mg, 3.1 × 10−3 mmol) were 
dissolved in CD3OD (900 μL)43. Chloroquine and hydroxychloroquine samples for hyperpolarization were pre-
pared by mixing a solution of the substrate (3.9 × 10−3 mmol) and [Ir(IMes)(COD)Cl] (2 mg, 3.1 × 10−3 mmol) 
in CD3OD (900 μL). Lopinavir and ritonavir (1.6 × 10−2 mmol) were added to the CD3OD (900 μL) solution of 
the pre-catalyst ([Ir(IMes)(COD)Cl], 2 mg, 3.1 × 10−3 mmol). The mixture of each drug and the pre-catalyst was 
bubbled by para-hydrogen for 20 min in the NMR tube under the earth’s magnetic field for activation. After-
wards, in order to induce hyperpolarization on each sample in each magnetic field for SABRE, the sample was 

Figure 8.   Hyperpolarized signal from lopinavir (upper spectrum) and ritonavir (low spectrum) after SABRE in 
the presence of a 70 G magnetic field. (single scan in 300 MHz 1H NMR, 30° pulse of 1H after polarization).
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Figure 9.   Amplification number of protons from hyperpolarized lopinavir structure.

Figure 10.   Amplification number of protons from hyperpolarized ritonavir structure.
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swiftly (less than 5 s) moved directly into a 300 MHz NMR spectrometer and each hyperpolarized proton signal 
was obtained. All the NMR spectra were then acquired with 1 scan (during 6 s) in a varying magnetic field after 
polarization of the substrate for 1 min by 50% para-hydrogen bubbled at ~ 23 °C under 1 atm. (Earth’s magnetic 
field, 30 G, 50 G, 70 G, 90 G, and 110 G, respectively). The diverse experiments of the substrate were conducted 
in the same manner as mentioned above. Subsequently, for calculation of the 1H signal enhancement factor 
(fold), the following equation was used44,45:

Signal(A) = signal of the amplified sample through hyperpolarization, signal(non-A) = signal of the non-
amplified sample (normal 1H NMR signal, i.e., Figs. 1, 4, 7). Spectra were acquired on the same sample using 
duplicate conditions, such as acquisition parameters and receiver gain except para-hydrogen usage. The raw 
integrals of the hyperpolarized and non-hyperpolarized spectra were used to calculate the amplification. To 
determine the exact integral of the signal through the same chemical shift region, the solvent peak was compared.

Conclusions
Antiviral drugs, such as chloroquine, hydroxychloroquine, ritonavir, lopinavir, and favipiravir have been inves-
tigated as drug candidates in response to the COVID-19 pandemic situation. Spin hyperpolarization may open 
new opportunities in the diagnosis and biomedical research of COVID-19 via MRI and pharmacodynamics, 
metabolomics, and binding dynamics with proteins. This can be achieved by using enhanced signal intensity in 
NMR/MRI. Furthermore, even in case these drug candidates, which are under clinical investigation, may not 
be useful for the COVID-19, this SABRE-based hyperpolarization study based on high molecular weight struc-
tures has not been previously conducted due to the special polarization transfer mechanism. In this study, high 
molecular weight chloroquine, hydroxychloroquine, ritonavir, lopinavir, and favipiravir were successfully tested 
for SABRE-based hyperpolarization, and polarizations over long distances were detected, which may result in 
that the technique will be used for other materials. Understanding the exact polarization transfer mechanism 
is important for future studies. Hence, other polarization transfer mechanisms, such as those involving binding 
to other functional groups that are closer to the hyperpolarized spins, SABRE-RELAY should also be investi-
gated through the solvent or relaxation through dipolar effects. Each polarization transfer-maximized external 
magnetic field was slightly different, which clearly implies that each structure has different optimal polarization 
transfer matching conditions. Therefore, matching the magnetic field should be controlled to obtain efficient 
polarization enhancement in each structure. Importantly, this method can be used to monitor the distribu-
tion and activity of a drug in vivo by MRI. It may be harnessed to further investigate the molecular interac-
tion of additional drug candidates with key proteins and unveil unknown activity on COVID-19, including 
pharmacokinetics.

The polarization of the proton may be transferred to other isotope nuclei using pulse sequence, field cycling, 
and the matching of the spin energy. In the future, this will address the ultimate objective of obtaining hyperpo-
larized antiviral drugs to study their effect on COVID-19 with a sufficiently long time of T1.

This study was unable to shed significant light on the real applications of the treatment of COVID-19. How-
ever, many related studies have reported applications in drug discovery, detecting tumors in vivo, as well as 
polarization transfer into many other isotopes along with pulse sequence development. Future work on isotope 
labeling and further polarization transfer on long T1 time nuclei, including clinical perspectives, may open new 
opportunities to overcome this global pandemic.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author (K. J.) on reasonable request. All methods were performed in accordance with the relevant guidelines 
and regulations.
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