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Abstract

Background: The Wnt pathway mediates differentiation of epithelial tissues; depending on the tissue types, Wnt can either
drive or inhibit the differentiation process. We hypothesized that key genes in the Wnt pathway are suppressed in the
human airway epithelium under the stress of cigarette smoking, a stress associated with dysregulation of the epithelial
differentiated state.

Methodology/Principal Findings: Microarrays were used to assess the expression of Wnt-related genes in the small airway
epithelium (SAE) obtained via bronchoscopy and brushing of healthy nonsmokers, healthy smokers, and smokers with
COPD. Thirty-three of 56 known Wnt-related genes were expressed in the SAE. Wnt pathway downstream mediators b-
catenin and the transcription factor 7-like 1 were down-regulated in healthy smokers and smokers with COPD, as were many
Wnt target genes. Among the extracellular regulators that suppress the Wnt pathway, secreted frizzled-related protein 2
(SFRP2), was up-regulated 4.3-fold in healthy smokers and 4.9-fold in COPD smokers, an observation confirmed by TaqMan
Real-time PCR, Western analysis and immunohistochemistry. Finally, cigarette smoke extract mediated up-regulation of
SFRP2 and down-regulation of Wnt target genes in airway epithelial cells in vitro.

Conclusions/Significance: Smoking down-regulates the Wnt pathway in the human airway epithelium. In the context that
Wnt pathway plays an important role in differentiation of epithelial tissues, the down-regulation of Wnt pathway may
contribute to the dysregulation of airway epithelium differentiation observed in smoking-related airway disorders.
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Introduction

The human airway epithelium, a pseudostratified layer of cells

derived from the endoderm, serves as a physical barrier against

inhaled pathogens, xenobiotics, and other noxious substances in

the environment [1,2]. The normal airway epithelium has the

capacity of regeneration and repair [3–7]. Of the major cell types,

the airway epithelial progenitor cells are in the basal cell

population, cells capable of self renewal and differentiation into

columnar cells and eventually, the differentiated secretory and

ciliated cell populations that function to defend the airway against

environmental stress [3,7–9].

There are several lines of evidence that demonstrate controlling

this differentiation process, in part, is through the canonical Wnt/

b-catenin signaling pathway [10,11]. The canonical Wnt pathway

plays a central role in lung development and is critical for

generation of the lung epithelium [10,12–14]. Components of the

canonical Wnt signaling pathway are expressed in embryonic and

adult lung cell lines, as well as in the developing lung in a specific,

spatio-temporal pattern [11,15–17]. When canonical Wnt signal-

ing is active, the pathway maintains cells in a low differentiation

state [18–23]. However, when the canonical Wnt pathway is

suppressed, undifferentiated progenitor cells are allowed to

proceed toward differentiation [18–23]. Modulation of Wnt

expression in embryonic and adult mouse lung suggests that the

Wnt pathway is important for cell fate decisions and differentiation

of lung cell type [24,25]. The agonists of the canonical Wnt/b-

catenin pathway include multiple Wnt proteins that function

through frizzled receptors to up-regulate b-catenin, resulting in

activation of the T cell factor (LEF1, TCF7, TCF7L1, TCF7L2)

transcription factor family [26,27]. The extracellular antagonists of

Wnt signaling are the secreted fizzled-related (SFRP) and the

Dickkopf (DKK) family of proteins [28,29]. When the SFRPs

and/or DKKs are up-regulated, the Wnt pathway is suppressed,

allowing differentiation to proceed [28,29].

Based on this background, we hypothesized that the canonical

Wnt/b-catenin signaling pathway may be deranged in the airway

epithelium when it is in a state of constant stress such as in

cigarette smokers. To assess this hypothesis, we used microarrays

to survey the mRNA levels of the canonical Wnt/b-catenin
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pathway in the small airway epithelium, the initial site of smoking-

induced lung disease [30]. Pure populations of small airway

epithelium were obtained by fiberoptic bronchoscopy of healthy

nonsmokers, healthy smokers, and smokers with established

COPD. The data demonstrate that most components of the

Wnt/b-catenin pathway are expressed in the small airway

epithelium. Interestingly, the downstream mediators b-catenin

and the TCF transcription factor TCF7L1, as well as several

downstream Wnt pathway target genes, are down-regulated in

healthy smokers and smokers with COPD. Consistent with the

down-regulation of Wnt/b-catenin pathway associated with

smoking, the mRNA and protein levels of the Wnt inhibitor

secreted frizzled-related protein 2 were greatly up-regulated in the

small airway epithelium of healthy smokers and smokers with

COPD, with expression primarily in ciliated cells. Finally, in vitro

exposure of lung epithelium to cigarette smoke extract demon-

strated similar results, with up-regulation of SFRP2 and down-

regulation of the Wnt pathway. Together, these results show that

smoking is associated with abnormal regulation of the Wnt

pathway in the airway epithelium, an observation consistent with

the disordered epithelial differentiation observed in smoking-

related airway disorders.

Methods

Study Population
All individuals were evaluated at the Weill Cornell NIH Clinical

and Translational Science Center and Department of Genetic

Medicine Clinical Research Facility using protocols approved by

the Weill Cornell Medical College Institutional Review Board. All

subjects provided written consent before any study procedures

were undertaken. Healthy nonsmokers and healthy smokers were

characterized on the basis of clinical history and physical

examination, routine blood screening tests, chest X-ray, electro-

cardiogram, urinalysis, and pulmonary function testing. Current

smoking status was confirmed by history, venous carboxyhemo-

globin levels, and urinalysis for nicotine levels and its derivative

cotinine. Smokers with established COPD were defined according

to Global Initiative for Chronic Obstructive Lung Disease criteria

[31,32].

Collection of Small Airway Epithelium
Small airway epithelium was collected using flexible bronchos-

copy as previously described [33,34]. Smokers were asked not to

smoke the evening prior to the procedure. A flexible bronchoscope

(Pentax, EB-1530T3) was advanced to the desired bronchus after

achieving mild sedation and anesthesia of vocal cords. Small

airway samples were collected from 10th to 12th order bronchi

using methods previously described. The airway epithelial cells

were subsequently collected separately in 5 ml of LHC8 medium

(GIBO, Grand Island, NY). An aliquot of this was used for

cytology and differential cell count and the remainder was

processed immediately for RNA extraction. Total cell counts were

obtained using a hemocytometer while differential cell counts were

determined on sedimented cells prepared by centrifugation

(Cytospin 11, Shandon Instruments, Pittsburg, PA) and stained

with DiffQuik (Baxter Healthcare, Miami, FL).

RNA Extraction and Microarray Processing
Microarray analysis was performed using Affymetrix (Santa Clara,

CA) microarray HG-U133 Plus 2.0 (54,675 probe sets) and associated

protocols. Total RNA was extracted from epithelial cells using

TRIzol (Invitrogen, Carlsbad, CA) followed by DNAnase (Qiagen,

Valencia, CA) to remove residual DNA. An aliquot of each RNA

sample was run on an Agilent Bioanalyzer (Agilent Technologies,

Palo Alto, CA) to visualize and quantify the degree of RNA integrity.

The concentration was determined using a NanoDrop ND-1000

spectrophotometer (NanoDrop Technologies, Wilmington, DE).

Double-stranded complementary DNA was synthesized from 3 mg

of total RNA using the GeneChip One-Cycle cDNA Synthesis Kit,

followed by a cleanup step using GeneChip Sample Cleanup

Module. Next, an in vitro transcription (IVT) reaction was performed

with GeneChip IVT Labeling Kit after which further cleanup was

carried out and quantification of the resulting biotin-labeled cRNA

by spectrophotometry (all reagents from Affymetrix). Hybridizations

to test chips and when permissible, to the microarrays, were

conducted according to Affymetrix protocols. The Affymetrix

GeneChip Fluidics Station 450 was used for processing the arrays

with appropriate reagents/washes, prior to scanning with an

Affymetrix GeneChip Scanner 3000 7G (http://affymetrix.com/

support/technical/manual/expression_manual.affx).

Captured images were analyzed using Microarray Suite version

5.0 (MAS 5.0) algorithm (Affymetrix) as previously described.

Samples used for analysis were required to satisfy quality control

criteria including: (1) RNA Integrity Number (RIN) $7.0; (2) 39/

59 ratio for GAPDH#3; and (3) scaling factor #10.0 [35]. This

data were normalized using GeneSpring version 7.3 software

(Agilent Technologies, Palo Alto, CA) per array, by dividing the

raw data by the 50th percentile of all measurements. The data sets

were assessed for expression of 56 Wnt signaling pathway genes

and 55 Wnt target genes (based on the Wnt homepage, http://

www.stanford.edu/,rnusse/wntwindow.html) using criteria of

present (P call) of .20% of healthy nonsmokers.

TaqMan RT-PCR Confirmation of Microarray Expression
Levels

To confirm the microarray findings, TaqMan real-time RT-

PCR was performed on RNA samples from the small airway

samples of healthy nonsmokers, healthy smokers and smokers with

COPD (n = 9 each, except for b-catenin, n = 11 each) that had

been used for HG-U133 Plus 2.0 microarray analysis. First, cDNA

was synthesized from 2 mg RNA in a 100 ml reaction volume,

using the TaqMan Reverse Transcriptase Reaction Kit (Applied

Biosystems), with random hexamers as primers. Dilutions of 1:10

and 1:100 were made from each sample and triplicate wells were

run for each dilution. TaqMan PCR reactions were carried out

using primers (Applied Biosystems, Foster City, CA), and 2 ml of

cDNA was used in each 25 ml reaction volume. The endogenous

control was 18S ribosomal RNA and relative expression levels

were determined using the DDCt method (Applied Biosystems).

The rRNA probe was labeled with VIC and the probe for each

gene of interest (b-catenin, TCF7L1, SOX9, MMP7) was labeled

with FAM. The PCR reactions were run in an Applied Biosystems

Sequence Detection System 7500.

Western Analysis
Western analysis was used to quantitatively assess SFRP2 protein

expression in small airway brushing samples from healthy

nonsmokers, healthy smokers and smokers with COPD. Red blood

cells were lysed (red blood cell lysis buffer, eBioscience, San Diego,

CA), and proteins were extracted using RIPA buffer (Sigma-

Aldrich, Saint Louis, MO) following the manufacture’s instructions.

Protein concentrations were assessed using a bicinchoninic acid

(BCA) protein concentration kit (Pierce, Rockford, IL). Equal

concentration of protein mixed with NuPAGE LDS Sample Buffer

and NuPAGE Reducing Agent was heated at 70uC for 10 min.

Then samples were loaded on NuPAGE 4 to12% Bis-Tris Gel

(Invitrogen, Carlsbad, CA). Protein electrophoresis was carried out
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at 200 V, 1 hr, 23uC. Sample proteins were transferred (30 V, 1 hr,

4uC) to a 0.2 mm PVDF membrane (Invitrogen, Carlsbad, CA) in

NuPAGE transfer buffer. The membranes were then blocked with

5% non-fat milk in Phosphate Buffered Saline with 0.1% tween-20

(PBST) for 1 hr. The membranes were incubated with primary

rabbit polyclonal anti-SFRP2 antibodies (Santa Cruz Biotechnol-

ogy, Santa Cruz, CA) at 1:200 dilution 4uC overnight. Detection

was performed using secondary horseradish peroxidase-labeled goat

anti-rabbit antibody (1:2,000 dilution, Santa Cruz Biotechnology)

and then enhanced chemiluminescent reagent system (GE Health-

care, Pittsburgh, PA). To assess the Western analysis quantitatively,

the film was digitally imaged, maintaining exposure within the

linear range of detection. The contrast was inverted, the pixel

intensity of each band determined, and the background pixel

intensity for a negative area of the film of identical size subtracted

using MetaMorph image analysis software (Universal Imaging,

Downingtown, PA). The membrane was subsequently stripped and

reincubated with monoclonal anti-b-actin antibody (Sigma-Aldrich,

Saint Louis, MO) as a control for equal protein concentration.

Localization of SFRP2 in the Airway Epithelium
To determine the distribution of SFRP2 expression in small

airway epithelial cells, cytospin preparation of bronchial brushes

obtained from the small airway epithelium of healthy nonsmoker,

healthy smokers and smokers with COPD were assessed by

SFRP2-specific immunofluorescence. Sections were fixed in 4%

paraformaldehyde for 15 min, and washed twice in PBS. Samples

were blocked in normal goat serum to reduce background staining

and then incubated with the rabbit anti-human SFRP2 primary

antibody (Atlas Antibodies, Stockholm, Sweden) diluted 1:250 and

rabbit IgG (Jackson Immunoresearch, West Grove, PA) as the

isotype control at 4uC overnight. Goat anti-rabbit Cy3 conjugated

AffiniPure IgG (Jackson ImmunoResearch) at 1:50 dilution was

used as a secondary antibody for SFRP2. Nuclei were counter

Table 1. Demographics of the Study Population and Biologic Samples1.

Parameter Healthy nonsmokers Healthy smokers COPD smokers2

n 47 58 22

Sex (male/female) 33/14 38/20 18/4

Age (yr) 41.9611.4 42.967.2 51.568.5

Race (B/W/O)3 23/18/6 35/14/9 8/9/5

Smoking history (pack-yr) - 27.5616.6 40.9628.2

Urine nicotine (ng/ml) - 129861676 111461132

Urine cotinine (ng/ml) - 12466965 13576598

Blood carboxyhemoglobin (%) 0.460.7 1.861.9 3.062.0

Pulmonary function parameters4

FVC 107614 109613 97620

FEV1 106615 107614 74621

FEV1/FVC 8266 8065 6169

TLC 101613 100612 102622

DLCO 99615 94611 75619

Gold stage (I/II/III)2 - - 9/11/2

Medication use

b-agonist - - 7

Anticholinergic - - 2

Inhaled corticosteroid - - 3

Epithelial cells5

Number recovered6106 6.462.9 7.263.0 6.763.2

% epithelial cells6 99.361.1 99.161.3 98.961.4

% inflammatory cells 0.761.1 0.861.3 1.161.4

Differential cell count

Ciliated (%) 7467.4 65.7612.4 63.5610.9

Secretory (%) 6.763.5 9.164.5 11.965.6

Basal (%) 11.165.3 12.766.6 11.966.3

Undifferentiated (%) 7.363.2 11.966.6 11.663.7

1Data are presented as mean 6 standard deviation.
2Smokers with ‘‘established COPD’’ defined by the GOLD criteria [31,32]; the COPD smoker group included: GOLD I n = 9, GOLD II n = 11, and GOLD III n = 2.
3B = black, W = white, O = other.
4Pulmonary function testing parameters are given as % of predicted value with the exception of FEV1/FVC, which is reported as % observed; FVC - forced vital capacity,
FEV1 - forced expiratory volume in 1 sec, TLC - total lung capacity, DLCO - diffusing capacity. For individuals with COPD, FVC, FEV1, and FEV1/FVC are post-
bronchodilator values.

5Small airway epithelium.
6As a % of small airway epithelium recovered.
doi:10.1371/journal.pone.0014793.t001
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stained with 49, 6-diamidino-2-phenylindole (DAPI, 1:2,000

dilution; Invitrogen, Carlsbad, CA). Images were captured using

an Olympus IX 70 fluorescence microscope with 60-fold

magnification. Images were analyzed using MetaMorph software

(Universal Imaging Corporation, Downingtown, PA).

As a further assessment at the morphologic level, bronchial

biopsies from large airway of healthy nonsmokers, healthy smokers

and smokers with COPD were assessed by immunofluorescence

for SFRP2. Sections were deparaffinized and rehydrated through

a series of xylenes and alcohol. Further staining procedures were as

described above.

Colocalizations of SFRP2 with a ciliated cell-specific marker b-

tubulin IV, secretory cell-specific marker mucin 5AC and

neuroendocrine-specific marker chromogranin A were also per-

formed with cytospin preparations and biopsies. The following

antibodies were used: for b-tubulin IV, mouse monoclonal anti-

human b-tubulin IV (1:2000; Biogenex, San Ramon, CA) and

mouse IgG as the isotype control (Sigma, St Louis, MO); for mucin

5AC, mouse monoclonal (CLH2) anti-human mucin 5AC (1:50;

Vector Laboratories, Burlingame, CA) and mouse IgG as the

isotype control (Sigma, St Louis, MO); for chromogranin A, mouse

monoclonal (LK2H10+PHE5) anti-human chromogranin (1:500

dilution; Thermo Scientific, Waltham, MA) and mouse IgG as the

isotype control (Sigma, St Louis, MO). Following incubation with

the primary antibodies, goat anti-rabbit Cy5 (Jackson ImmunoR-

esearch) was used as a secondary antibody for SFPR2 and goat anti-

mouse Cy3 (Jackson ImmunoResearch) was used as a secondary

antibody for b-tubulin IV, mucin 5AC and chromogranin A.

Further staining procedures were as described above.

Down-regulation of Wnt Pathway Target Genes in
Human Small Airway Epithelial Cells Exposed to Cigarette
Smoke Extract In Vitro

Aqueous cigarette cell extract (CSE) was generated from the

combustion of 1 cigarette (Marlboro Red) bubbled through 12.5 ml

of culture medium [36]. This medium, defined as ‘‘100% CSE,’’

was adjusted to pH 7.4 and filtered through a 0.22 mm filter.

Different concentrations of CSE diluted with the culture medium

were employed, ranging from 0.1 to 20%. The human airway

epithelial cell line 16HBE [37] was exposed to freshly prepared CSE

for 72 hr. Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-

Figure 1. The Wnt pathway expression in the small airway epithelium of human healthy nonsmokers. A. Schematic of the pathway,
showing which (in bold) ligands, soluble antagonists, receptors, co-receptors, intracellular activators, transcription factors and downstream effectors
are expressed. B. Gene expression in canonical Wnt b-catenin pathway in healthy nonsmokers in small airway epithelium. Small airway epithelium
from 47 normal nonsmokers were analyzed using the HG-U133 Plus 2.0 array and expression level normalized by chip only is plotted. Error bars
represent the standard error.
doi:10.1371/journal.pone.0014793.g001
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2,5-diphenyltetrazolium bromide (MTT) assay (Roche Applied

Science) [38]. Viability was expressed as percentage of the values

(corresponding to 100%) of untreated cells. SFRP2, MMP7, SOX9

gene expression was assessed with TaqMan real-time PCR.

Wnt Reporter Assay
HEK293 cells were transiently transfected with the reporter

construct Topflash or Fopflash (kindly provided by R. Moon,

University of Washington, Seattle) using Lipofectamine LTX

(Invitrogen, Carlsbad, CA) [39]. The Topflash construct contains 8

Tcf/Lef binding sites upstream of a minimal TA viral promoter and

the firefly luciferase cDNA. The Fopflash construct is identical except

that it contains mutated copies of TCf/Lef binding sites and is used as

a control for measuring nonspecific activation of the reporter

construct. Expression of Renilla luciferase provides an internal control

value to which expression of the experimental firefly luciferase reporter

gene will be normalized. The experiment was divided into 6 groups:

Topflash plus CMV-renilla; Fopflash plus CMV-renilla; Topflash plus

CMV-renilla plus WNT1; Fopflash plus CMV-renilla plus WNT1;

Topflash plus CMV-renilla plus WNT1 plus SFRP2; Fopflash plus

CMV-renilla plus WNT1 plus SFRP2. After 48 hr, luciferase activities

were determined using the Dual Luciferase Assay System (Promega)

on a tube luminometer (Berthold detection systems).

Statistical Analysis
HG-U133 Plus 2.0 microarrays were analyzed using GeneSpring

software. Average expression values were calculated from normal-

ized expression levels for healthy nonsmokers, healthy smokers, and

smokers with COPD. p values were obtained using Benjamini-

Hochberg correction to limit the false positive rate. Statistical

comparisons between continuous variables were calculated using an

unpaired, two-tailed t-test with unequal variance. Statistical

comparisons for categorical data were achieved using Chi-squared

test. A p value,0.05 was considered significant. p values for

TaqMan data were calculated using two-tailed Student’s t-test.

Web Deposition of Data
All MIAME-compliant microarray data have been deposited in the

Gene Expression Omnibus (GEO) site (http://www.ncbi.nlm.nih.

gov/geo), which is curated by the National Center for Bioinformatics.

Accession number for small airways HG-U133 Plus 2.0 is GSE19407.

Results

Study Population
Small airway samples from a total of 127 individuals, including 47

healthy nonsmokers, 58 healthy smokers and 22 smokers with

established COPD were analyzed with microarray HG-U133 Plus 2.0

(Table 1). There were no differences with respect to gender among the

groups (p.0.3), but the COPD smokers were older than the other

groups (p,0.05). There were no differences among groups with

regard to ancestral background (p.0.3). All individuals were HIV

negative. Smokers had urine nicotine and cotinine and venous blood

carboxyhemoglobin levels confirming their current smoking status.

Sampling of Airway Epithelium
Airway epithelial cells were obtained by fiberoptic bronchoscopy

and brushing of small (10th to 12th order) airways. The number of cells

recovered averaged from 2.1 to 216106, with an average of .96%

epithelium (Table 1). The various categories of airway epithelial cells

were, as expected, from the small airway epithelium [33,34].

Expression of Wnt Signaling Pathway Genes in Small
Epithelium of Healthy Nonsmokers, Healthy Smokers and
Smokers with COPD

The genome-wide microarrays were used to analyze the gene

expression profiles of canonical Wnt signaling components at the

mRNA level in the small airway epithelium of healthy nonsmok-

ers, healthy smokers, and smokers with established COPD. In the

small airway epithelium of healthy nonsmokers, 33 of 56 (60%)

genes in the Wnt pathway were expressed (Table S1). These

expressed genes included Wnt extracellular ligands (WNT3, 4, 7B,

9A, 10A), frizzled receptors (FZD1, 3, 4, 5, 6, 7, 8), co-receptors

(LRP5, LRP6), extracellular inhibitors (SFRP2, DKK1, DKK3,

DKK4), intracellular mediators (b-catenin, GSK-3B, DVL1, 2, 3,

AES, APC1, AXIN1, AXIN2, FRAT1, FRAT2), nuclear

transcription factors (TCF7, TCF7L1, TCF7L2, LEF1). For

Wnt target genes, 27 out of 55 genes are present in small airway

epithelium, including MMP7, CLDN1, VEGFA, CCND1, SOX9,

ID2 (Figure 1A, Table S1).

In healthy nonsmokers the relative expression of WNT9A was

the most highly expressed Wnt ligand, with average expression

approximately 3.3-fold greater than WNT3, and 4.7-fold greater

Figure 2. Comparison of the relative expression of the Wnt pathway downstream and target genes in healthy nonsmokers (n = 47),
healthy smokers (n = 58), and smokers with COPD (n = 22). Analysis was carried out with HG-U133 plus 2.0 microarrays normalized by chip and
gene. Each bar represents mean expression with standard error; * p,0.05 compared to healthy nonsmokers, * * p,0.01 compared to healthy
nonsmokers.
doi:10.1371/journal.pone.0014793.g002
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than WNT10A (both p,0.0001). For receptors, the most highly

expressed receptor was FZD6, which was expressed 44.4-fold

higher than FZD7 (p,0.0001), the lowest expressed receptor. For

transcription factors in the Wnt pathway, TCF7 was the

downstream gene most highly expressed in the small airway

samples, 2.3-fold more highly expressed than TCF7L1, 4.4-fold

more than TCF7L2, and 2.7-fold more than LEF1 (p,0.0001, all

comparisons).

Compared to healthy nonsmokers, the Wnt intracellular

modulators, transcription factors and target genes were down-

regulated in healthy smokers and smokers with established COPD.

b-catenin, a central molecule in the Wnt signaling pathway, was

down-regulated 1.5-fold in healthy smokers and 1.8-fold in

smokers with COPD (both comparisons, p,0.05, Figure 2,

Table 2). Consistent with this observation, TCF7L1, a transcrip-

tion factor in Wnt pathway, was down-regulated 1.7-fold in

Table 3. Small Airway Epithelium Wnt Pathway Target Genes with Suppressed Expression in Healthy Smokers and COPD Smokers
Compared to Healthy Nonsmokers1.

Gene symbol Gene title
Probe set
ID P call (%) Smoker/nonsmoker COPD/nonsmoker

Non-
smoker Smoker

COPD
smoker Fold-change p value Fold-change p value

SOX9 SRY (sex determining region Y)-box 9 202936_s_at 100 100 100 21.88 ,0.0001 22.29 ,0.0001

RHOU ras homolog gene family, member U 223168_at 100 100 100 21.60 ,0.0001 21.88 ,0.0001

RUNX2 runt-related transcription factor 2 232231_at 100 100 100 21.51 ,0.0001 21.32 ,0.0

JAG1 jagged 1 209099_x_at 100 100 100 21.33 ,0.0001 21.32 ,0.01

CCND1 cyclin D1 208712_at 100 100 100 21.34 ,0.0001 21.39 ,0.001

CLDN1 claudin 1 218182_s_at 98 97 86 21.37 ,0.0001 21.70 ,0.0001

CDH1 cadherin 1, type 1, E-cadherin (epithelial) 201131_s_at 100 100 100 21.25 ,0.001 21.14 NS

AXIN2 axin 2 222696_at 100 97 100 21.16 ,0.05 21.22 ,0.01

MMP7 matrix metallopeptidase 7 (matrilysin,
uterine)

204259_at 47 14 9 21.66 ,0.01 22.62 ,0.0001

ID2 inhibitor of DNA binding 2, dominant
negative helix-loop-helix protein

201565_s_at 100 100 100 21.16 ,0.05 21.12 NS

VEGFA vascular endothelial growth factor A 210512_s_at 100 100 100 21.58 ,0.05 21.17 NS

SOX2 SRY (sex determining region Y)-box 2 228038_at 100 100 100 21.12 ,0.05 21.07 NS

1NS, not significant.
doi:10.1371/journal.pone.0014793.t003

Figure 3. Comparison of the relative expression of the Wnt pathway inhibitors in healthy nonsmokers (n = 47), healthy smokers
(n = 58), and smokers with COPD (n = 22). Analysis was carried out with HG-U133 plus 2.0 microarrays. Each bar represents mean expression with
standard error; p values are represented in brackets above the bars.
doi:10.1371/journal.pone.0014793.g003
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smokers and 1.7-fold in smokers with established COPD (p,0.01,

Figure 2, Table 2). Wnt target genes, including MMP7, VEGFA,

CLDN1, CCND1, SOX9, RHOU, were also down-regulated in

healthy smokers and smokers with COPD compared to healthy

nonsmokers (p,0.05 for VEGFA and p,0.01 for the other genes;

Figure 2, Table 3). The network of the WNT/b-catenin genes in

healthy smokers and smokers with COPD compared to healthy

nonsmokers were analyzed with Ingenuity Pathway Analysis

(Ingenuity Systems, http://www.ingenuity.com; Figure S1).

Modulation of the Wnt signaling pathway in the small airway

epithelium of healthy smokers and smokers with COPD compared

to healthy nonsmokers was verified using TaqMan PCR for

selected central genes in the pathway (Figure S2). Consistent with

microarray data, b-catenin was down-regulated 1.7-fold in

smokers compared to nonsmokers, and 1.9-fold in smokers with

COPD compared with healthy nonsmokers (p,0.05). For

transcription factors, TCF7L1 was confirmed to be down-

regulated in healthy smokers and smokers with COPD compared

to healthy nonsmokers (p,0.05). Wnt signaling pathway target

genes were also confirmed to be down-regulated. MMP7

expression decreased 7.5-fold in healthy smokers and 12.9-fold

in smokers with COPD compared to healthy nonsmokers

(p,0.05). SOX9, another Wnt target gene, was also confirmed

to be down-regulated in the small airway epithelium of healthy

smokers and smokers with COPD compared to healthy nonsmok-

ers (3.9-fold for smokers vs nonsmokers and 3.2-fold for smokers

with COPD vs nonsmokers, both p,0.01).

Expression of SFRP2 in the Small Airway Epithelium of
Healthy Nonsmokers, Healthy Smokers and Smoker with
COPD

The in vivo gene expression data showed that Wnt signaling

pathway was down-regulated in healthy smokers and smokers with

COPD compared to healthy nonsmokers in the small airway

epithelial cells. As a possible mechanism to explain this down-

regulation, we hypothesized that there may be smoking-induced

up-regulation of the SFRP and/or DKK family of extracellular

Wnt pathway inhibitors. To assess this, we analyzed Wnt

inhibitors expressed in human small airway epithelium including,

SFRP2, DKK1, DKK3 and DKK4. Interestingly, among these 4

inhibitors, SFRP2 showed significant gene expression change

between healthy smokers and healthy nonsmokers, with SFRP2

up-regulation 4.3-fold in healthy smokers and 4.9-fold in smokers

with COPD compared with healthy nonsmokers (p,0.0001,

Figure 3).

To confirm the results obtained from microarrays, anti-SFRP2

immunofluorescence and Western analysis were utilized. First,

anti-SFRP2 immunofluorescence was carried out on cytospin

preparations of small airway epithelial cells obtained from healthy

nonsmokers, healthy smokers and smokers with COPD. In all

samples, SFRP2 protein expression was detected specifically in

ciliated cells; other cell types, including secretory cells, undiffer-

entiated cells and basal cells, did not show obvious staining

(Figure 4, Figure 5). Consistent with the up-regulation of SFRP2

mRNA, qualitative immunofluorescence assessment suggested that

Figure 4. Co-localization of SFRP2 and ciliated cell specific marker b-tubulin IV. For Figures 4A–I, Cytospin preparations of airway
epithelium from a healthy smoker were stained with antibodies against SFRP2 (green), b-tubulin IV (red), Mucin 5AC (red) and chromogranin A (red).
A–C. Colocalization of SFRP2 and b-tubulin IV; D–F. Colocalization of SFRP2 and mucin 5AC; G–I. Colocalization of SFRP2 and chromogranin A. For
Figure 4J–K, biopsies from a healthy smoker were stained with antibodies against SFRP2 (red) b- tubulin IV (green). J. IgG controls of SFRP2 and b-
tubulin IV; and K. SFRP2 and b-tubulin IV co-localization.
doi:10.1371/journal.pone.0014793.g004
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SFRP2 protein was up-regulated in the healthy smokers and

COPD smokers. Second, as further confirmation, SFRP2

expression was also observed to be up-regulated in ciliated cells

of large airway biopsies (Figure 6).

To quantify this observation, Western analysis of SFRP2 was

carried out on small airway epithelial cell samples from healthy

nonsmokers, healthy smokers and smokers with COPD. This

analysis demonstrated increased SFRP2 protein expression in

healthy smokers and smokers with established COPD compared to

healthy nonsmokers in small airway epithelial cells (Figure 7,

p,0.05).

Down-regulation of the Wnt Signaling Pathway in
Human Airway Epithelial Cells Exposed to Cigarette
Smoke Extract In Vitro

To assess whether the exposure of human airway epithelial cells

to CSE would affect Wnt pathway gene expression, cultures of the

human airway epithelial cell line 16HBE were exposed to freshly

made CSE for 72 hr. Cell viability was analyzed with MTT assay

and SFRP2, MMP7 and SOX9 gene expression was analyzed

using TaqMan real-time PCR. Decreased cell viability compared

to control cells was observed with concentrations of 5, 10 and 20%

CSE. Cell viability was 100% with 0.1% CSE and 92% with 1%

CSE medium compared with controls (Figure 8A). Based on this

data, we chose 0.1% and 1% CSE for the CES in vitro exposure

studies. Compared with controls, SFRP2 gene expression

increased in a dose-dependent pattern, with 4.6-fold in 0.1%

CSE group (p,0.01) and 10.1-fold in 1% CSE groups (p,0.001)

compared to no CSE controls (Figure 7B). The Wnt target gene

MMP7 decreased 2.3-fold (p,0.05) and 4.0-fold (p,0.01)

respectively in 0.1% and 1% CSE groups compared to the

control. SOX9, another Wnt target gene, was not significant in

0.1% CSE group, but significantly decreased in 1% CSE group

(1.8-fold, p,0.05) compared to the control (Figure 8B).

Wnt Reporter Assay
To demonstrate SFRP2-dependent suppression of Wnt signal-

ing, HEK293 cells were transiently transfected with the reporter

constructs. When luciferase expression was driven by a WNT1-

dependent promoter, the co-transfection of SFRP2 in addition to

the WNT1 plasmid decreased luciferase activity in HEK293 cells

by two fold (p,0.0001, Figure S3).

Figure 5. Immunofluorescent assessment of SFRP2 expression in cytospin preparations of brushed small airway epithelium. Small
airway epithelial cell cytopreparations of healthy nonsmokers, healthy smokers and smokers with COPD were stained with anti-SFRP2 followed by a
Cy3 conjugated secondary antibody (shown in red). Nuclei were stained with DAPI (shown in blue) A–D. Healthy nonsmokers. A. IgG control; B–D.
Examples of anti-SFRP2. E–H. Healthy smokers. E. IgG control; F–H. Examples of anti-SFRP2. I–L. Smokers with COPD; I. IgG Control. J–L. Examples of
anti-SFRP2. Bar = 10 mm.
doi:10.1371/journal.pone.0014793.g005
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Discussion

In healthy individuals, as airway epithelial cells are injured or

reach senescence, there is ongoing cell regeneration, with basal cell

proliferation and subsequent differentiation to ciliated and

secretory cells that comprise the healthy pseudostratified epithelial

barrier that lines the airways [1–3,5]. In cigarette smokers, the

toxic components of smoke and the associated local persistent

inflammatory host response to smoking place the epithelium under

the constant stress of oxidants, apoptotic signals, and other

mechanisms of injury [40–43]. In response, the airway epithelium

regenerates at a faster rate, attempting to maintain its healthy

pseudostratified character [40,44]. To assess the role of the Wnt

pathway in the context of the stress of cigarette smoking, whole-

genome microarray was utilized to analyze expression of the Wnt

pathway genes. The data demonstrate that the majority of genes

involved in the Wnt signaling pathway, representing all functional

categories in the pathway, are expressed in the normal adult

human small airway epithelium of healthy nonsmokers, consistent

with studies showing the Wnt pathway can regulate human lung

morphogenesis [11,24,25]. With the stress of smoking, the Wnt

pathway intracellular modulators b-catenin and transcription

factor TCF7L1, as well as Wnt target genes are down-regulated,

suggesting the Wnt pathway is suppressed. Assessment of the

known extracellular inhibitors of the Wnt pathway revealed that

smoking is associated with up-regulation of SFRP2. The up-

regulated SFRP2 expression occurred in the ciliated cell

population, suggesting that the differentiated cells play a role in

modulating the ‘‘on’’ and ‘‘off’’ status of the Wnt pathway. Finally,

in vitro exposure of human airway epithelial cells to cigarette smoke

extract recapitulated the in vivo observations, with increased

SFRP2 gene expression and down-regulation of Wnt target gene

expression, demonstrating that cigarette smoke can directly down-

regulate Wnt signaling pathway in the airway epithelium.

Wnt Signaling Pathway and Lung Development
Wnt pathway signaling is an important regulator of epithelial and

mesenchymal cell biology [26,27]. To date, there are at least 19 Wnt

ligands and 10 Fz receptor proteins identified, with redundancy and

multiplicity of the receptor interactions and the downstream

signaling [26,27]. Of the various Wnt mutant phenotypes in mice,

loss of the ligands WNT7B and WNT5A results in an abnormal

pulmonary phenotype [15,24]. Wnt7B lacZ2/2 mice exhibit lung

hypoplasia and respiratory failure [24], and Wnt7BlacZ2/2 embryos

and newborn mice exhibit severe defects in the smooth muscle

Figure 6. Immunofluorescent assessment of SFRP2 expression in the endobronchial biopsies from large airway epithelium.
Endobronchial biopsies from large airway of healthy nonsmoker, healthy smokers and smokers with COPD were stained with anti-SFRP2 followed by
a Cy3 conjugated secondary antibody (shown in red). Nuclei were stained with DAPI (shown in blue). A–D. Healthy nonsmokers. A. IgG control; B–D.
Examples of anti-SFRP2. E–H. Healthy smokers. E. IgG control; F–H. Examples of anti-SFRP2. I–L. Smokers with COPD. I. IgG Control, J–L. Examples of
anti-SFRP2. Bar = 10 mm.
doi:10.1371/journal.pone.0014793.g006
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component of the major pulmonary vessels, suggesting that

WNT7B signaling is required for proper lung mesenchymal growth

and vascular development [24]. Mice carrying a targeted disruption

of the WNT5A locus show abnormalities in distal lung morpho-

genesis, as manifested by truncation of the trachea and overexpan-

sion of the distal respiratory airways [15]. The overall architecture

of these mutant lungs is characterized by overexpansion of the distal

airways and inhibition of lung maturation, with a persistence of

thickened intravascular interstitium [15]. Activation of b-catenin in

mice causes ectopic differentiation of alveolar type II-like cells in

conducting airways, goblet cell hyperplasia, and air space

enlargement, suggesting a critical role for the Wnt/b-catenin signal

transduction pathway in the differentiation of the respiratory

epithelium in the postnatal lung [12].

Wnt Signaling Pathway and Lung Disease
Loss of regulation of Wnt signaling pathways has been linked to

the pathogenesis of asthma, fibrotic lung disease, nitrogen-induced

pulmonary hypoplasia and lung cancer [45–50]. Konigshoff and

colleagues [48,50] confirmed the up-regulation of WNT1,

WNT7B and WNT10B, FZD2, FZD3, b-catenin, and LEF1

expression in the lungs of individuals with idiopathic pulmonary

fibrosis compared to transplant donor lung. In vitro functional

studies have indicated that Wnt ligands induce lung epithelial cell

proliferation and (myo) fibroblast activation and collagen synthesis

[48]. Increased expression of Wnt ligands (WNT1, 2, 7A) along

with decreased expression of Wnt inhibitors (DKK3 and SFRP3)

was observed in non-small cell lung cancer [47,49,51–53].

Function of Wnt Signaling Pathway in Adult Human
Airway Epithelium

In a previous study from our laboratory, the large airway

epithelium of healthy individuals was denuded by bronchoscopy

and brushing, and genome-wide microarrays were used to study

the gene expression pattern in the same site at 0, 7 and 14 days

after injury [54]. Histologically, the injured area was completely

covered by a partially redifferentiated epithelial layer after 7 days,

and at this time point, a Wnt pathway inhibitor DKK1 was found

to be greatly up-regulated, suggesting that the Wnt/b-catenin

pathway is inhibited at this stage of airway epithelial repair [54].

In the present study, we found that the Wnt signaling pathway

was also down-regulated in adult human airway epithelium under

the stress of chronic smoking. Interestingly, using gene expression

profiling with air/whole mainstream cigarette smoke to treat a

three-dimensional air-liquid interface model of tracheobronchial

epithelium that were grown from primary human lung epithelial

cells, Maunders et al [55] showed that the Wnt signaling pathway

was down-regulated at 1, 6, and 24 hr post-exposure. For

example, at 1 hr post-treatment, 9 Wnt signaling pathway genes

and 12 Wnt target genes, including AXIN2, CCND1, JAG1,

Figure 7. Western analysis of SFRP2 protein expression in small airway epithelial cells. A. Proteins were extracted from small airway
epithelial cells of 3 healthy nonsmokers, 3 healthy smokers and 3 smokers with COPD. Shown is SFRP2 protein expression in healthy nonsmokers
(lanes 1–3), healthy smokers (lanes 4–6) and smokers with COPD (lanes 7–9). Lower panel - same membrane probed with anti b-actin antibody, a
control for protein loading. B. Quantification by densitometry of SFRP2 to b-actin. The ratio for SFRP2 to b-actin based on panel A is represented on
the ordinate for the nonsmoker, smoker and smoker with COPD. Error bars represent the standard error.
doi:10.1371/journal.pone.0014793.g007
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RUNX2, were down-regulated, with no up-regulation of Wnt

signaling pathway genes or Wnt target genes. This supports our in

vivo data that smoking repressed the Wnt signaling pathway. We

also showed that in vitro smokers have significant up-regulation of

another Wnt pathway inhibitor, SFRP2, an extracellular mediator

of the largest family of Wnt inhibitors. SFRP2 functions as a

modulator of Wnt signaling through direct interaction with Wnt

ligands, with consequent regulation of cell growth [28,56–64].

Inactivation of SFRP2 results in subtle limb defects in mice with

mesomelic shortening and consistent shortening of all autopodal

elements clinically manifested as brachydactyly [65]. SFRP2 has

been shown to repress canonical Wnt signaling activated by

WNT1, WNT3A, WNT4, WNT7A, and WNT9A in vitro [65–67].

Interestingly, SFRP1, another member of the SFRP family, is up-

regulated in the distal epithelial cells of the mouse lung during

development and in murine emphysema models [68]. However,

except for the function as the Wnt signaling pathway inhibitors,

recent studies showed that SFRPs are not merely Wnt-binding

proteins, but can also antagonize different SFRPs’ activity,

interfere with BMP signaling by acting as proteinase inhibitors,

decrease susceptibility to UV-induced apoptosis in primary culture

of canine mammary gland tumors by NF-kB activation or JNK

suppression, and interact with other receptors or matrix molecules

[69–74]. Because of the limitation of the primary human airway

epithelial cells, which prohibits us from performing the functional

assays of the Wnt signaling pathway in a condition similar to that

in vivo, we could not be certain that the down-regulation of Wnt

signaling in healthy smokers and COPD patients is the result of

SFRP2 up-regulation, despite the fact that SFRP2 could decrease

WNT1-induced activation of Wnt reporter luciferase activity in

HEK293 cells (p,0.05, Figure S3). Another limitation of this

study is, although the down-regulation of the Wnt signaling

pathway might induce the human airway epithelial cells to

differentiate in healthy smokers and COPD patients, in the current

study, we found there were decreased ciliated cells and increased

undifferentiated cells (Table 1). There are a number of reasons for

Figure 8. In vitro cigarette smoke extract (CES) treatment of human 16HBE airway epithelial cells. After 16HBE cells were exposed to
different concentrations of CSE for 3 days, cell viability (MTT) and gene expression levels of Wnt signaling pathway inhibitor SFRP2 and target genes
(MMP7, SOX9) were quantified using TaqMan real-time PCR. A. MTT assessment. B. Effect of CSE on gene expression of SFRP2, MMP7, SOX9 in 16HBE
cells using 0.1 and 1% CSE concentrations that do not affect viability. SFRP2 gene expression was up-regulated when treated with both 0.1 and 1%
CSE (4.6-fold and 10.1-fold, p,0.01 and p,0.001). Error bars represent the standard deviation. *p,0.05 compared to no CSE controls. For TaqMan
real-time PCR, the average value of 0.1% CSE treatment group for each gene is determined as the calibrator.
doi:10.1371/journal.pone.0014793.g008
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this discrepancy. Although the down-regulation of the Wnt

signaling pathway could promote the repair and differentiation

of airway epithelial cells in healthy smokers and smokers with

COPD, the effect of smoking undoubtedly has a complex effect on

multiple pathways. The confirmation of this concept is limited by

the lack of a proper in vitro model. Furthermore, because the

airway epithelial cells in vivo are composed a mixed populations

including ciliated cells, secretory cells, basal cells and other cell

populations such as clara cells, the microarray data may solely

reflect changes in cell populations from patient to patient.

However, it is unlikely because of the up-regulation of SFRP2

(which is specifically expressed in ciliated cells) in healthy smokers

and smokers with COPD as well as the fact that the healthy

smokers and smokers with COPD have lower percentage of

ciliated cells.

Our findings suggest there is a complex Wnt signaling system in

the adult human airway epithelium, which is subjected to a tightly

regulated pattern that can respond to stress. Together, the data

show that smoking induces down-regulation of Wnt signaling

pathway, consistent with the concept that in response to the stress

of cigarette smoking, the small airway epithelium Wnt pathway is

suppressed, allowing for epithelial repair and differentiation.

Supporting Information

Table S1 Expression of WNT Pathway Genes and Target

Genes in Small Airway.

Found at: doi:10.1371/journal.pone.0014793.s001 (0.12 MB

DOC)

Figure S1 Ingenuity Pathway Analysis generated WNT/b-

catenin gene network. A. IPA gene network of WNT/b-catenin

signaling pathway genes that displayed 1.5-fold or greater changes

between healthy smokers and healthy nonsmokers. B. IPA gene

network of WNT/b-catenin signaling pathway genes that

displayed 1.5-fold or greater changes between smokers with

COPD and healthy nonsmokers. Additional information about the

genes and the indicated interactions can be found at www.

ingenuity.com.

Found at: doi:10.1371/journal.pone.0014793.s002 (1.79 MB TIF)

Figure S2 TaqMan Real-time PCR confirmation of down-

regulation of selected Wnt genes and Wnt target genes in healthy

nonsmokers (NS), healthy smokers (S), and smokers with COPD

(COPD). Each bar represents mean expression with standard

error; p values are represented in brackets above the bars. The

average value of healthy nonsmokers is determined as the

calibrator for each gene.

Found at: doi:10.1371/journal.pone.0014793.s003 (0.43 MB TIF)

Figure S3 The Wnt reporter assay in HEK293 cells. HEK293

cells were transiently transfected with Wnt reporter (Topflash) or

Wnt reporter control (Fopflash) constructs, and stimulated with

WNT1 plasmid or WNT1 plus SFRP2 plasmids, as indicated. The

relative luciferase activity is plotted. The experiment was repeated

three times and representative results are presented as mean 6

standard deviation.

Found at: doi:10.1371/journal.pone.0014793.s004 (0.40 MB TIF)
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