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SUMMARY
Human papillomaviruses (HPVs) have evolved over millions of years to propagate themselves in a range of different animal
species including humans. Viruses that have co-evolved slowly in this way typically cause chronic inapparent infections, with
virion production in the absence of apparent disease. This is the case for many Beta and GammaHPV types. The Alpha pap-
illomavirus types have however evolved immunoevasion strategies that allow them to cause persistent visible papillomas.
These viruses activate the cell cycle as the infected epithelial cell differentiates in order to create a replication competent envi-
ronment that allows viral genome amplification and packaging into infectious particles. This is mediated by the viral E6, E7,
and E5 proteins. High-risk E6 and E7 proteins differ from their low-risk counterparts however in being able to drive cell cycle
entry in the upper epithelial layers and also to stimulate cell proliferation in the basal and parabasal layers. Deregulated
expression of these cell cycle regulators underlies neoplasia and the eventual progression to cancer in individuals who cannot
resolve high-risk HPV infection. Most work to date has focused on the study of high-risk HPV types such as HPV 16 and 18,
which has led to an understanding of the molecular pathways subverted by these viruses. Such approaches will lead to the
development of better strategies for disease treatment, including targeted antivirals and immunotherapeutics. Priorities are
now focused toward understanding HPV neoplasias at sites other than the cervix (e.g. tonsils, other transformation zones)
and toward understanding the mechanisms by which low-risk HPV types can sometimes give rise to papillomatosis and
under certain situations even cancers. © 2015 The Authors. Reviews in Medical Virology Published by JohnWiley & Sons, Ltd.
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INTRODUCTION
Papillomaviruses comprise a diverse group of vi-
ruses that infect both humans and animals. Their
origin appears linked to changes in the epithelium
of their ancestral host as the first reptiles emerged
around 350million years ago. Since then, they have
co-evolved with their respective hosts, with little
cross-transfer between species, and are now found
in birds, reptiles, marsupials, and mammals, but
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not in amphibians or lower phylogenetic orders
(Figure 1A) [1]. Viruses that slowly evolve with
their hosts in this way typically cause chronic inap-
parent infections, rather than serious disease [2].
This is the case for many if not most papillomavi-
ruses, and indeed, HPVs can be isolated from skin
swabs and plucked hairs from normal immuno-
competent individuals in the general population
[3,4]. As a result of such observations, it is thought
that many HPVs may in fact persist in the popula-
tion as commensals rather than being associated
with obvious disease pathology [4,5].
The study of HPVs has been driven not by these

widespread inapparent infections, but by the
severity to which some HPV-associated diseases
can progress. Most significant of these is cervical
cancer, which can result from persistent infection
with a group of “high-risk” HPVs [6–8]. The low-
risk HPV types, although not usually associated
with cancer development, can cause problematic
and debilitating disease in some individuals. The
association of HPV type 11 with RRP is a key
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Figure 1. (A) Evolutionary tree showing the proposed appearance of an ancestral “papillomavirus” between the branch point leading to
amphibians and reptiles. It is thought that virus/host co-evolution has occurred during speciation, and that this has led to the widespread
distribution of papillomaviruses in organisms as diverse as snakes, birds, and mammals, (B) The human papillomaviruses types found in
humans fall into five genera, with the Alpha and the Beta/Gamma genera representing the largest groups. Human papillomaviruses types
from the Alpha genus are often classified as low-risk cutaneous (gray), low-risk mucosal (orange), or high-risk (pink). The high-risk types
identified using red text are confirmed as “human carcinogens” on the basis of epidemiological data. The remaining high-risk types are
“probable” or “possible” carcinogens. The evolutionary tree is based on alignment of the E1, E2, L1, and L2 genes [6], (C) Percentage of
cervical cancers that are causally attributed to infection with members of the Alpha genus. Members of the Alpha 9 and 7 species have
been studied most thoroughly
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example of such a disease [8]. Although rare, chil-
dren with RRP are unable to resolve their infection
and need to be treated by repeat surgery to reduce
papilloma size and to maintain a clear airway [8].
At present, there is no reliable treatment for HPV
infections, except by complete surgical removal
of the disease site. In the case of RRP, papillomas
can persist for years or decades with regular re-
currence after treatment, and in some individuals,
it can eventually give rise to metastatic lesions in
the lower airway and lung [9].

This review aims to provide an update of
current thinking regarding the mechanisms under-
lying lesion formation by papillomaviruses, focus-
ing in particular on the diversity of epithelial sites
that these viruses infect and the diseases that they
cause. As well as outlining the basic biology of
these viruses, the review aims to clarify the key
differences between high-risk Alpha papillomavi-
ruses and low-risk papillomavirus types from Al-
pha and other genera, which we hope will
explain why such viruses are associated with can-
cers less frequently. As part of this, the different
mechanisms by which Beta papillomaviruses can
sometimes cause cancer are discussed.
PAPILLOMAVIRUS DIVERSITY AND
EPITHELIAL TROPISMS
Over 200 papillomaviruses have been identified and
have been completely sequenced, including more
than 150HPV (see [10] and Papillomavirus Episteme
(PaVE); http://pave.niaid.nih.gov/#home). Human
types are divided into five genera based on differ-
ences in their DNA sequence, with individual types
having a nucleotide sequence (sampled from the L1
gene) that is at least 10%dissimilar from that of other
papillomaviruses [10]. The terms “serotype” and
“strain” are not used to distinguish between papillo-
maviruses, and indeed, many papillomaviruses
have not been characterized beyond the level of their
DNA sequence. In recent years, sensitive detection
methods have allowed the identification of a large
number of new HPV types (primarily Beta and
Gamma types) from swabs taken from cutaneous
epithelium or from plucked hairs http://pave.
niaid.nih.gov/#home. Beta types have almost dou-
bled in number (from 25 to 45), whereas Gamma
types have increased almost eightfold (from 7 to
54) over the last decade [11]. Although phylogeny
provides insight into disease associations, closely
© 2015 The Authors. Reviews in Medical Virology
Published by John Wiley & Sons, Ltd.
related types can show distinct pathologies. HPV 6
and 11 share 85% sequence identity, but the former
is found more commonly in anogenital warts than
HPV 11, which is the primary cause of laryngeal
papillomas. Similarly, HPV 13, which shares 78% se-
quence identity with HPV 6 and HPV 11, does not
cause either anogenital warts or laryngeal papillo-
mas [12,13], whereas HPV 7, which is 87% homolo-
gous to the mucosal type HPV 40, causes
“butchers” warts at cutaneous sites. Tropisms are
thought to be controlled primarily at the level of vi-
ral gene expression, with regulatory elements within
the long control region (LCR) being an important de-
terminant [12]. Regulation at the level of infectivity
may also influence site of infection, with markedly
different charge distributions being reported be-
tween cutaneous and mucosal virions [14]. Success-
ful infection requires conformational changes in the
capsid, followed by furin cleavage of the minor
L2 capsid protein [15–17], which may also influ-
ence the tropisms of individual HPV types
[15,16,18–22]. Although the diseases caused by
specific HPV types sometimes occur at non-typical
sites, this is uncommon, with lesions often
exhibiting non-typical morphology and pathology
[23]. The evolutionary relationship between HPV
types and the cancer associations of the important
Alpha genus are shown in Figure 1B and C.

VIRUS STRUCTURE AND GENOME
ORGANIZATION

Virus structure
Despite the different disease associations, papillo-
mavirus particles share a common non-enveloped
icosahedral structure (50–60nm diameter). Their
genomes comprise double-stranded circles (epi-
somes) of approximately 8000 base pairs, which
contain eight or nine ORFs. Although gene number
is limited by the small size of the papillomavirus
genome (Figure 2A), the number of encoded pro-
teins is much greater, as gene expression involves
the use of multiple promoters and complex pat-
terns of splicing (http://pave.niaid.nih.gov/
#home[24]). The fine structure mapping [25] shows
the virus coat to contain 360 molecules of L1 pro-
tein arranged into 72 capsomeres, each made up
of 5L1 molecules, which have a beta-jellyroll core
reminiscent of other icosahedral viruses (Figure 2B
[26]). Interactions between capsomeres require the
C-terminal tail of the L1 protein, which extends
Rev. Med. Virol. 2015; 25: 2–23.
DOI: 10.1002/rmv
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Figure 2. (A) Typical genome organization of the high-risk Alpha, Mu, and Beta HPV genomes. Although all share a common genetic or-
ganization, the size and position of the major ORFs can vary, with Beta HPV types lacking an E5 ORF. The positions of the major promoters
are marked with arrows on the high-risk Alpha HPV genome map, with early and late polyadenylation sites marked as polyadenylation
late and polyadenylation early, (B) Electron micrograph of negatively stained papillomavirus particles. Individual capsomeres within
the capsid structure can just be visualized. Papillomavirus particles are approximately 55 nm diameter and are non-enveloped.
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out toward neighboring capsomeres and links
them at their base via disulfide bonds [26–29].
Human papillomavirus particles also contain a

variable number of L2 molecules, which are not
fully exposed on the surface of the virion, apart
from their N-terminal 120 or so amino acids
[30,31]. During infection, L2 becomes available for
binding to the extracellular matrix and is cleaved
by furin during the infection [16]. The major
surface-exposed regions of L1 comprise a series of
hypervariable amino acid loops that have diverged
between different papillomavirus types, in re-
sponse to host immune selection pressure, with an-
tibodies raised to one HPV type binding to
distantly related types only poorly. This has practi-
cal consequences for the current prophylactic vac-
cines, which offer limited cross-protection. The
virus genome also encodes regulatory proteins that
stimulate cell cycle entry and cell proliferation, as
well as proteins that mediate virus genome
© 2015 The Authors. Reviews in Medical Virology
Published by John Wiley & Sons, Ltd.
replication, virus assembly, and probably, also ef-
fective virus release and transmission. Although
many of these genes are contained within the early
region of the virus, the L2 gene product also has
key immediate-early functions in viral genome de-
livery within the cell and also a role (along with
E2) in orchestrating proper genome packaging [32].

Genome organization
Individual ORFs within the viral genome are desig-
nated early or late [11], with the lack of an E3 ORF
reflecting an initial sequencing error in the BPV1 ge-
nome. Despite variation in the size and number of
ORFs, all papillomaviruses contain well-conserved
core genes involved in replication (i.e. E1 and E2)
and packaging (i.e. L1 and L2) with greater diversity
in the remaining genes (i.e. E6, E7, E5, and E4),which
have roles in driving cell cycle entry, immune eva-
sion, and virus release [6]. E1 encodes a virus-specific
DNA helicase necessary for viral genome replication
Rev. Med. Virol. 2015; 25: 2–23.
DOI: 10.1002/rmv



KEY FACTS—Mucosal Papillomavirus Infec-
tions in Humans

Condyloma acuminatum is one of the most common
manifestations of HPV in the genital area [43].
They present as papules, nodules or soft, filiform,
pinkish, sessile or pedunculated growths. In
men, genital condylomas more commonly in-
volve the coronal sulcus, the glands penis, and
the penile shaft. In women, lesions commonly af-
fect the external genitalia and the cervix [44]. The
disease is usually sexually transmitted and is most
frequently caused by low-risk HPVs, such as HPV
6 and 11, although many other genotypes can also
be found, including HPV 2, 16, 18, 30–33, 35, 39,
41–45, 51–56, and 59 [45–47]. As described in the text,
the HPV types that cause benign genital warts can
also causeproblematic papillomas at oral sites,which
can be difficult to treat because of their location.

Focal epithelial hyperplasia is a rare HPV-related
disease of the oral mucosa that is more common
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and amplification, and like L1 (the major capsid pro-
tein), is highly conserved. E2, which can bind to sites
in both the viral and cellular genome, is conserved
betweenHPV types in its N-terminal and C-terminal
domains and functions in viral transcription, replica-
tion, and genome partitioning. As with most HPV
gene products, the functions of E2 are dependent
on its interaction with cellular gene products and in
modifying their normal roles to the benefit of the vi-
rus. The remaining genes encode proteins that mod-
ify the cellular environment or perform other
functions during the life cycle of different papilloma-
viruses. E6 and E7 can be regulated at the transcrip-
tional level by E2, and play a critical role in driving
cell cycle entry in all HPV types to allowgenome am-
plification in the mid-layers of the epithelium, and to
inhibit aspects of innate immunity. Interestingly, Beta
papillomaviruses lack a recognizable E5 ORF, which
in the Alpha genera is located downstream of E2,
and which along with E6 and E7, is involved in im-
mune evasion and in optimizing genome amplifica-
tion efficiency. The E4 protein (which plays a role in
virus escape from the epithelial surface), like E5,
shows considerable sequence heterogeneity between
types, which is thought to reflect the different tropisms
and transmission routes of different papillomaviruses
[33,34].Perhapsmoresurprisingly,given its importance
in genome amplification, the HPV E6 protein is absent
in HPV 101, 103, and 108 (Gamma genera [11,35]).
The papillomavirus LCR is located between the end
of L1 and the start of the early region and contains
promoter elements, transcription factor binding sites
(including palindromic sequences recognized by E2),
and the viral origin of replication (to which E1 can
bind), with some animal papillomaviruses (e.g. canine
oral papillomavirus) containing an additional non-
coding region between the end of the early region and
the start of L2. Considerable heterogeneity exists be-
tween the positions of promoters and of splice donor
and acceptor sites, which reflects the distinct evolution-
ary path of each HPV type [24,34].

HUMAN PAPILLOMAVIRUSES INFECTION
AND CLINICAL MANIFESTATIONS OF
DISEASE

Mucosal human papillomaviruses infections
The association of HPV with cervical disease has
been extensively studied. HPV detection in the ab-
sence of apparent disease is found in 11–12% of
all women. Detection is higher in young women
© 2015 The Authors. Reviews in Medical Virology
Published by John Wiley & Sons, Ltd.
((and men) 50–80% [36]) and declines in older age
groups [37]. Such inapparent infections and low-
grade disease are typically characterized by multi-
ple HPV types, including HPV 16 (3.2%), 18
(1.4%), 31 (0.8%), and 58 (0.7%). HPV detection in-
creases with disease severity [37], with percentage
positivity in CIN1/LSIL (i.e. low-grade neoplasia)
of between 50–70%. In CIN2, there is 85% positivity
for HPV and in CIN3 and invasive cervical cancer;
the positivity rises to between 90% and 100% [38].
The detection of high-risk HPV types at other sites
varies and in the oral cavity is estimated at around
5% in apparently asymptomatically infected indi-
viduals [39], rising to 50% or so in individuals with
oropharyngeal cancers [40]. Although genital warts
are typically benign lesions, the incidence of new
cases per year in UK is 0.16%, with an incidence
of recurrent cases of 0.13% [41]. These figures un-
derlie the prevalence of low-risk genital HPV infec-
tions and the difficulties in reliably eliminating
them with current treatment. HPVs produced from
genital warts are associated with a transmission
rate of 60%, and like high-risk infections, are most
prominent in the late teens and early 20s [42]. Pa-
thology and HPV-type associations of important
mucosal lesions are described in box 1.

Box 1
Rev. Med. Virol. 2015; 25: 2–23.
DOI: 10.1002/rmv



in children and women. Lesions are mainly lo-
cated in the lower lip, but less frequently may af-
fect the upper lip, tongue, oral mucosa,
oropharynx, palate, and floor of mouth. HPV 13
and 32 are the most common cause [48].

Cervical neoplasia and cervical cancer. Precancerous
cervical lesions are classified as cervical CIN of dif-
ferent grades (1, 2, or 3). CIN1 pathology is
broadly equivalent to the LSIL designation used
in the Bethesda classification system, with CIN2
and 3 being equivalent to high-grade squamous
intraepithelial lesion. The severity of neoplasia re-
flects the extent to which basal-like cells (i.e.
poorly differentiated cells with a high
nuclear/cytoplasmic ratio) extend toward the epi-
thelial surface and the extent of suprabasal cell di-
vision. Low-grade lesions typically show evidence
of productive viral infection with the presence of
koilocytes in the suprabasal cell layers being
regarded as a key manifestation of CIN1/LSIL.
HPV is detectable in 90–100% of cervical abnor-
malities, ranging from incipient cytological ab-
normalities and dysplasia [49] to cervical cancer
[50–52].

Other anogenital cancers including those of the
vulva, vagina, penis, and anus. Most vulvar can-
cers (92%) are solitary, keratinizing SCC. HPV
prevalence is 90% in vulvar intraepithelial neopla-
sia and basaloid or warty cancers, but is found in
only 6% of keratinizing SCC [53,54]. HPV 16 is
the most prominent type in vulvar cancer, with
HPV 18, 21, 31, 33, and 34 detected at lower fre-
quencies. In addition, HPV is responsible for 85%
of vaginal cancer, with HPV 16 being detected in
60% of invasive tumors. HPV is also detected in
basaloid and warty cancers of the penis, but only
rarely in keratinizing SCC and verrucous cancers
of the penis. In invasive penile cancer, HPV 16 is
the most prevalent type (40–70%), followed by
HPV 6 (22%), 52 (15%), and 11 (4%) [55]. HPV
is present in 80–96% of anal cancer with HPV
16 being the most prevalent type [56]. Anal can-
cer is more common in men who have sex with
men, individuals with a history of anal warts,
and in immunosuppressed populations.

Head and neck cancer HPV is recognized as a ma-
jor risk factor for the development of HNSCC. A
recent meta-analysis showed that HPV

prevalence in HNSCC increased significantly
from 41% in 2000 to 72% in 2004 [57]. HPV
prevalence is significantly higher in oropharynx
SCC than in the oral cavity with the tonsil hav-
ing higher prevalence than other anatomic sites
[58]. These HPV-associated cancers display clin-
ical and molecular features distinct from other
HNSCCs. The patients with HPV-positive can-
cer have at least a 50% improvement in overall
survival at 5years, which is equivalent to an
approximate 30% difference in absolute sur-
vival. HPV association is now part of routine
diagnostic procedure when assessing the prognosis
of HNSCC. HPV 16 is the most common type
found in HNSCC, but other HPV types such as
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18, 31, 33, and 35 can also be detected [57].
Cutaneous human papillomaviruses
infections
Among the HPV types associated with cutaneous
disease are HPV types 2, 3, 10, 27, and 57 from
the Alpha Genus, HPV types 4, 60, and 65 from
the Gamma Genus, and HPV types 1 and 63 from
the Mu Genus. Such benign lesions are relatively
common in the general population, particularly in
children (33% positive) who may be encountering
HPV types for the first time and in immunosup-
pressed individuals (45% positive) [59]. An incuba-
tion period of 3weeks to 8months can occur before
lesions become apparent, depending on inoculation
titre [60]. The Alpha types (2, 27, and 57) are most
prevalent in common warts (>65% of cases), along
with HPV 1 (Mu HPV type; approx. 30% of cases)
[59]. In most cases, such lesions are an inconve-
nience with spontaneous immune regression of
80% within 2years [61]. Benign warts such as these
can be highly productive and contain as many as
1012 particles [62] and typically show general hy-
pertrophy (cell enlargement) leading to acanthosis
or thickening of the epithelium, as well as promi-
nent folding of the epithelial basal layer
(papillomatosis). Such lesions have thicker
cornified layers (hyperkeratosis) and contain abun-
dant cytoplasmic inclusion granules of characteris-
tic appearance in the spinous and granular layers,
which comprises predominantly of the viral E4 pro-
tein [34]. Virions released from the epithelial sur-
face may be transmitted indirectly (e.g. on innate
objects) or directly from person to person [63].
The pathology features and type associations of
Rev. Med. Virol. 2015; 25: 2–23.
DOI: 10.1002/rmv



or lateral surfaces of the hands, feet, fingers,
and toes. HPV 4, 60, and 65 are most prevalent
in such lesions [74].

8 J. Doorbar et al.
the most prevalent benign cutaneous lesions are
described in box 2.

Box 2
KEY FACTS—Cutaneous Papillomavirus Infec-
tions in Humans

Common warts can be single or multiple and of
varying sizes. They occur at many sites, but often
on the back of hands [64], with the knee also be-
ing a common site of infection in children. A
prevalence of 3.5% [65] in adults to over 30% in
schoolchildren has been reported [66]. Incidence
increases in immunosuppressed patients, with
lesions being more numerous and more recalci-
trant. HPV 1, 2, 4, 27, and 57 are the most preva-
lent types [67–69]. HPV 7 is found in the
common warts of individuals whose hands are
chronically exposed to moisture and cold be-
cause of their occupation [70].

Plantar warts occur on the soles of the feet, partic-
ularly in children. HPV 1 and 4 are frequently the
cause, although HPV 57, 60, 63, 65, and 66 can
also be involved [71]. HPV 1 commonly induces
lesions that manifest as a keratotic plug
surrounded by a hyperkeratotic rim that are of-
ten painful. HPV 4 can be the cause of mosaic
warts, which are more superficial lesions that
occur in a confluent cobblestone pattern and
are usually painless. Persistent plantar lesions
can be very rarely associated with the develop-
ment of verrucous carcinoma [72].

Flat warts are slightly raised lesions of skin
color or pigmented, with flat, smooth or,
slightly rough surface. The face and back of
hands are the most common sites of disease
with HPV 3 and 10 most commonly detected
in such lesions [64, 73].

Filiform warts are pedunculated lesions grow-
ing in a perpendicular or oblique way in rela-
tion to the skin surface. The face and neck
are the most frequent sites of disease. The de-
tected HPV types are the same as common
warts, especially HPV 2 [73].

Pigmented warts range from gray to blackish
brown and are located on the palmoplantar

Epidermoid cysts can be caused by HPV types
57 and 60, with these types being detected in
plantar epidermoid cysts [75, 76]. An un-
known HPV type was reported in epidermoid
cysts of the trunk and scalp [77, 78]. Immuno-
staining suggests that such lesions are distinct
from the associated dermal eccrine duct, but
have similarities with the suprabasal cells of
the epidermis. It has been suggested that
palmoplantar epidermoid cysts may in some
instances arise as a result of epidermoid meta-
plasia of eccrine ducts following HPV infection
[79].

Skin cancer. Bowen’s disease (BD) is a SCC in situ
of the skin. In 3–5% of cases, it progresses to in-
vasive carcinoma with the capability to develop
metastasis. The mucosal HPV types are com-
monly detected in lesions of extra-genital BD, es-
pecially in the periungual region. Other HPV
types have occasionally been detected in BD, in-
cluding HPV 2, 6, 11, 54, 58, 61, 62, and 73 [80].
The link between HPV and non-melanoma skin
cancer, SCC and BCC, is not clear except in im-
munosuppressed individuals and in certain ge-
netic backgrounds. Mucosal HPV types,
especially HPV 16 can sometimes be detected
in the SCC and BCC of the skin, but also more
rarely HPV 2, 31, 34, 35, 58, 61, and 73 [81, 82].
Molecular analysis of Beta HPV protein function
and serology suggests a role of certain Beta HPV
types (e.g. HPV 8, 20, 38) in the development of
SCC in immunosuppressed individuals. A role
in the early stages of cancer development is
suspected (but not conclusively proven) in a
fraction of keratinocyte cancers in the general
population, with Beta HPV genomes from the
cell being lost from the cell as the disease sever-
ity increases [83].

© 2015 The Authors. Reviews in Medical Virology
Published by John Wiley & Sons, Ltd.
PAPILLOMAVIRUS LIFE CYCLE
ORGANIZATION IN THE INFECTED
EPITHELIUM
The ability of specific HPVs to undergo a produc-
tive life cycle depends on the site of infection as
Rev. Med. Virol. 2015; 25: 2–23.
DOI: 10.1002/rmv
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well as the local microenvironment [84]. Although
HPV life cycle organization is best understood for
Alpha papillomavirus, the broad principles are
likely to be common to HPVs in general. In many
cases, lesion formation is thought to begin with a
wound or other epithelial trauma followed by the
infection of an epithelial basal stem cell, with the
longevity of these cells underlying lesion persis-
tence [85–88]. For low-risk HPV types, which do
not stimulate cell proliferation, this is a reasonable
hypothesis [89–93]. For the high-risk types, which
can drive cell proliferation, it is less clear. Active
cell division (as it occurs during wound healing)
is necessary for viral genome entry into the nucleus
and episomal maintenance [94]. The particular sus-
ceptibility of the cervical transformation zone to can-
cer progression may be linked to increased
likelihood of infection, particularly at puberty when
metaplastic cells are present at this site [95–97]. Recent
studies have suggested the presence of cuboidal stem-
like cells at the squamo-columnar junction, which
may be prone to cancer progression following infec-
tion by high-risk HPV types [98].
Infection and genome maintenance in the
epithelial basal layer
Infection is thought to be followed by an initial
phase of genome amplification, prior to mainte-
nance of the viral episome at low copy number
[94,99]. Episomal copy number in the infected basal
cell is often quoted as 200 copies per cell, based on a
study of cell lines. Using laser capture methods,
50–100 copies per cell [100] have been found in
the basal layer of productive warts. The viral repli-
cation proteins E1 and E2 are important for this ini-
tial amplification phase, but may be dispensable for
episomal maintenance–replication once the copy
number has stabilized [101–103] despite established
roles for E2 in genome partitioning, replication,
and transcription [85,104,105]. In BPV, genome
partitioning upon cell division involves the cellu-
lar bromodomain containing protein 4(Brd4), but
in HPVs, other E2 binding proteins may also be in-
volved in the tethering of viral episomes to the cel-
lular chromatin during cell division [106–109].
Interestingly, Brd4 has been implicated as a key
protein involved in HPV 16 genome replication
[110]. The E6 and E7 proteins are key regulators
of cell cycle progression, but their precise role in
infected basal cells is somewhat uncertain,
© 2015 The Authors. Reviews in Medical Virology
Published by John Wiley & Sons, Ltd.
particularly for the low-risk HPV types (such as
HPV 6 or 11) that are not generally associated with
neoplasia, and which may require infection of a
basal stem cell at the site of a wound or
microwound. In these HPV types, the role of the
wound healing response in driving the initial prolifer-
ation of the infected cell(s) is thought to be critical
[111], with signaling from the local microenvironment
influencing viral gene expression [112] and/or protein
functions. In the case of the high-risk types that cause
neoplasia, a clear role exists for the viral E6 and E7
proteins in driving cell proliferation in the basal and
parabasal cell layers, especially at sites (such as the
cervix) where neoplasia can occur [85]. Functional
differences in E6 and E7 that are thought to underlie
high-risk and low-risk disease pathology are listed
in Figure 3A [113,114,50].
Cell cycle entry and genome amplification in
the suprabasal layers
The E6/E7-mediated proliferation of basal/parabasal
cells following infection by the high-risk HPV types
allows an expansion in lesion size. An important dif-
ference between high-risk and low-risk E7 proteins
is their differential ability to associate with the retino-
blastoma protein (pRb) and more specifically, the
ability of the high-risk E7 to bind and degrade p105
and p107, which control cell cycle entry in the basal
layer, as well as p130, which is involved in cell cycle
re-entry in the upper epithelial layers [115–117]
[113,117] (Figure 3B). These key differences between
high-risk and low-risk E7 proteins reside in their N-
terminal half, a region that shares homology with
CR1 and CR2 of the adenovirus E1A and Simian
vacuolating virus 40T-antigen proteins [118]. The
biological activities of adenovirus E1a, including
pRb binding and the ability to cooperate with ras to
transform primary rat cells map to this region [119],
with the pRb-binding motif (LXCXE) being located
in the CR2 region of both high-risk and low-risk
mucosal E7 proteins. The expression of the high-risk
E7 protein leads also to an extensive epigenetic
reprogramming of the cell, which is also considered
important for stimulation of cell-cycle entry and
progression by E7. HPV 16 E7 interacts with Mi2β, a
component of the nucleosome remodeling and
deacetylase complex (NuRD complex), an association
that is thought to block the activity of histone
deacetylases 1 and 2 [120]. Interaction requires the
C-terminal zinc-finger domain of E7 and contributes
Rev. Med. Virol. 2015; 25: 2–23.
DOI: 10.1002/rmv



Figure 3. (A) The E6 and E7 proteins of the high-risk and low-risk HPV types have different functions, which reflect their different biologies. The
ability of the high-risk HPV types to drive cell division in neoplasia is thought to reflect the ability of their E7 protein to bind and degrademultiple
members of the pRb protein family, as well as the ability of E6 to efficiently degrade p53 and to compromise the function of PDZ-domain proteins
that regulate cell contact and signaling pathways, (B) High-risk HPV infection can lead to a “silent” or asymptomatic infection in which viral ge-
nomespersist in thebasal layerwithout thedevelopment of disease, or alternatively to thedevelopment of aproductive lesion suchasCIN1 inwhich
viral gene expression is regulated as the infected cells differentiate. In some instances, infection can lead to higher-grade neoplasia,with deregulated
viral gene expression leading to secondarygenetic changes in thehost cell andpossible integrationof the viral genome into the cellular chromosome.
The deregulated gene expression seen in CIN2 and 3, which are considered to be precancerous lesions, predispose to the development of cancer
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to the transcription of E2F-responsive genes and the
repression of pRb-induced quiescence [120,121]. In
addition, E7 expression stimulates the activation of
EZH2, a histone methyl transferase, and also the
histone demethylases KDM6A and KDM6B
[122,123] through different mechanisms. Interestingly,
the activation of KDMs appears to be involved in the
induction of p16INK4A, a surrogate biomarker of HPV
infection, as well as homeotic genes of theHOX family,
which have been shown to negatively regulate epider-
mal differentiation [124,125]. Interestingly, the effects
on EZH2 are conserved between high-risk and low-
risk E7 proteins and provide a link between viral gene
expression and the modulation of events during the
viral life cycle.

The PDZ (PSD95/Dlg/ZO-1) binding motif
(PBM), which is located at the extreme C-terminus
© 2015 The Authors. Reviews in Medical Virology
Published by John Wiley & Sons, Ltd.
of the high-risk E6 proteins, represents another
key difference between high-risk and low-risk pap-
illomavirus types [126,127]. The E6 PBM facilitates
interaction with a panel of PDZ domain-containing
proteins, and in many cases leads to their
proteasome-mediated degradation in an E6AP-
dependent manner [128,129]. So far, 14 E6 PDZ
domain-containing substrates have been identified
[130,131], with many of these (i.e. Dlg1, Scribble,
MAGI-1, -2, -3) being involved in the assembly of
signaling complexes associated with the regulation
of cell polarity, cell adhesion, and differentiation
(reviewed in [132]). Although the importance of
E6-PDZ associations has primarily been studied in
the context of HPV-related carcinogenesis, the
PDZ-binding activity of E6 appears also to regulate
multiple aspects of the viral life cycle. The integrity
Rev. Med. Virol. 2015; 25: 2–23.
DOI: 10.1002/rmv
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of the E6 PBM is required for the episomal mainte-
nance of HPV 31 and HPV 16 genomes in primary
human keratinocytes [133–135] and disruption of
the E6 PBM correlated with defective HPV 18 ge-
nome amplification and S-phase re-entry in differ-
entiating epithelium [136]. Such studies have also
suggested a role for E6 PDZ-binding activity in
the expression of cyclin B1, which is required for
normal G2-M transition [137,138]. Interestingly,
several high-risk E6 proteins contain canonical cy-
clic AMP-dependent protein kinase A recognition
motifs (R-R/K-X-T/S) within their PBM that can
regulate E6 function during the high-risk HPV life
cycle [136,139]. Mechanistically, it is thought that
phosphorylation regulates E6 binding to PDZ-
domain proteins and creates an alternative
binding-site, which allows E6 to associate with
members of the cellular 14-3-3 protein family
[139,140]. The high-risk E6 proteins are also charac-
terized by an ability to upregulate telomerase
activity [141–143] and to maintain telomere integ-
rity during repeated cell divisions, as well as by
their ability to mediate p53 degradation within
the cell. Both high-risk and low-risk E6 proteins
inactivate p53 function, which suggests an im-
portant role in the virus life cycle, but only
high-risk types stimulate its ubiquitination and
proteosome-dependent degradation (see section on
cancer progression below) [144–146]. The high-risk
types use degradatory pathways to target several of
their substrates. For E7, this is mediated via the cullin
2 ubiquitin ligase complex, whereas for E6, it involves
the E6AP cellular ubiquitin ligase [147]. It is now
clear that both E6 and E7 have a very large number
of cellular substrates, and that the identity of these
substrates differs between HPV types of the same
high-risk species, as well as between the broader
high-risk and low-risk groupings [148]. The diffi-
culty in linking defined protein functions to HPV
cancer risk and indeed life cycle events is
exemplified by the shared ability of high-risk E6
proteins to degrade p53 and PDZ substrates and to
induce keratinocyte immortalisation. For E6, recent
structural studies have suggested a complex
multimeric protein that has potential to associate
with multiple protein partners at any given time
point [145,149].
In the virus life cycle, the E6 and E7 play an

essential role in driving S-phase re-entry in the upper
epithelial layers to allow viral genome amplification.
This also requires the E1 and E2 proteins, which
© 2015 The Authors. Reviews in Medical Virology
Published by John Wiley & Sons, Ltd.
increase in abundance following “late” promoter
upregulation (p670 in HPV 16; [150]) in cells, which
continue to express E6 and E7 from the early
promoter (p97 in HPV 16). In the case of low-risk
HPV types, genome amplification requires cell
cycle re-entry in the mid to upper epithelial layers
rather than occurring in cells that have remained in
cycle after leaving the basal layer. For both high-
risk and low-risk HPVs, genome amplification
persists as the infected cell moves from an S-phase
to a G2- like phase before committing to full
differentiation [151,152].

Experimental systems show a two-log increase in
viral copy number per cell during genome amplifi-
cation [100]. In addition to E1 and E2, the E4 and E5
proteins also contribute to genome amplification
indirectly. E5 is involved in koilocyte formation
[153] and is a three-pass transmembrane protein
with a cytoplasmic C-terminus [154]. The E5 pro-
tein has a pore-forming capability and can interfere
with apoptosis [155] and the intracellular traffick-
ing of endocytotic vesicles [156,157]. It is thought
that E5 contributes to genome amplification
through its ability to stabilize epidermal growth
factor receptor, to enhance epidermal growth factor
signaling and mitogen-activated protein (MAP)
kinase activity [158–161], and also to modulate
both extracellular-signal-regulated kinase 1/2 (ERK
1/2) and p38 independently of epidermal growth
factor receptor [162,163]. The cellular MAP kinases
ERK 1/2 regulate nuclear E1 accumulation through
the phosphorylation and activation of a nuclear
localisation signal within the E1 protein, with their
activity being dependent on upstream MAP kinase
kinase 1/2 (MEK, MAPKK) and p38. The accumula-
tion of cyclin E and A and their associated cyclin-
dependent kinase 2 in S-phase further contributes
by phosphorylation and inhibition of the nuclear
export sequence of E1 [164,165]. Other post-
translational modifications in E1 (e.g. cleavage by
caspases) may also facilitate differentiation-
dependent genome amplification, with the accumu-
lation of E1 in the nucleus enhancing viral DNA
replication at the expense of cellular replication
through induction of a DNA damage response
[166]. The E4 protein, which accumulates at very
high levels in cells supporting virus synthesis
[167,168] may in fact have a primary function in
virus release or transmission [169,170], with the
optimization of genome amplification occurring as
an indirect consequence of its expression [34,171–175].
Rev. Med. Virol. 2015; 25: 2–23.
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Virus assembly and virus release from the
epithelial surface
Completion of the HPV life cycle ultimately in-
volves expression of the minor coat protein (L2),
cell cycle exit, and the expression of the major coat
protein L1 to allow genome packaging. This re-
quires a change in splice site usage rather than the
activation of new promoters, leading to an eleva-
tion in transcripts that initiate at the late promoter
(p670 in HPV 16) and which terminate at the late
(rather than the early) polyadenylation site [85],
an event that is facilitated by the higher levels of
E2 expression that down-regulate p97 [176,177].
These changes result in a switch from the produc-
tion of an E1^E4, E5 mRNA to an E1^E4, L1 tran-
script as genome amplification gives way to
genome packaging [177–179]. Encapsidation of the
viral genome ultimately involves the recruitment
of L2 (by E2) to regions of replication prior to the
expression of L1 and the assembly of the infectious
virions in the nucleus [180,181]. Virus maturation
eventually takes place in the superficial dying
keratinocytes, which lose mitochondrial oxidative
Figure 4. High-risk human papillomaviruses (HPV) infection disrupts
cell proliferation. Cell cycle progression is regulated in the different ep
proteins. The E7 proteins of high-risk HPV types can target members of
bers of the E2F transcription factor family, which allows basal and paraba
release of E2F is dependent on external growth factors, which stimulate cyc
expression of cellular proteins involved in cell cycle progression is regulate
pressing the activity of the cyclinD/cdk. The inability of low-risk HPV type
types can only efficiently target the p130 retinoblastoma family member, w
E7 proteins are thought to target all members of the pRb family. In additio
entry. This is the E6 protein, which acts to suppress the rise in p53 that w
(shown in B) Elevated p14 leads to inactivation of the MDM protein that i
regulate p53 levels in the cell by mediating its ubiquitination and degradat
levels are maintained at a low level, partly as a result of the normal activi
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phosphorylation and convert from a reducing to
an oxidizing environment before virus release. This
enables the progressive accumulation of disulfide
bonds between the L1 proteins, leading to the produc-
tion of stable infectious virions [182,183]. The abun-
dant E4 protein assembles into amyloid fibrils that
disrupt keratin structure and compromise the normal
assembly of the cornified envelope [168,170,184].
Although not precisely defined, it is thought that E4
amyloid fibers may contribute to virion release and
infectivity in the upper epithelial layers.

HIGH-RISK AND LOW-RISK HUMAN
PAPILLOMAVIRUS TYPES AND THE
DEVELOPMENT OF CANCER

The ordered expression of viral gene products that
leads to virus particle production is disturbed in
HPV-associated neoplasias (Figure 3B). In cervical
disease, it is thought that the levels of E6 and E7 ex-
pression rise from CIN1 to CIN3, and that these
changes in gene expression underlie the different
neoplastic phenotypes, with CIN1 lesions typically
the molecular pathways that regulate epithelial differentiation and
ithelial layers by members of the pRb (retinoblastoma) family of
this protein family for degradation (shown in B). This releasesmem-
sal cells to enter S-phase. In uninfected epithelium (shown in A), the
linD/cdk activity to allow pRb phosphorylation and E2F release. The
d by p16INK4A, which is involved in a negative feedback loop by sup-
s to drive robust basal cell proliferation is thought to be because these
hich controls suprabasal, but not basal cell cycle entry. The high-risk

n to E7, high-risk HPVs encode a second protein involved in cell cycle
ould otherwise occur following E7-mediated elevation in p14 levels.
s normally involved in degrading p53. High-risk E6 proteins directly
ion via the proteasome pathway. In uninfected cells (shown inA), p53
ty of MDM
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supporting the complete HPV life cycle [185]. The
increase in E6 and E7 activity that is thought to oc-
cur in high-risk HPV infection underlies the CIN2+
phenotype and predisposes the cell to the accumu-
lation of genetic errors that eventually lead to can-
cer progression [114]. In this model, the lower
E6/E7 activity in CIN1 is not expected to compro-
mise the functions of the cellular targets of E6 and
E7 sufficiently to facilitate cancer progression. The
deregulated expression of high-risk E7 proteins
can stimulate host genome instability through de-
regulation of the centrosome cycle [186–191],
whereas deregulated expression of E6 contributes
to the accumulation of mutations by compromising
the role of p53 in DNA repair. p53 is important for
the induction of cell cycle arrest and apoptosis
upon aberrant cell cycle progression and is a target
of both high-risk and low-risk E6 proteins, which
act to counter the rise in p53 that results from the
unscheduled DNA synthesis mediated by E7
(Figure 4). Indeed, recent studies using HPV 18
Figure 5. Lesion formation is thought to be facilitated by the presence
cells (e.g. an epithelial stem cell (1)). At particular sites, such as the sq
cells, reserve cells, and stem-like/stem cells are close to the epithelial s
velopment of a lesion may be facilitated by a wound repair (2). Once a
can be driven into the cell cycle, either to mediate basal cell division (i.e
the upper epithelial layers in order to support viral genome amplificat
immune response and a suppression of viral gene expression as activat
viral genomes can persist in the basal epithelial cells with very limite
cumstances, such as it can occur following immunosuppression [245]
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organotypic raft culture systems show that the loss
of E6 and the accumulation of p53 lead to a severe
impairment of the productive stage of the viral life
cycle [152,192]. A similar dependency on p53 inac-
tivation is also expected in the low-risk HPV life cy-
cle given the ability of these viruses to promote cell
cycle re-entry in the parabasal layers of the epithe-
lium. Interestingly, high-risk and low-risk mutant
HPV genomes encoding E6 proteins defective in
p53 binding cannot maintain episomal genomes
[192,193], suggesting that the inactivation of p53
plays important and pleiotropic roles within the
HPV life cycle. Both high-risk and low-risk mucosal
HPV types inhibit the p300/CBP (CREB-binding
protein) mediated acetylation of p53 that is re-
quired for promoter activation [194,195] via a
mechanism that involves the formation of a com-
plex between the histone acetyltransferase, p53,
and E6, but which does not depend on the E6 asso-
ciated protein [194]. Low-risk HPVs may also inter-
fere with p53 function by mediating its cytoplasmic
of microwounds, which allows the virus to infect epithelial basal
uamocolumnar junction of the cervical transformation zone, basal
urface and may be more prone to infection. At other sites, the de-
lesion has become established, basal and parabasal epithelial cells
. cell proliferation) or to drive cell cycle re-entry (but not mitosis) in
ion (3). Clearance of disease involves activation of a cell-mediated
ed T-cells accumulate in the vicinity of the lesion. It is thought that
d gene expression, allowing possible reactivation under some cir-
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sequestration [196]. Unlike low-risk HPV types,
however, the high-risk E6 protein can promote the
E6 associated protein-mediated degradation of
p53 and also of hAda3 (human homologue of yeast
alteration/deficiency in activation 3), which is a
p53 coactivator and a component of the histone
acetyltransferase complex [197,198]. These func-
tions of E6 and the other characterized functions
of E6 and E7 described in the context of the virus
life cycle earlier, underlie the ability of the high-risk
HPV types to cause cancers. Deregulation of viral
gene expression in CIN2/3+ facilitate integration
of the viral episome into the host cell chromosome,
which can act to further deregulate the expression
of E6 and E7. Although it is unclear how gene ex-
pression from the viral episome becomes
deregulated in early CIN, data from the vaccine tri-
als indicate that CIN2+ can sometimes occur in
young women soon after infection [199–202]. The
deregulated viral gene expression that is thought
to underlie the CIN2 phenotype may be driven by
hormonal changes, which affect the proliferative
capacity of the infected cell [84] and/or by epige-
netic modifications, which may depend on the na-
ture of the infected epithelial cell [203].
Interestingly, the HPV 16 LCR contains hormone
response elements that can be stimulated by estro-
gen, and there is considerable evidence of coopera-
tion between estrogen and HPV in the
development of cervical cancer in humans and in
model systems [84,204–206]. Several studies have
recently reported that the LCR is differentially
methylated according to disease grade, which sug-
gests that epigenetic changes may also regulate
promoter usage [207] (and thus disease [114]) and
indeed be exacerbated by the expression of the viral
oncogenes [122,208,209]. Although common fragile
sites in the host genome are considered to be hot
spots where integration is likely to occur [210], inte-
gration is a chance event, which can sometimes re-
sult in disruption of the viral E2 gene that normally
suppresses transcription of E6 and E7. Most cervi-
cal cancers contain one or more copies of HPV inte-
grated into the host chromosome, with the viral
integration site frequently lying either within the
E1 or E2 open reading frame [211,212]. Integration
and the loss of normal E6/E7 regulation by E2 facil-
itates long-term/ high-level expression of these
genes [213–215], and generally occurs in high-
grade lesions such as CIN2 and CIN3 [86] [216]
(Figure 3B). Cervical cancer can arise from cells
© 2015 The Authors. Reviews in Medical Virology
Published by John Wiley & Sons, Ltd.
containing exclusive episomes, and for HPV 16,
around 30% (between 26 and 76% depending on
study) of cervical cancers develop in this way
[217–219]. Approximately 70% of HPV 16-associated
cervical cancers contain integratedHPV 16 sequences,
whereas for HPV 18, the viral genome is nearly always
integrated [220–224].

HOST IMMUNE RESPONSES IN LESION
REGRESSION AND CLEARANCE
Although high-risk HPV infection is common, with
over 80% of women becoming infected at some
stage in their life, cervical cancer arises rarely as a
result of infection. Most infections are cleared by a
cell-mediated immune response, although HPV 16
and 18 persist longer than other high-risk types,
which may contribute to their higher cancer risk
at stratified and glandular sites [225–227]. In gen-
eral however, genital tract infections by HPV are
common in young sexually active individuals, with
the majority (80–90%) clearing the infection with-
out clinical symptoms. Regression of anogenital
warts is accompanied by a CD4+ T cell-dominated
Th1 response, which is also seen in animal models
of papillomavirus disease [228–231], with a failure
to develop an effective cell-mediated immune
response correlating with persistent infection, and
for high-risk HPVs, an increased probability of
progression toward invasive carcinoma.
In addition, many HPV infections counter detec-

tion by the innate immune response. The life cycle
is intra-epithelial, produces no viraemia, cell lysis,
or cell death, and replication is not associated with
inflammation [232]. Pro-inflammatory cytokines
such as Type I interferons are not released, and
the signals for Langerhans cell/dendritic cell acti-
vation, migration, and recruitment are largely ab-
sent [233]. Productively infected cells expressing
abundant viral proteins are shed from the surface
of the epithelium, away from circulating immune
cells. For high-risk Alpha types, several mecha-
nisms of immune evasion have been established.
The E6 protein of high-risk HPV types is known
to interfere with Tyk2 function, and as a result of
this is thought to affect STAT signaling
[85,234,235]. Similarly, E7 is able to interfere with
the induction of interferon response factor 1, with
both E6 and E7 being reported to reduce surface
levels of E-cadherin, which is thought to underlie
the lower abundance of Langerhans cells (the epi-
thelial dendritic cells) in lesional tissue [236–239].
Rev. Med. Virol. 2015; 25: 2–23.
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E7 reduces the total MHC abundance at the cell
surface, and through its effects on STAT1 signaling
and the suppression of IRF-1, also reduces the
levels of MHC 1 antigen presentation, which is ex-
pected to contribute to immune escape in high-risk
HPV driven cancers [240–242]. Interestingly, the
high-risk E5 protein also interferes with classical
MHC class 1 processing and is thought to compro-
mise the display of viral peptides at the surface of
the infected epithelial cell during the normal pro-
ductive life cycle [243]. The low level presentation
of viral antigens, in conjunction with active im-
mune evasion strategies and the absence of inflam-
mation, is thought to favor immune tolerance
rather than an effector T cell response able to clear
disease. Resolution of infection is thought to re-
quire cross-priming of dendritic cells with viral
antigens, followed by T-cell infiltration into the
site of infection and shut-off of viral gene expres-
sion. Human Langerhans cells are known to prime
and cross prime naive CD8+ cells [244] although
recent data from the mouse [49] suggest that in
the skin, the important cross presenting antigen
presenting cells are Langerin-positive and CD103-
positive dendritic cells, which may be of dermal
origin. When lesion regression does occur, it is
not associated with significant apoptosis or cell
death, and it appears from animal model studies
that lesions are cleared by the replacement of ac-
tively infected cells with “apparently normal cells”
as the basal cells continue to divide [100,230,245].
These “normal” cells can still contain viral ge-
nomes but without obvious viral gene expression,
with the virus life cycle becoming “re-activated”
subsequently following immune suppression or pos-
sibly also upon changes in hormone levels (Figure 5,
[245]). For cancer to develop, the virus has to evade
immune detection over a prolonged period of time.
Cervical cancer patients have a reduced or non-
existent T-cell response to antigens of the causal
HPV type [246,247], which suggests that persistence
may be linked to a failure of the immune response
or an inability to recognize viral antigens. No obvious
link between HLA type or other susceptibility indica-
tors has however yet been made [248–250].

CONCLUSIONS
Human papillomaviruses have evolved over many
millions of years to propagate themselves in a
range of different animal species including
humans. A typical characteristic of viruses that
© 2015 The Authors. Reviews in Medical Virology
Published by John Wiley & Sons, Ltd.
have co-evolved with their hosts in this way is the
production of chronic inapparent infections, with
virion production from the surface of infected epi-
thelium in the absence apparent disease. This is
the case for many Beta and Gamma HPV types.
However, not all HPV types use this approach,
and it appears that several Alpha papillomavirus
types have evolved immunoevasion strategies that
allow them to cause persistent visible papillomas.
As part of the papillomavirus life cycle in the epi-
thelium, these viruses need to activate the cell cycle
as the infected cell differentiates in order to create a
replication competent environment, which allows
genome amplification and packaging into infec-
tious particles. To do this, they have evolved pro-
teins (E6, E7, and E5) that can interfere with the
normal cell cycle regulation and can prevent apo-
ptosis as a result of unscheduled DNA replication.
In contrast to low-risk HPV types, high-risk Alpha
papillomaviruses not only drive cell cycle entry in
the upper epithelial layers, but have E6 and E7 pro-
teins that can stimulate the proliferation of infected
basal cells and also cause neoplasia. These addi-
tional characteristics reflect differences in the viral
proteins but also differences in the way that the vi-
ral proteins are expressed within the lesion. It is
generally accepted that deregulated expression of
these cell cycle regulators underlies neoplasia
and the eventual progression to cancer in individ-
uals who cannot resolve infection. Most work to
date has focused on the study of high-risk HPV
types such as HPV 16 and 18, but in the future,
there will be a need to understand the different
risks associated with other members of the high-
risk group and to more fully understand the mo-
lecular pathways that they subvert. Such ap-
proaches will, with some certainty, lead us
eventually to the development of better strategies
for disease treatment (i.e. targeted antivirals or im-
munotherapeutics), which are a necessary comple-
ment to current methods of disease management
(i.e. prophylactic vaccination, screening, surgical
ablation, or local immune modulation). In the
coming years, it will also be important to consider
high-risk HPV-associated diseases at sites other
than the cervix (e.g. tonsils, other transformation
zones) and to understand the mechanisms by
which low-risk HPV types can give rise to
papillomatosis and under certain situations even
cancers. An important part of these future studies
will be to develop our understanding of the
Rev. Med. Virol. 2015; 25: 2–23.
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Gamma and Beta HPV types at the level of their
natural history and to consider the different
mechanisms by which this group of viruses cause
disease and, in some situations also, cancer.
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