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Liver transplantation (LT) is an effective strategy for the treatment of end-stage liver disease, but immune rejection remains a
significant detriment to the survival and prognosis of these LT patients. While immune rejection is closely related to cytokines,
the cytokines investigated within previous studies have been limited and have not included a systematic analysis of
proinflammatory cytokines. In the present study, we used a protein chip system and proteomics to detect and analyze serum
proinflammatory cytokines and differentially expressed proteins in liver tissue in a mouse model of liver transplantation. In
addition, bioinformatics analysis was employed to analyze the proinflammatory cytokines and differential changes in proteins
in response to this procedure. With these analyses, we found that serum contents of GC-CSF, CXCL-1, MCP-5, and CXCL-2
were significantly increased after liver transplantation, while IL-5, IL-10, and IL-17 were significantly decreased. Results from
Gene Ontology (GO) and KEGG pathway analyses revealed that the cytokine-cytokine receptor, Th1/Th2 cell differentiation,
and JAK-STAT signaling pathway were enriched in a network associated with the activation of immune response. Results from
our proteomic analysis of liver tissue samples revealed that 470 proteins are increased and 50 decreased, including Anxa1,
Anxa2, Acsl4, Sirpa, S100a8, and S100a9. KEGG pathway analysis indicated that the neutrophil extracellular trap formation,
NOD-like receptor signaling pathway, and leukocyte transendothelial migration were all associated with liver transplant
rejection in these mice. Bioinformatics analysis results demonstrated that CXCL-1/CXCL-2 and S100a8/S100a9 were the genes
most closely related to the functions of neutrophils and the mononuclear phagocyte system. These findings provide new
insights into some of the critical factors associated with liver transplant rejection and thus offer new targets for the treatment
and prevention of this condition.

1. Introduction

It is well established that liver transplantation is the most
effective surgical procedure for the treatment of end-stage
liver disease [1]. However, there remain many problematic
issues affecting the survival and prognosis of these patients
[2], with immune rejection being one of the most notable
[3]. Following liver transplantation, a substantial number
of recipient immune cells (neutrophils, lymphocytes, macro-

phages, monocytes, and dendritic cells) infiltrate the donor
liver to create a new immune environment [4]. It is these
immune cells that determine the occurrence and develop-
ment of liver transplant rejection.

The mechanisms underlying liver transplant rejection have
received considerable attention lately [5, 6], with these studies
mainly focusing on cellular and humoral immunity, as well as
innate immunity responses as related to liver transplant
rejection [7–9]. Dendritic cells, monocytes, macrophages, and
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neutrophils have also all been shown to play a vital role in reg-
ulating innate immunity [10, 11]. The occurrence of immune
rejection is closely related to chemokines, proinflammatory
cytokines, and signaling pathways [12, 13]. As cytokines repre-
sent important mediators of the immune system, they may
serve as potential therapeutic agents which could selectively
inhibit or enhance immune responses [14]. In support of this
relationship among cytokines, the immune system and trans-
plantation are the findings that proinflammatory cytokines
(G-CSF, CXCL-2, and CXCL-1) and lymphocyte activating
cytokines (IL-2, IL-4, and IL-6) are increased during ex vivo
human lung perfusion [15]. Moreover, donor-reactive CD8+

T cells utilize the CXCR-3 chemokine axis as a costimulatory
pathway during priming to allografts while CXCL-9 promotes
the development of IFN-g-producing CD8+ T cells [16].
Interestingly, levels of IL-2 and IL-6 in stimulated peripheral
lymphocyte supernatants of kidney transplant recipients can
predict acute renal allograft rejection [17]. IL-10-producing
ILC2 cells can lead to long-term survival of islet grafts, sug-
gesting that these IL-10-producing ILC2 cells are needed to
obtain a maximal protective effect on these allografts [18].
However, these studies were all limited to investigating the
effects of chemokines and did not include any systematic
analyses of proinflammatory cytokines. Accordingly, the
potential role of proinflammatory cytokines in liver trans-
plant rejection remains unknown.

In this study, we used an antibody array assay (protein
chip system), along with proteomics (isobaric tags for rela-
tive and absolute quantification (iTRAQ)) to detect and ana-
lyze potential changes in serum proinflammatory cytokines
and proteomics within liver tissue in a mouse model of liver
transplantation. Moreover, with the use of bioinformatics
analysis, we analyzed the changes in proinflammatory cyto-
kines and proteins within liver tissue of these mice. With
these analyses, we were able to identify functional proteins
that were related to correlations between proinflammatory
cytokines and transplant rejection. Such findings can serve
as the foundation for the development of novel therapeutic
targets for the prevention and treatment of liver transplant
rejection.

2. Materials and Methods

2.1. Animals. Male C57BL/6J mice (n = 9) were used as
donors and male C3H/He mice (n = 6) as recipients. All
mice were 8-10 weeks old (BW= 23 ± 2 g) and purchased
from SiPeiFu, Beijing, Biotechnology Co., LTD). The mice
were maintained in a specific pathogen-free (SPF) environ-
ment and housed in accordance with laboratory animal care
principles.

2.2. Mouse Orthotopic Liver Transplantation (OLT) Model.
Orthotopic liver transplantation surgeries were performed
while mice were under isoflurane inhalation anesthesia,
according to procedures described previously [19]. All mice
were divided into three groups (n = 3/group): liver trans-
plant one week (LT-1W), liver transplant two weeks (LT-
2W), or control group (C), with the 1W and 2W designa-
tions referring to the times (weeks) posttransplant when

determinations were performed (Figures 1(a)). Three mice
per group were harvested for blood and liver samples in
LT mice.

2.3. Serum AST and ALT Determinations. Blood samples
from all mice were collected, and serum was obtained fol-
lowing centrifugation. Serum AST and ALT levels were
determined using the mouse transaminase test kit (Shanghai
Yaji Biotechnology, China) [20].

2.4. Histopathology of Liver Samples. Fresh liver samples
from each group were fixed in 4% paraformaldehyde solu-
tion for 24h, then dehydrated and embedded in paraffin.
Sections (4μm) were cut from these paraffin-embedded tis-
sue samples and stained with HE or Masson to evaluate
the degree of liver injury.

2.5. Immunocytochemistry. Paraffin sections were deparaffin-
ized and rehydrated following routine methods. Antibodies
against CD14 (Abcam, Cambridge, MA, USA) and CD11b
(Abcam, Cambridge, MA, USA) were initially incubated at
4°C overnight with secondary antibodies being incubated
for 1 h at 37°C after three washings with staining buffer.
Diaminobenzidine staining was performed using a diamino-
benzidine peroxidase substrate kit (ZSGB-BIO, Beijing,
China). The slides were observed under light microscopy.

2.6. Protein Chip System for Serum. An aliquot from serum
samples was shredded using mouse inflammation array G-
Series 2 (Raybiotech, Norcross, GA, United States) to obtain
a protein extract. With this analysis, 32 different cytokines
were detected according to the Raybiotech analysis tool.
Signal values were read and then normalized [21].

2.7. Protein Extraction. Fresh liver tissue samples were
minced into small fragments, washed with 1x PBS buffer,
and then homogenized with lysis buffer. Total protein con-
tent was determined using tryptophan fluorescent analysis
in the form of a microtitration plate. In addition, MEDFASP
was used to continuously digest proteins using LysC, trypsin,
and chymotrypsin to treat proteins in small samples con-
taining 15μg of tissue.

2.8. LC-MS/MS Mass Spectrometry. In this study, we used
the Q Exactive HF-X mass spectrometer and a Nanospray
Flex™ (NSI) ion source, with the ion spray voltage set at
2.4 kV and ion transmission tube temperature at 275°C. A
data-dependent acquisition mode was adopted for mass
spectrometry. The parent ions with an ion strength of
Top40 in the full scan were selected and broken using the
high-energy collision cracking (HCD) procedure. These ions
were detected using secondary mass spectrometry to gener-
ate the original mass spectrometry detection data (.raw).

2.9. Evaluation and Statistical Analysis of Identified Proteins.
The distributions of peptide and PSM numbers of matching
proteins were analyzed. Molecular weight distributions of
identified proteins and protein coverage were determined
based on the peptide.
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2.10. Screening of Differentially Expressed Proteins. Relative
protein quantitation was calculated as an average ratio with
a change of >1.5-fold being considered statistically signifi-
cant (P ≤ 0:05). Candidate proteins were examined using
the Protein ID of the Protein Pilot software program.

2.11. Analysis and Annotation Functions. Functional annota-
tion and analysis were used to extract various structural and
functional annotation information from these molecules
based on the current annotation database (Gene Ontology,
KEGG) list of experimentally identified genes or other
molecules.

2.12. Protein Interaction Analysis. The analysis of interac-
tions between proteins in cells can reveal their function at

the molecular level. This analysis focuses on the differentially
expressed proteins of interest to investigators and constructs
a network to identify the relationship between these differen-
tially expressed proteins and the possible functional groups.

2.13. Statistical Analysis. Statistical comparisons were per-
formed using one-way ANOVA to analyze differences
among the groups. The SPSS software 20.0 program was
used in these analyses, and a P < 0:05 was required for
results to be considered statistically significant.

3. Results

3.1. Mouse Orthotopic Liver Transplantation (OLT) Model. A
summary of changes in serum ALT and AST levels in these
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Figure 1: Mouse orthotopic liver transplantation model. (a) Pattern diagram of mouse orthotopic liver transplantation model. (b, c) Serum
levels of ALT and AST following liver transplantation. (d) Inflammation antibody array G-series 2 map including 32 cytokines. (e) Cytokine
levels were proportional to their fluorescent intensities. ∗P < 0:05, ∗∗P < 0:01, and∗∗∗P < 0:001 compared with the control group.
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Figure 2: Continued.
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OLT mice is shown in Figures 1(b) and 1(c). As compared
with that in the control group, levels of ALT and AST
increased gradually in the LT-1W and LT-2W groups. In
these OLT mice, serum ALT levels peaked at 2 weeks, while
AST at 1 week after transplantation. Serum levels were also
detected using the protein chip system, with Figure 1(d)
illustrating the cytokine layout of the protein chip and
Figure 1(e) the protein chip fluorescent picture.

3.2. Proinflammatory Cytokines in the OLT Mouse Model. As
shown in Figures 2(a) and 2(b), a number of cytokines were
significantly increased (notably GC-CSF, GM-CSF, IL-12-
p70, IL-2, IL-4, IL-6, CXCL-1, MCP-5, CXCL-2, sTNFRI,
and TIMP-1) and a number significantly decreased (notably
IL-3, IL-5, IL-10, IL-17, IFN-g, MCP-1, TARC, and TNF-a)
in the LT-1W as compared with the control group. Within
the LT-2W group, there were also increases in some cyto-
kines (notably GC-CSF, MCP-5, CXCL-2, sTNFRI, and
TIMP-1) and decreases in others (notably IL-2, IL-3, IL-4,
IL-6, IL-10, IL-17, CXCL-1, IFN-g, MCP-1, TARC, and
TNF-a) as compared with the control group. When compar-
ing the LT-1W versus LT-2W groups, a number of cytokines

(notably IL-2, IL-3, IL-4, IL-6, IL-10, IL-17, CXCL-1, CXCL-
2, IFN-g, MCP-1, and TNF-a) were found to be significantly
decreased in the LT-2W group. These results reveal that the
proinflammatory cytokines, GC-CSF, GM-CSF, MCP-5,
CXCL-1, and CXCL-2, which are closely related to mono-
cytes, macrophages, and neutrophils showed significant,
temporally dependent changes in response to liver trans-
plant surgery. Bioinformatics analysis was also performed
on these proinflammatory cytokines (Figure 2(c)), with the
results that the cytokine-cytokine receptor, Th1/Th2 cell dif-
ferentiation, JAK-STAT signaling pathway, cytokine-
cytokine receptor interaction, and chemokine signaling
pathway in the LT-1W group all showed significant
changes as compared with the control group. Moreover,
cytokine-cytokine receptor, TNF signaling pathway, Th1/
Th2 cell differentiation, and T cell receptor signaling path-
way changed obviously in the LT-1W group. Compared
with the LT-1W group, the signal pathways showing obvi-
ous changes included the cytokine-cytokine receptor, TNF
signaling pathway, Th1/Th2 cell differentiation, and T cell
receptor signaling pathway in the LT-2W group. The sig-
nificant changes in proinflammatory cytokines and
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Figure 2: Serum levels of proinflammatory cytokines. (a) Differentially expressed proinflammatory cytokines of mice within each group. (b)
Scatter plot of proinflammatory cytokines. (c) KEGG analysis of proinflammatory cytokine functions.
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pathways, as summarized in Figure 2, may be related to
the marked changes in macrophages, monocytes, and neu-
trophils as observed after liver transplantation.

3.3. Alterations in Phagocytes in the OLT Mouse Model. In
the LT-1W group, there were increases in inflammatory cell
(neutrophils, monocytes, macrophages, and lymphocytes)
infiltration within the liver, as well as enhanced congestion,
swelling, and necrosis of hepatocytes as compared with the
control group (Figure 3(a)). Compared with the LT-1W
group, macrophages, monocytes, and neutrophils were rela-
tively increased in the LT-2W, while lymphocytes were
decreased in the LT-2W group. Liver tissue injury was also
assessed using Masson staining to detect liver tissue fibrosis
(Figure 3(b)). Compared with that observed in the control
group, the degree of fibrosis gradually increased in LT
groups. Results from immunohistochemical staining
revealed few CD11b positive cells in normal liver tissue,
while the number of these CD11b positive cells was
increased within the liver of the LT-1W group and was fur-
ther increased in the LT-2W group (Figure 3(c)). As can be
seen from Figure 3(d), compared with the control group, the
number of CD14 positive cells increased significantly in the
LT-1W group. Meanwhile, CD14 positive cells also
increased in the LT-2W group. While large numbers of
CD11b and CD14 positive cells were found in the liver after
liver transplantation, these CD11b or CD14 positive cells
mainly existed in monocytes, macrophages, and neutrophils.

Accordingly, these reveal that increases in monocytes, mac-
rophages, and neutrophils present within the livers of these
OLT mice and provide an assessment of the proteomics
within this liver tissue.

3.4. Construction of a Protein Map in the OLT Mouse Model
Using Proteomics. A summary of the number of proteins
extracted from selected mouse liver samples is shown in
Figure 4(a), while Figure 4(b) contains the number of pro-
teins and COG functional classification in each of these liver
samples. Overall, of the different proteins observed within
these groups (Figure 4(c)), 470 proteins were increased and
50 proteins decreased in the LT group (Figure 4(d)). These
differentially expressed proteins can be classified into either
a five-category (cytoskeletal protein, defense/immunity pro-
tein, metadata conversion enzyme, protein binding activity
modulator, and protein modifying enzyme) or a four-
category (metadata conversion enzyme, protein modifying
enzyme, transfer/carrier protein, and transporter) classifica-
tion, with the number of proteins being different within each
category (Figure 4(e)).

3.5. Pathway Enrichment Analysis of Differentially Expressed
Proteins. A bioinformatics analysis was applied to evaluate
the different proteins observed within the liver tissue of these
mice. For this analysis, we selected the top 50 proteins with
increased expression and top 50 proteins with decreased
expression (Figures 5(a) and 5(b)). In addition, GO and
KEGG pathway analyses were performed on those proteins

C LT-1W LT-2W

(a)

C LT-1W LT-2W

(b)

C LT-1W LT-2W

CD11b

(c)

C LT-1W LT-2W

CD14

(d)

Figure 3: Immune cell infiltration within the liver graft. (a) HE and (b) Masson staining to evaluate the extent of liver damage after liver
transplantation. (c, d) Immunocytochemistry for determination of CD11b and CD14 expression within the livers of each group.
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showing increased or decreased expressions (Figures 5(c),
5(d), 5(e) and 5(f)). Results of the GO analysis indicated that
the increased protein functions mainly involved phagocytosis,
leukocyte migration, and myeloid leukocyte migration, while
reduced protein expressions were mainly related to changes
in fatty acid metabolic process, lipid catabolic process, and
arachidonic acid metabolic processes. The KEGG pathway
analysis showed that neutrophil extracellular trap formation,
lipid and atherosclerosis, the NOD-like receptor signaling
pathway, and leukocyte transendothelial migration were

related to liver transplant rejection in these mice and that it
is mainly related to steroid hormone biosynthesis, retinol
metabolism, and chemical carcinogenesis-DNA adducts.

3.6. Protein-Protein Interaction Network Analysis. Proteins
with increased expression, including CD11b, CD14, Lsp1,
Zbp1, Ncf4, Ripk3, Acsl4, Sirpa, S100a1, S100a4, S100a6,
S100a8, and S100a9 (Figure 6(a)), were screened, and inter-
actions among these different proteins were then analyzed.
As shown in Figure 6(b), S100a8 interacted with the CD44
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protein, S100a9 with the Chil3 protein, and S100a10 with the
Anxa1/Anxa2 protein. Results of the KEGG pathway analy-
sis revealed that these proteins were closely related to the
functions of monocyte macrophages and neutrophils.

4. Discussion

Following liver transplantation, a substantial number of
immune cells enter the donor liver and interact with
immune cells of the graft [22], an effect which leads to
increases in immune responses and inflammatory reactions
[23]. During this process, the liver will produce and release
a large number of cytokines, including chemokines and pro-
inflammatory cytokines. Cytokines, which can exert a wide
range of effects upon proinflammatory and regulatory prop-
erties, might be considered potential therapeutic targets for
selective suppression or enhancement of the immune
responses in recipients [24]. In the mouse OLT model, we
found that serum ALT and AST showed a temporally depen-

dent increase after liver transplantation, indicating that
hepatocytes were damaged. Liver injury after transplantation
is often due to inflammatory reaction and rejection. With
rejection, a large number of proinflammatory cytokines
can recruit neutrophils, monocytes, and macrophages into
the grafts and, in this way, contribute to inflammation and
rejection.

Results of the mouse serum protein chip analysis indi-
cated that a large number of proinflammatory cytokines,
including GC-CSF, CXCL-1, MCP-5, and CXCL-2, were
released one week after liver transplantation. Simulta-
neously, contents of lymphocyte activating cytokines, such
as IL-5, IL-10, and IL-17, were decreased. About two weeks
after operation, the contents of GC-CSF and MCP-5 were
still high, while the contents of proinflammatory cytokines
such as CXCL-1 and CXCL-2 decreased. In response to
transplant rejection, cells in the liver can produce several
proinflammatory chemokines and cytokines [25]. Among these
cytokines, CXCL-1 and CXCL-2 serve as chemoattractants for
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neutrophils [26]. Results, as obtained from staining, also show
that a large number of immune cells, including neutrophils,
monocytes, macrophages, lymphocytes, and other immune
cells, infiltrated the graft after liver transplantation. Therefore,
in the early stages after liver transplantation, we observed sub-
stantial amounts of proinflammatory cytokines, within the
serum in our OLT mouse model. Such an effect could then
increase the number of innate immune cells participating in
transplant rejection.

Proteomics were then used to identify changes in liver
proteins associated with transplantation. With this analysis,
we found that 470 proteins were increased and 50 decreased.
The increased proteins were closely related to leukocyte
metastasis and the NOD-like receptor pathway, while the
decreased expression of proteins was mainly related to lipid
metabolism and the PPAR pathway. Notably, the NOD-like
receptor proteins NOD1 and NOD2 can participate in innate
immune responses [27], and NOD1 stimulates the release of
chemokines, such as CXCL-8, CXCL-1, and CXCL-2, which
can attract neutrophils to the site of infection [28].

Further analysis of proteins revealed that significant
increases were obtained in the expressions of CD11b,
CD14, S100a4, S100a8, and S100a9, as well as in other pro-
teins. These proteins are closely related to the functional
activities of neutrophils, monocytes, and macrophages; in
particular, CD11b, S100a8, and S100a9 form the heterodi-
mer, calprotectin, which is released by activated mono-
cytes/macrophages and neutrophils [29], and S100a8/
S100a9 can also produce a macrophage-induced inflamma-
tion and degeneration of the vessel wall. Such effects may
then provide an explanation for the increased levels of
intra-aneurysmal S100a8 and S100a9 as observed in rup-
tured versus nonruptured intracranial aneurysms [30].
Results from our serological assays revealed that CXCL-1
and CXCL-2 were significantly increased, which could exert
an important effect on the chemotaxis and functional activa-
tion of neutrophils and the mononuclear phagocytic system.
In addition, our proteomic findings indicated that there was
an increase in the content of S100a8/S100a9 within the liver,
suggesting that a close relationship may exist between
CXCL-1/CXCL-2 and S100a8/S100a9. From our analyses
of protein-protein interactions, we found that S100a9 inter-
acted with Saa3 and Chil3 and that S100a4/S100a6 were
closely related to Anxa1/Anxa2. It has been reported that
CXCL-1 and CXCL-2 are closely related to S100a8/S100a9.
Anti-inflammatory proteins can combine to transcription-
ally repress hepatic expression of S100a8, S100a9, CXCL-1,
and CXCL-2 [31], and TLR2 and S100a8/S100a9 represent
key regulators of hepatic CXCL-2 expression and neutrophil
recruitment [32].

In summary, our current results suggest that increased
secretion of CXCL-1 and CXCL-2 can enhance the func-
tional activity of neutrophils and the mononuclear phago-
cyte system within the donor liver to then participate in
processes leading to liver rejection. During this process, infil-
trating neutrophils and monocyte/macrophages are associ-
ated with high expression of S100a8/S100a9, and
calprotectin can further regulate the functions of these cells
to contribute to the immune responses observed.
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