

doi: 10.1093/gigascience/giy144 Erratum

ERRATUM

Erratum to: A reference human genome dataset of the BGISEQ-500 sequencer

Jie Huang^{1,†}, Xinming Liang^{2,†}, Yuankai Xuan^{3,†}, Chunyu Geng², Yuxiang Li², Haorong Lu², Shoufang Qu¹, Xianglin Mei³, Hongbo Chen¹, Ting Yu¹, Nan Sun¹, Junhua Rao², Jiahao Wang⁴, Wenwei Zhang², Ying Chen², Sha Liao², Hui Jiang², Xin Liu², Zhaopeng Yang^{1,*}, Feng Mu^{2,*} and Shangxian Gao^{1,*}

¹National Institutes for food and drug Control (NIFDC), Beijing 100050, P. R. China, ²BGI-Shenzhen, Shenzhen 518083, P. R. China, ³State Food and Drug Administration Hubei Center for Medical Equipment Quality Supervision and Testing, Wuhan 430000, P. R. China and ⁴BGI-Qingdao, Qingdao 266555, China

*Correspondence address. Shangxian Gao, E-mail: gaoshangxian@126.com, Feng Mu, E-mail: mufeng@genomics.cn and Zhaopeng Yang, E-mail: yangzp@nifdc.org.cn

[†]These authors contribute equally to the article.

We found several inaccurate descriptions in our recently published paper, "A reference human genome dataset of the BGISEQ-500 sequencer" [1], thus we would like to make the following corrections.

In the Background section, the full name of cPAS should be "combinatorial probe-anchor synthesis" [2] rather than "combined primer anchor synthesis". So the following sentence should be modified:

 Sentence "... sequencing library construction and combined primer anchor synthesis (cPAS) for sequencing." should be changed to "... sequencing library construction and combinatorial probe-anchor synthesis (cPAS) for sequencing.".

In the Background-Sequencing section, the mentioned sequencing technology should be "rolling circle amplification (RCA)" [2] instead of "PCR amplification". The RCA step is one of Complete GenomicsTM core technologies, which is different from PCR amplification. The key advantage of the DNB technology is that every replicated copy is produced from the original genomic fragment, instead of PCR-utilizing sequencing technologies, in which one amplifies from the already amplified template. Thus two sentences should be modified accordingly:

2. Sentence "... single-strand circular DNA library was first PCR-amplified for 10 minutes...." should be changed to "...

single-strand circular DNA library was first subjected to rolling circle amplification (RCA) for 10 minutes...".

3. Sentence "After the PCR reaction, 20 μ l DNBs stopping buffer was added to terminate the PCR reaction" should be changed to "After the RCA reaction, 20 μ l DNBs stopping buffer was added to terminate the RCA reaction".

For clarity we have uploaded detailed and corrected protocols of the sequencing library preparation [3] and sequencing [4] steps to protocols.io.

References

- 1. Huang J, Liang X, Xuan Y et al. A reference human genome dataset of the BGISEQ-500 sequencer. Gigascience. 2017;6(5):1–9. doi: 10.1093/gigascience/gix024.
- Drmanac R, Sparks AB, Callow MJ et al. Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays. Science 2010;327(5961):78–81. doi: 10.1126/science.1181498.
- 3. Huang J, Liang X, Xuan Y et al. BGISEQ-500 Sequencing. protoc ols.io. 2018 http://dx.doi.org/10.17504/protocols.io.pq7dmzn
- 4. Huang J, Liang X, Xuan Y et al. BGISEQ-500 WGS library construction. protocols.io. 2018 http://dx.doi.org/10.17504/protoc ols.io.ps5dng6

[©] The Author(s) 2018. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.