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SUMMARY

In this retrospective, we review the two research topics that formed

the basis of the outstanding career of Dr. Paul S. Frenette. In the

first part, we focus on sickle cell disease (SCD). The defining feature

of SCD is polymerization of the deoxygenated mutant hemoglo-

bin, which leads to a vicious cycle of hemolysis and vaso-occlu-

sion. We survey important discoveries in SCD pathophysiology

that have led to recent advances in treatment of SCD. The second

part focuses on the hematopoietic stem cell (HSC) niche, the com-

plex microenvironment within the bone marrow that controls

HSC function and homeostasis. We detail the cells that constitute

this niche, and the factors that these cells use to exert control over

hematopoiesis. Here, we trace the scientific paths of Dr. Frenette,

highlight key aspects of his research, and identify his most impor-

tant scientific contributions in both fields.
SICKLE CELL DISEASE

Sickle cell disease (SCD), first described in 1910 (Herrick,

2014), is a frequently devastating monogenic disorder

that causes chronic and acute pain, progressive multi-

organ damage, and reduced life expectancy (Piel et al.,

2017; Platt et al., 1994). The most common and severe

form of SCD, sickle cell anemia, is the result of a homozy-

gous mutation in the b-globin gene, and the consequent

production of the abnormal tetramer hemoglobin S

(a2b
S
2, HbS) (Bunn, 1997; Ingram, 1956, 1957; Pauling

et al., 1949). Over 300,000 neonates are affected by SCD

each year worldwide (Piel et al., 2013) and the number is

expected to increase in the coming years (Piel et al.,

2017). The pathophysiology of SCD is driven by hypoxia-

induced polymerization of HbS in red blood cells (RBCs)
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leading to hemolysis, inflammation, and vaso-occlusion

(Ballas et al., 2010; Steinberg, 2008; Sundd et al., 2019).

In low-income countries, approximately 50% of individ-

uals with SCD die in early childhood. In high-income

countries, newborn screening programs and therapeutic

interventions have increased the survival of pediatric

SCD patients dramatically (Kato et al., 2018; Piel et al.,

2017; Ware et al., 2017). However, life expectancy is still

reduced by about 30 years compared with the average pop-

ulation, and quality of life is considerably reduced (Piel

et al., 2017). In this section, we provide an overview of

SCD pathophysiology and important discoveries,

including those of Dr. Paul Frenette, that have led to the

development of current and potential future therapies for

management of this disease.

Pathophysiology of SCD

The pathophysiology of SCD is induced by hypoxia-

induced polymerization of HbS in RBCs (Bunn, 1997;

Kato et al., 2018; Rees et al., 2010; Sundd et al., 2019).

HbS differs from normal adult hemoglobin (HbA) by a sin-

gle amino acid substitution in the b-globin subunit

tetramer (Ingram, 1957), caused by a missense mutation

in the corresponding HBB gene. While the HbA tetramer

(a2b2) is molecularly stable, HbS tetramers containing two

mutated b-globin chains (a2b
S
2) have a high propensity

to form polymers when deoxygenated (Figure 1A). The

rate and extension of HbS polymerization, the main deter-

minants of disease severity (Brittenham et al., 1985),

depend mainly on the intracellular concentration of HbS,

which is determined by numerous RBC properties,

including volume, hydration, expression of fetal hemoglo-

bin (HbF), and concomitant thalassemia mutations (Eaton
ports j Vol. 17 j 1509–1535 j July 12, 2022 j ª 2022 The Author(s). 1509
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Figure 1. Vaso-occlusion in sickle cell disease
(A) During the passage of red blood cells (RBCs) from arterial to venous circulation, oxygen (O2) is released from oxygenated sickle
hemoglobin (HbS), generating deoxygenated HbS (deoxy-HbS).
(B) The deoxy-HbS tetramer polymerizes within RBCs, creating a sickle shape and triggering a complex pathophysiology cascade.
(C) Membrane and cellular alterations in sickle RBCs cause their premature lysis, releasing cell-free hemoglobin (Hb) and heme that
degrade nitric oxide (NO), generate reactive oxygen species (ROS), and promote inflammation, contributing to endothelial dysfunction
and heterocellular adhesive interactions.
(D) Upregulation of nuclear factor kB (NF-kB) in activated endothelial cells induces the surface expression of adhesion molecules,
including intercellular and vascular adhesion molecules-1 (ICAM-1 and VCAM-1, respectively) and endothelial E- and P-selectins. Activated
endothelial cells also secrete inflammatory mediators that recruit and activate immune cells.
(E) SCD-associated inflammatory processes promote leukocyte activation, with neutrophil expression of aMb2 (Mac-1) integrin and platelet
activation and aggregation. Pathological cellular interactions that drive vaso-occlusion are mediated by various adhesion receptors and
their ligands on activated blood and endothelial cells. Examples of adhesive interactions are shown for RBC-endothelium, sickle RBC-
neutrophil, neutrophil-endothelium, platelet-neutrophil, and platelet-endothelium. ICAM-1, intercellular adhesion molecule-1;
VCAM-1, vascular adhesion molecule-1; P-sel, P-selectin; E-sel, E-selectin; PSGL, P-selectin glycoprotein ligand; ESL, E-selectin ligand.
Created with BioRender.com.
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and Bunn, 2017; Noguchi et al., 1988; Rees et al., 2010;

Steinberg, 2005). Upon HbS polymerization, RBCs become

stiff and sickle shaped (Figure 1B), leading to impaired

rheology, oxidative stress, abnormal calcium homeostasis,

dehydration, enhanced adhesive properties, vascular oc-

clusion, and premature lysis (Bunn, 1997; Vekilov, 2007).

In SCD, the RBC lifespan is approximately 10–20 days,

with 120 days being normal (Ballas and Marcolina, 2006;

de Ceulaer et al., 1983). Approximately 30% of SCD-related

hemolysis is intravascular (Bensinger and Gillette, 1974;

Hebbel, 2011), culminating in the daily release of up to

30 g of cell-free hemoglobin into the circulation (Figure 1C)

(Bensinger and Gillette, 1974; Reiter et al., 2002). Non-
1510 Stem Cell Reports j Vol. 17 j 1509–1535 j July 12, 2022
compartmentalized oxygenated hemoglobin (Fe2+) de-

grades nitric oxide (NO), a key inhibitor of vascular

contractility (Doherty et al., 1998; Reiter et al., 2002).

This in turn generates reactive oxygen species (ROS) and

oxidized (Fe3+) hemoglobin (methemoglobin), an unstable

molecule that releases toxic cell-free heme, which perpetu-

ates further oxidative stress and stimulates the innate im-

mune system through toll-like receptor signaling, inflam-

masome formation, and the generation of neutrophil

extra-cellular traps (Federico et al., 2022), causing delete-

rious sterile inflammation and endothelial damage (Fig-

ure 1D) (Kato et al., 2009, 2017; Repka and Hebbel,

1991). Endogenous inflammatory mediators that are

http://BioRender.com
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released from damaged or dying cells, in this case sickled

RBCs, are referred to as damage-associated molecular pat-

terns (DAMPs) (Mendonca et al., 2016; Roh and Sohn,

2018).

Early discoveries that sickle RBCs display impaired

rheology and increased aggregation to endothelial cells

(Hebbel et al., 1980; Hoover et al., 1979), and later neutro-

phils (Turhan et al., 2002), monocytes, and platelets (Wun

et al., 2002), have further elucidated the complex process of

microvascular occlusion in SCD, which causes ischemic tis-

sue injury by interrupting blood supply. Subsequently, re-

perfusion with new oxygen delivery unleashes a second

wave of inflammatory and oxidative damage. Repeated

ischemia-reperfusion cycles induce progressive inflamma-

tion, endothelial dysfunction, and immune activation

(Hebbel, 2014). This pathophysiology underlies SCD-asso-

ciated pain crises, which are the leading cause of hospitali-

zation (Ballas et al., 2012), and chronic organ damage that

ultimately leads to premature mortality.

Vaso-occlusion in SCD is a multistep, multicellular pro-

cess in which leukocytes, sickled RBCs, and platelets form

sticky cellular aggregates that adhere to the microvascula-

ture, obstructing blood flow (Frenette, 2002). Adhesive

interactions driving vaso-occlusion are mediated by the

induction of cell surface proteins and numerous inflamma-

tory and pro-coagulant mediators. Augmented adherence

of sickle RBCs to endothelial cells was demonstrated

in vitromore than 40 years ago (Hebbel et al., 1980; Hoover

et al., 1979). Subsequent studies of sickle RBCs (Gee and

Platt, 1995; Joneckis et al., 1993; Setty et al., 2002; Swerlick

et al., 1993) identified abnormal expression of cell surface

adhesion molecules that bind to the endothelium,

including intercellular adhesion molecule-4 (ICAM-4),

Lutheran/basal cell adhesion molecule-1 (Lu/BCAM-1),

and phosphatidylserine (PS). Integrin a4b1 and glycopro-

tein CD36 have also been identified, predominantly on

SCD reticulocytes (Conran and Embury, 2021; Frenette

and Atweh, 2007; Kaul et al., 2009).

The SCD endothelium is dysfunctional and abnormally

activated (Figure 1D) (Hebbel et al., 2004), with increased

expression of vascular adhesion molecule-1 (VCAM-1),

ICAM-1, E-selectin, and P-selectin, whichmediate adhesive

interactions and activate innate immune cells (Figure 1E)

(Conran and Embury, 2021; Frenette and Atweh, 2007;

Kaul et al., 2009). Expression of P- and E-selectins on acti-

vated endothelial cells has been shown to mediate the

recruitment and adhesion of leukocytes in vivo (Turhan

et al., 2002) and adhesion to RBCs in vitro (Matsui et al.,

2001). Activated endothelial cells upregulate the transcrip-

tion factor nuclear factor B (NF-kB), which leads to the acti-

vation and recruitment of adherent leukocytes to venules

(Belcher et al., 2006). The first in vivo evidence that leuko-

cytes participate in SCD vaso-occlusion was demonstrated
in a tumor necrosis factor alpha (TNFa)-stimulated SCD

mouse model (Turhan et al., 2002). It was later shown

that most leukocytes interacting with sickle RBCs and

endothelial cells are neutrophils (Chiang et al., 2007).

The capture of sickle RBCs by activated adherent neutro-

phils is dependent on their surface expression of aMb2
integrin (Mac-1, or CD11b/CD18), which is induced by

endothelial E- and P-selectins expressed by activated endo-

thelial cells (Hidalgo et al., 2009). A prothrombotic state

also occurs in SCD, where activated platelets generate

RBC-platelet and leukocyte-platelet aggregates, mainly

mediated by Mac-1 on the surface of neutrophils and

P-selectin expressed by platelets (Hidalgo et al., 2009; Pola-

nowska-Grabowska et al., 2010; Shet et al., 2020).

The chronic elevation of leukocytes, mainly activated

neutrophils, is a hallmark of SCD that contributes to

vaso-occlusion and has been associated with disease

severity and increased risk of death (Platt, 2000; Platt

et al., 1994). Circulating neutrophils are heterogeneous

with respect to their activation state and pro-inflammatory

potential in normal and pathological conditions, including

SCD (Torres et al., 2021; Zhang et al., 2015). Neutrophil

heterogeneity may result from their aging in circulation.

In wild-type mice, the release of fresh neutrophils from

the bone marrow and their clearance from the blood are

rhythmically modulated during steady-state homeostasis

(Casanova-Acebes et al., 2013). However, in SCD mice,

the proportion of aged neutrophils in the blood, defined

by low expression of L-selectin (CD62L) and high expres-

sion of CXCR4 (Casanova-Acebes et al., 2013; van Eeden

et al., 1997), is increased (Zhang et al., 2015). Moreover,

the aged population exhibits a highly pro-inflammatory

phenotype, with elevated expression of Mac-1 and

increased propensity to promote vaso-occlusion. Interest-

ingly, neutrophil aging and vaso-occlusion were shown to

be modulated by the gut microbiota, and the administra-

tion of broad-spectrum antibiotics protected SCD mice

from aged neutrophil expansion, vaso-occlusion, and or-

gan damage (Zhang et al., 2015).

Regulation of the immune system by the gut microbiota

is crucial for host immunity, and perturbation of themicro-

biome can lead to immune pathologies (Postler andGhosh,

2017). The gut microbiome in SCD has altered density, di-

versity, and composition (Brim et al., 2021; Lim et al., 2018;

Stewart et al., 2021). The mechanisms involved in this dys-

biosis, however, remain unclear. Intrinsic SCD pathologies,

including vaso-occlusion injury to the gastrointestinal

microvasculature, may cause increased gut permeability

that alters the microbiome (Stewart et al., 2021). Environ-

mental factors might also be involved, particularly the

long-term use of prophylactic antibiotics that are adminis-

tered to prevent potentially fatal bacterial sepsis in children

with SCD (Brim et al., 2021; Stewart et al., 2021).
Stem Cell Reports j Vol. 17 j 1509–1535 j July 12, 2022 1511



Figure 2. Timeline of discovery and development of therapy for sickle cell disease
Major landmarks in the understanding of sickle cell disease (SCD) pathophysiology from its discovery to the current state of therapeutic
development. SCD history has been arbitrarily divided into four distinct eras. Early discoveries and therapies (gray) cover the first 80 years
from the first description of SCD. The 1990s frame (red) is marked mainly by studies in hydroxyurea (HU), the first drug approved by the US
Food and Drug Administration (FDA) to prevent painful vaso-occlusive episodes (VOEs) in SCD. The elucidation of the mechanisms involved
in VOE occurred in early 2000s (blue), when cells and molecules promoting adhesive interactions that lead to vaso-occlusion were
discovered. Most relevant contributions from Dr. Paul Frenette to the field occurred in this era and are indicated by asterisks (*). Recent
studies and clinical trials (purple) may indicate the beginning of a new era of therapeutic advances, including gene therapy, mechanism-
based drugs, and combination drug therapy. BM, bone marrow; BMT, bone marrow transplantation; RBC, red blood cells; sRBC, sickle red
blood cells; VOE, vaso-occlusive episodes; HbSS, homozygous for hemoglobin sickle hemoglobin S; HbF, fetal hemoglobin. (Esrick et al.,
2021; Gaston et al., 1986; Johnson et al., 1984; Larson et al., 2020; Neel, 1949; Paszty et al., 1997; Ribeil et al., 2017; Ryan et al., 1997).
Created with BioRender.com.
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Accumulating evidence suggests that psychological stress

can affect the composition of the microbiota (Bailey

et al., 2011; Mayer et al., 2014; Moloney et al., 2014).

Psychological stress in SCDmice caused altered gut perme-

ability and exacerbated TNFa-induced vaso-occlusion,

inflammation, and aged neutrophil expansion. These pro-

cesses were prevented by depletion of the microbiota (Xu

et al., 2020).

Dr. Paul Frenette was a pioneer in elucidating the partic-

ipation of neutrophils in SCD vaso-occlusion. His discov-

ery that neutrophils interact directly with the endothelium

through P- and E-selectin-mediated adhesion, and capture

sickle RBC through aMb2 integrin, placed neutrophils as a
1512 Stem Cell Reports j Vol. 17 j 1509–1535 j July 12, 2022
key component in the pathophysiology of SCD. These

findings provided the basis for new therapeutic interven-

tions targeting cellular interactions that drive vaso-occlu-

sion, such as the development of a humanized P-selectin

antibody, discussed later (Figure 2). The intimate connec-

tion between neutrophils and the gut microbiome,

discovered by Dr. Frenette’s team, should lead to therapeu-

tic improvements in the management of SCD.

Clinical complications of SCD

The spectrum of clinical complications in SCD is broad.

Acute complications include recurrent vaso-occlusive

pain crisis, stroke, splenic sequestration, and acute chest

http://BioRender.com
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syndrome. Common chronic complications include persis-

tent pain, avascular necrosis of bone, kidney disease,

stroke, and pulmonary hypertension (Ballas et al., 2010;

Kato et al., 2018; Steinberg, 2008). Acute vaso-occlusion

is associated with unpredictable and excruciating episodes

of pain, which lead to hospital admissions in more than

90% of cases (Ballas and Lusardi, 2005). Frequency of acute

painful vaso-occlusive crisis is a measure of disease severity

and correlates with early death (Platt et al., 1991). Damage

resulting from acute pain episodes frequently leads to

persistent pain and deterioration in the quality of life (Bal-

las et al., 2012).

Hyperalgesia has been demonstrated in a SCD mouse

model and may be linked to systemic inflammation (Ballas

et al., 2012; Kohli et al., 2010). In a mouse model of SCD,

hypoxia-induced RBC sickling exacerbated hypersensitiv-

ity to mechanical and thermal stimuli, which was shown

to bemediated through the transient receptor potential va-

nilloid 1 (TRPV1) (Hillery et al., 2011). TRPV1 has a pivotal

role in transmitting noxious signals and can be activated by

inflammatory stimuli, which are abundant in SCD. Surpris-

ingly, although TRPV1 deficiency reduces hyperalgesia in

SCDmice, a recent study from Dr. Frenette’s group showed

that nociception-deficient SCD mice exhibited significant

worsening in inflammation and vaso-occlusion parame-

ters, and elevation of aged neutrophil numbers, suggesting

that nociception protects SCD mice from vaso-occlusion

(Xu et al., 2021). The authors demonstrated that the protec-

tive effects of nociception were mediated by the neuropep-

tide calcitonin gene-related peptide (CGRP), a neurotrans-

mitter secreted by nociceptor neurons during the

propagation of noxious signals. Administration of CGRP

to SCD mice protected against vaso-occlusion and inflam-

mation and inhibited long-term organ damage (Xu et al.,

2021). These remarkable findings by Dr. Frenette’s team

suggest that while SCD pain markedly worsens the pa-

tient’s quality of life, the underlying mechanism is some-

how protective. Presumably, future therapeutic approaches

will investigate the therapeutic potential of specific noci-

ceptive mediators as a target for dampening SCD patho-

physiology to inhibit end-organ damage.

Although pain is the major manifestation of SCD, acute

chest syndrome is the leading cause of premature death

(Ballas et al., 2012; Serjeant, 2013). This complication,

defined as a new radiodensity on chest imaging, accompa-

nied by fever and/or respiratory symptoms, frequently

develops 2–3 days after the start of a vaso-occlusive crisis

(Vichinsky et al., 2000). Lung lesions are accompanied by

an exacerbated inflammatory response and pulmonary

vasculature vaso-occlusion. In 30% of cases, acute chest

syndrome is triggered by pulmonary infection, but other

common causes include fat embolism from necrotic bone

marrow and pulmonary infarction (Novelli and Gladwin,
2016). Management of acute chest syndrome includes an-

tibiotics, supplemental oxygen, and RBC transfusion, aim-

ing to reduceHbS polymerization, RBC sickling, and hemo-

lysis by increasing tissue oxygen delivery (Novelli and

Gladwin, 2016).

Phenotypic manifestations of SCD are highly variable

and may be modulated by genetic and environmental

factors. Fetal hemoglobin (HbF, a2g2) expression is a ma-

jor modifier of clinical severity of SCD and an important

therapeutic target (Steinberg, 2020). Normally, expres-

sion of the g-globin genes (HBG1 and HBG2), which

encode a b-like hemoglobin subunit, is switched off post-

natally, resulting in gradual replacement of HbF by HbA

(or HbS in SCD) over the first year of life (Stamatoyanno-

poulos, 2005). Thus, individuals with SCD become symp-

tomatic as pathological HbS replaces normal HbF. The

levels of HbF in normal adults are usually less than 1%.

However, HbF expression is commonly higher and

more variable in SCD due to incompletely understood

mechanisms including erythropoietic stress and genetic

factors. The severity of SCD is reduced by high levels of

HbF since they dilute HbS, do not incorporate into HbS

polymers, and prevent HbS polymerization (Steinberg,

2009). Environmental modifiers of SCD severity include

climate (e.g., temperature and humidity), air quality, alti-

tude, socioeconomic features, and lifestyle (Tewari et al.,

2015). Psychological health is also critical for disease

development. Patients with SCD are at high risk for

depression, due to the unpredictable impact of the dis-

ease on their personal and professional lives. Depression

in SCD is associated with frequent acute vaso-occlusive

pain, hospitalizations, and blood transfusions, and corre-

lates with worse outcomes (Adam et al., 2017; Pecker and

Darbari, 2019).

Therapeutic interventions for management and

prevention of SCD complications

Hydroxyurea (or hydroxycarbamide), the first drug

approved by the US Food and Drug Administration (FDA)

for SCD (Figure 2) (Charache et al., 1992), promotes

increased HbF production to inhibit HbS polymerization;

reduces hemolysis; decreases leukocyte, platelet, and retic-

ulocyte counts; reduces vascular cell adhesion; and en-

hances NO bioavailability to improve endothelial function

(McGann and Ware, 2015). In turn, this reduces the inci-

dence of vaso-occlusive crisis, hospitalizations, blood

transfusion frequency, and mortality in patients with

SCD (Charache et al., 1995). Hydroxyurea therapy reduces

acute events, improves quality of life, and slows the accu-

mulation of organ damage in SCD patients (Ballas et al.,

2006; Rai and Ataga, 2020). Indeed, current management

guidelines recommend that all children more than

9 months old with SCD be offered hydroxyurea therapy
Stem Cell Reports j Vol. 17 j 1509–1535 j July 12, 2022 1513
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as a preventative measure. However, clinical responses to

hydroxyurea vary between SCD patients, and its long-

term benefits, including prevention of chronic complica-

tions, are not fully defined (Nevitt et al., 2017). The

growing understanding of SCD pathophysiology and the

regulation of globin gene transcription has stimulated the

development of new therapies acting through a variety of

mechanisms (Salinas Cisneros and Thein, 2021; Torres

and Conran, 2019). Three drugs discussed below have

been recently approved by the FDA for use in SCD

(Figure 2).

Voxelotor (GBT440) is an allosteric effector of HbS that

increases the affinity of HbS to oxygen (Metcalf et al.,

2017). By maintaining HbS in the oxygenated state, voxe-

lotor inhibits its polymerization (Metcalf et al., 2017) and

prevents the sickling of RBCs in SCD patients (Oksenberg

et al., 2016). Voxelotor also improves RBC deformability

and reduces SCD blood viscosity (Dufu et al., 2018). In a

phase-3 clinical trial, voxelotor reduced hemolysis and

increased hemoglobin levels in SCD patients (Vichinsky

et al., 2019). A theoretical concern is that pharmacological

enhancement of HbS affinity for oxygen could impair its

release in peripheral tissues, including the central nervous

system (CNS) (Eaton and Bunn, 2017; Hebbel and Hed-

lund, 2018; Henry et al., 2021). Long-term post-marketing

studies of voxelotor should resolve this issue. L-glutamine

exerts an antioxidant activity to improve the redox poten-

tial of RBC, preventing oxidative damage (Niihara et al.,

1998), RBC sickling, and RBC adherence to the endothe-

lium (Niihara et al., 2005). Oral administration of

L-glutamine to SCD patients has been shown to reduce

the frequency of acute vaso-occlusive crisis, hospitaliza-

tions, and acute chest syndrome (Niihara et al., 2018). Cri-

zanlizumab is a humanized monoclonal antibody that

binds to P-selectin expressed on activated platelets and

endothelial cells in SCD and blocks its interaction with

P-selectin glycoprotein ligand-1 (PSGL-1) expressed on

SCD RBC and leukocytes, thus preventing cellular adhe-

sion that leads to vaso-occlusion (Ataga et al., 2017). Cri-

zanlizumab has been shown to reduce the frequency of

acute vaso-occlusive events in SCD (Ataga et al., 2017).

Although these different pharmacotherapeutic strate-

gies are effective in preventing acute events in SCD,

none are 100% effective, nor have they been proven to

protect against chronic end-organ damage. Thus, in the

future, medical therapy for SCD is likely to require a

multi-drug approach that targets multiple aspects of dis-

ease pathophysiology. Improved new therapies may

come from further studies of the relationships between

microbiome, pain sensitization, and psychological health

regulating inflammation, vaso-occlusion, and organ dam-

age, and/or the identification of new, more effective HbF

inducers.
1514 Stem Cell Reports j Vol. 17 j 1509–1535 j July 12, 2022
Curative therapies for SCD and future perspectives

Currently, the standard curative therapy for SCD is allo-

genic hematopoietic stem cell transplantation (HSCT).

The outcomes of this therapy are encouraging, with disease

free survival occurring in more than 90% of patients who

receiveHSCT from anHLA-matched sibling donor (Bernau-

din et al., 2007; Mahesri et al., 2021). However, these

donors are available for less than 20% of SCD patients

(Mentzer et al., 1994). Moreover, serious risks including se-

vere graft-versus-host disease (GVHD), graft rejection, and

transplantation-related death can occur in some patients

(Bernaudin et al., 2007; Mentzer et al., 1994). Ongoing

research seeks to reduce further the risks of treating SCD

with allogeneic HSCT using HLA-matched siblings and

alternative donors.

HSCT for SCD using genetically modified autologous

HSC donor cells is a promising experimental approach

that circumvents some toxicities of allogeneic HSCT (Doer-

fler et al., 2021; Drysdale et al., 2021; Rosanwo and Bauer,

2021). One approach for HSCmodification is transduction

with a lentiviral vector encoding a modified b-globin gene

with anti-sickling properties (LentiGlobin), which results

in the production of HbA (Figure 2). In a phase 1–2 study,

patients who received a single LentiGlobin infusion experi-

enced a sustained increase of total hemoglobin, reduction

of HbS levels, reduction of hemolysis markers, and com-

plete resolution of severe vaso-occlusive events (Kanter

et al., 2022). Another approach involves genetic reactiva-

tion of the g-globin gene expression to induce the produc-

tion of HbF. A patient infused with autologous CRISPR-

Cas9-edited HSCs (genetically modified to restore the

production of HbF), showed high levels of HbF, resolution

of vaso-occlusive episodes, and transfusion independence

(Frangoul et al., 2021). Other approaches under study

include genetic correction of the SCD mutation with

Cas9-mediated homology directed repair (Pattabhi et al.,

2019), and the use of base editor proteins that convert

the SCD mutation to a benign variant (Newby et al.,

2021) or induce HbF (Li et al., 2021; Zeng et al., 2020).

Such therapies are highly promising, but their long-term ef-

fects are as yet unknown. One emerging concern is that

SCD itself may predispose to the development of premalig-

nant somatic mutations that increase risk for developing

myelodysplastic syndrome or leukemia following autolo-

gous HSCT (Jones and DeBaun, 2021).

With the continued advance in gene therapy and bone

marrow transplantation, an important aspect of SCD to

be considered is its potential impact on the bone marrow

homeostasis. The bonemarrowniche in SCDmice is highly

disturbed due to hemolysis, hypoxia, and vaso-occlusion in

the bone marrow vasculature (Park et al., 2020). Tang et al.

(2021) demonstrated that cell-free heme contributed to a

highly oxidative microenvironment in the bone marrow



Figure 3. Niche players for HSC homeo-
stasis
Various cell types contribute to HSC regu-
lation via direct or indirect mechanisms in
the bone marrow. Osteoblasts negatively
regulate the HSC pool by secreting osteo-
pontin. Nes-GFPbrightNG2+ peri-arteriolar
cells and LepR+ stromal cells reside in the
perivascular area and differentially regulate
HSCs. Non-myelinating Schwann cells that
are closely associated with arterioles main-
tain HSC quiescence through activating
TGF-b. Lymphoid-biased von Willebrand fac-
tor (vWF)-GFP� HSCs are enriched in the vi-
cinity of, and selectively regulated by, Ng2+

peri-arteriolar cells. Oln+LepR+ stromal cells,
found mainly around arteries, may regulate
CLPs. SCF or Neo-1 secreted from arteriolar
endothelial cells contributes to HSC mainte-
nance. Sinusoidal endothelial cells regulate
HSCs through CXCL12, Notch ligands, and
pleiotrophin. Various progenies of HSCs

also participate in the orchestration of HSC function. Clearance of aged neutrophils by macrophages alters CAR cell function to retain
HSCs in the bone marrow. Neutrophils enhance endothelial regeneration after transplantation through TNF secretion, leading to acceler-
ated hematopoietic recovery. FoxP3+CD150+ Tregs provide immune privilege to HSCs. Megakaryocytes maintained quiescence of HSCs
through secreting CXCL4, TGF-b, and TPO. HSC, hematopoietic stem cell; OPN, osteopontin; TGF-b, transforming growth factor-b; SCF,
stem cell factor; Neo-1, neogenin-1; CXCL12; C-X-C motif chemokine ligand 12; Nes-GFP, nestin-GFP; NG2, nerve/glial antigen 2; Oln, os-
teolectin; LepR, leptin receptor; CLP, common lymphoid progenitor; CXCL4, C-X-C motif chemokine ligand 4; TPO, thrombopoietin; CAR
cell, CXCL12-abundant reticular cell; TNF, tumor necrosis factor.
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of SCD mice, triggering mesenchymal stem cell (MSC) de-

fects and oxidative stress in hematopoietic stem cells

(HSCs). These alterations in the bone marrow niche are ex-

pected to reduce HSC homing and engraftment efficiency

in SCDpatients, impairing the success of current and future

curative strategies. Fortunately, such abnormalities may be

manageable. Park et al. (2020), for example, showed that

bone marrow vascular disorganization observed in SCD

mice can be alleviated by RBC transfusion. Overall, these

findings support the need for a deeper understanding of

the effects of SCD on the bonemarrowmicroenvironment.
THE CONCEPT OF BONE MARROW NICHE

Living organisms cannot survive in complete isolation but

depend on their surrounding environment to provide

them with critical input needed to carry out their activities.

The same is true for the cells thatmake up our bodies, which

are not able to function normally without support from the

surrounding environment, and in fact their function can be

directly controlled by microenvironmental or long-range

cues. Blood cells such as white blood cells, RBCs, and plate-

lets control immune response and tissue repair and are

essential for maintaining vital activities. The bone marrow
produces blood cells throughout life, and, under steady-state

conditions, generates 10 billion RBCs and up to 1 billion

white blood cells per hour. This constantly replaces short-

lived blood cells and thus maintains homeostasis. The he-

matopoietic systemhas an efficient and rational hierarchical

structure, and the HSC, ancestor of all blood cells, reigns at

the top of the hierarchy. HSCs reside in a special microenvi-

ronment in the bonemarrow called theHSCniche (or,more

simply, the niche) andmaintain hematopoietic homeostasis

through their specific capacities of self-renewal, differentia-

tion, and proliferation. The concept of the niche was first

proposed by Dr. Schofield in 1978 (Schofield, 1978). Recent

studies have revealed that various types of hematopoietic

and non-hematopoietic cells in the bone marrow function

as niche cells and regulate HSC functions through complex

mechanisms (Figure 3) (Gao et al., 2018).Wewill discuss the

latest findings on the roles of the bone marrow microenvi-

ronment in niche cell populations and review the elaborate

mechanisms that operate within the immediate neighbor-

hood of HSCs that regulate their state and activities.

Niche players in the bone marrow

Osteolineage cells

At the dawn of research into the HSC niche, osteoblasts,

which produce bone at the interface between bone marrow
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and bone tissue, attracted attention as niche cells. Bone is

the closest tissue to the bone marrow, which is literally the

marrow of the bone. Osteoblastic cells exhibit the ability

to maintain hematopoietic progenitors in vitro, and when

in vitro-labeled hematopoietic progenitor cells were infused

intravenously into mice, they were abundantly distributed

around the endosteum in the bone marrow (Nilsson et al.,

2001), supporting the existence of niche cells in the endos-

teum. In 2003, two independent groups simultaneously re-

ported that expansion of osteolineage cells in vivo by genetic

modifications led to a substantial increase of HSCs, suggest-

ing that bone forming mesenchymal cells regulate the size

of the HSC pool and are therefore niche components (Calvi

et al., 2003; Zhang et al., 2003). However, the role of mature

osteoblasts for HSC niche function remains highly debated.

In mice with osteoblast-specific reduction of C-X-C motif

chemokine ligand 12 (CXCL12) or stem cell factor (SCF),

both of which are confirmed niche factors essential for

HSC maintenance, little change in the number of HSCs in

the bone marrow was found, suggesting that osteoblasts

do not contribute to HSC maintenance, at least through

these niche factors (Greenbaum et al., 2013). However, oste-

oblasts may regulate HSCs in the setting of bone marrow

transplant conditioning where imaging studies have

demonstrated close physical proximity (Lo Celso et al.,

2009; Silberstein et al., 2016; Xie et al., 2009) or through in-

direct effect of secreted factors such as osteopontin that

negatively regulates the HSC pool in both adult and fetal

bonemarrow (Cao et al., 2019;Nilsson et al., 2005). Tie2, en-

coded by theTekgene, is a receptor tyrosine kinase expressed

on vascular endothelial cells and a small fraction of HSCs,

and Tie2-expressing HSCs possess the ability to maintain

long-term hematopoiesis over the long term (Arai et al.,

2004; Ito et al., 2016). Osteoblasts express angiopoietin-1

(Ang-1), a ligand for Tie2, and augmentation of Ang-1 sig-

nals both in vitro and in vivo increasedHSCs in theG0 cell cy-

cle phase. These results support osteoblasts as cells capable

of regulating HSC quiescence via the Tie2/Ang-1 pathway

(Arai et al., 2004); however, another study deleted Angpt1

in osteoblasts and noted little effect on HSC (Zhou et al.,

2015). An earlier study focused on the importance of

N-cadherin (N-cad), an adhesion molecule on the surface

of osteoblasts, in hematopoietic homeostasis (Zhang et al.,

2003), while subsequent studies have suggested that the

phenotypic HSCs defined by specific markers, including

the signaling lymphocytic activationmolecule (SLAM) fam-

ily, are not affected by the removal of N-cad molecule in os-

teoblasts (Bromberg et al., 2012; Greenbaum et al., 2013;

Kiel et al., 2007). A recent study identified that N-cad+

bone and marrow stromal progenitor cells (BMSPCs) in the

endosteum serve as a niche functionally supporting HSCs.

In this study, the authors showed that a subpopulation of

long-term HSCs marked by CD49b�CD48�CD34�CD135�
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LSK (Lineage�Sca-1+c-Kit+) are resistant to chemotherapy.

These long-term HSCs predominantly localize adjacent to

the N-cad+ stromal cells, which display MSC characteristics.

Conditional deletion of SCF from N-cad+ stromal cells re-

sulted in a decrease in HSCs both at a steady state and under

chemotherapy stress (Zhao et al., 2019). Further examina-

tion will be needed to better understand osteoblasts as a

niche constituent and their roles in proper HSC mainte-

nance. This is made complex by the fact that many studies

have used Cre recombinase driven constitutively by pro-

moters that are active at a timewithin the development pro-

gram of osteolineage cells. All descendant cells will therefore

bear the genetic modification making it difficult to know

when the modified gene was playing a role in HSC

regulation.

Vascular endothelial cells

HSCs have a close relationship with vascular endothelial

cells during development. HSCs arise from cells with the

characteristics of vascular endothelial cells in the hemato-

genic endothelium of the dorsal aorta in the aorta-gonad-

mesonephros (AGM) region during fetal life and establish

definitive hematopoiesis in the bone marrow after initial

hematopoiesis in the fetal liver (Medvinsky and Dzierzak,

1996; Muller et al., 1994). Early in vitro studies have

shown that vascular endothelial cells isolated from bone

marrow provide long-term support for human cord

blood-derived hematopoietic progenitor cells or periph-

eral blood mononuclear cells (Rafii et al., 1995). A decade

later, Kiel et al. (2005) showed that HSCs can be identified

with high probability by combining a simple set of anti-

bodies, LSK CD48�CD41�CD150+. Endogenous HSCs

stained with these markers reside near the vascular endo-

thelium in the bone marrow (Kiel et al., 2005), bringing

the perivascular area into the limelight as a niche for

HSCs. Concurrently, it was shown that intravascularly in-

jected hematopoietic stem and progenitor cell (HSPC)

traffic to CXCL12-expressing endothelial regions lodges

perivascularly and proliferates, demonstrating a func-

tional niche (Sipkins et al., 2005). However, it should be

noted that the bone marrow is richly endowed with blood

vessels and, by sheer density of the vascularity, no cell can

be more than 25 mm from blood vessels (mean diameter of

HSPC �15 mm). Therefore, vascular and perivascular cells

provide key elements of the hematopoietic microenviron-

ment. Specifically regarding endothelium, it was shown

in vivo that recovery of vascular endothelial cells is essen-

tial for hematopoietic regeneration after myelosuppres-

sion (Hooper et al., 2009), and detailed mechanisms of

HSC regulation by vascular endothelial cells have since

been reported (Rafii et al., 2016). Further, human umbili-

cal vein endothelial cells with enforced activation of the

Akt signaling pathway support the proliferation of he-

matopoietic progenitor cells in vitro, and an increased
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number of HSCs in bone marrow was observed in mice

with the vascular endothelial cell-specific enhancement

of Akt signaling (Kobayashi et al., 2010). A subsequent

study provided in vivo evidence that vascular endothelial

cells stimulate Notch signaling in HSPCs through Jagged1

(Jag1), one of the angiocrine factors, and regulate the

maintenance of the HSC pool and quiescence in steady

state, as well as lineage-specific differentiation of HSPCs

during hematopoietic recovery from myelosuppression

(Poulos et al., 2013). Pleiotrophin (PTN), a heparin-bind-

ing growth factor that promotes HSC expansion in vitro

and HSC regeneration in vivo (Himburg et al., 2010,

2012), was derived from vascular endothelial cells facili-

tating HSC regeneration following irradiation (Himburg

et al., 2018). Furthermore, genetically modified mice in

which CXCL12 or SCF was specifically removed from

vascular endothelial cells in vivo showed reduced HSCs

(Ding and Morrison, 2013; Ding et al., 2012; Greenbaum

et al., 2013). The results of these studies indicate that

vascular endothelial cells play an essential role in HSC

regulation, but these studies did not analyze vascular

endothelial cells separately by vessel subtype (arterial

and sinusoid). More recent studies have shown that

vascular endothelial cells in the bone marrow are not a

uniform population. For example, Sipkins et al. (2005)

showed that some endothelial cells expressed higher

levels of CXCL12 and E-selectin. Further, Kusumbe et al.

(2014) demonstrated that vascular endothelial cells in

the bone marrow can be divided into type H endothelial

cells, which are abundantly distributed near the growth

plates and highly express both CD31 and endomucin,

and type L endothelial cells, which are widely distributed

in sinusoids and weakly positive for both CD31 and endo-

mucin. Type H blood vessels highly express the niche fac-

tor SCF, and, in mice with increased type H blood vessels

due to enhanced Notch signaling, the number of HSCs

increased in accordance with the elevation of SCF (Ku-

sumbe et al., 2016). Xu et al. (2018) analyzed vascular

endothelial cells in bone marrow in more detail and

demonstrated that these cells can be prospectively divided

into arterial endothelial cells (AECs) and sinusoid endo-

thelial cells (SECs) according to the expression patterns

of Sca-1 and podoplanin (PDPN). Intriguingly, AECs

(Sca-1bright, PDPN–) express higher level of canonical

niche factors, such as SCF, CXCL12, and Jagged1, than

SECs (Sca-1dim, PDPN+) in the bone marrow. Indeed, spe-

cific depletion of SCF in AECs targeted by Bmx-CreERT2,

but not SECs, led to a decrease of HSCs both in the steady

state and during hematopoietic recovery after myelosup-

pression (Xu et al., 2018). AECs also secrete neogenin-1,

which has been identified as a regulator of axon guidance.

Neogenin-1 has a variety of functions in cell survival and

angiogenesis and activates the NF-kB pathway in HSCs via
netrin-1, a receptor expressed on HSCs, to regulate HSC

quiescence, differentiation, and maintenance (Renders

et al., 2021). A recent study has further shown that a sub-

set of endothelial cells with low-affinity nerve growth fac-

tor receptor (CD271) expression in human bone marrow

exhibits characteristics of both vascular endothelial cells

and mesenchymal cells. These cells differentiate into

mesenchymal cells, the major niche cells in bone marrow,

by endothelial-mesenchymal transition (Kenswil et al.,

2021).

Perivascular stromal cells

Perivascular stromal cells, along with vascular endothelial

cells, have attracted attention as niche cells. These cells

include CXCL12-abundant reticular (CAR) cells, which ex-

press high levels of CXCL12 and represent a reticular

morphology (Sugiyama et al., 2006), leptin receptor

(LepR)-expressing stromal cells (Ding and Morrison,

2013; Ding et al., 2012), CD51+CD140a+ mesenchymal

stromal progenitors (Pinho et al., 2013), and stromal cells

labeled by green fluorescent protein (GFP) expressed down-

stream of the nestin promoter (Nes-GFP+) (Mendez-Ferrer

et al., 2010). All these cell types exhibit common character-

istics: they locate in perivascular spaces, have MSC charac-

teristics, and secrete high levels of niche factors. CXCL12

(also known as stromal cell-derived factor-1 [SDF-1]), one

of the most well-recognized niche factors, was identified

as a growth factor for B cell progenitors (Nagasawa et al.,

1994). Subsequent studies revealed that CXCL12 interacts

with its cognate receptor CXC chemokine receptor 4

(CXCR4) on HSCs to maintain the HSC pool or anchor

HSCs in the bone marrow. CXCL12-GFP knockin mice

have been established to visualize the endogenous gene

expression of CXCL12. In these mice, GFP-positive cells

were mainly distributed around sinusoid in the bone

marrow as cells with long protrusions that formed a tangled

network and were named CAR cells (Sugiyama et al., 2006).

CAR cells express high levels of SCF and are adipo-osteo-

genic progenitors with the specific transcriptional factors

forkhead box C1 (FOXC1) and early B cell factor 3 (EBF3)

(Omatsu et al., 2014; Seike et al., 2018). The depletion of

CAR cells in vivo results in a decrease of HSCs in the bone

marrow (Omatsu et al., 2010, 2014). The human counter-

part of CAR cells was also identified by EBF3 staining in a

human bone marrow biopsy sample (Aoki et al., 2021). A

study using Scfgfp knockin mice with a knockin of Egfp

(GFP) into the endogenous Scf locus demonstrated that

stroma cells expressing LepR were the main source of SCF

in the bone marrow (Ding et al., 2012). LepR-Cre+ stromal

cells express high levels of both SCF and CXCL12, and in

fact the majority of these cells overlap with CAR cells

(Asada et al., 2017; Zhou et al., 2014). Deletion of Scf

from LepR-Cre+ cells markedly reduced HSCs in the bone

marrow, whereas Cxcl12 deletion had little impact on
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HSC number in the bone marrow and rather resulted in

HSC mobilization to the peripheral blood and spleen

(Asada et al., 2017; Ding and Morrison, 2013). Much like

CAR cells, LepR-Cre+ cells are an important source of adipo-

cytes and all osteolineage cells (Zhou et al., 2014). They are

the most abundant non-hematopoietic cells in the bone

marrow (Baryawno et al., 2019). They contribute to most

osteoblastic cells in the bone in either normal development

or after injury (Zhou et al., 2014). The majority of LepR+

stromal cells are around sinusoids in the bone marrow;

however, some LepR+ cells reside in peri-arteriolar loca-

tions, and these cells have been shown to express osteolec-

tin (Oln), an osteogenic growth factor (Shen et al., 2021).

Peri-arteriolar LepR+Oln+ cells are osteoblast progenitors

and express CXCL12 and SCF comparable with other

LepR+ stromal cells. However, deletion of Scf from peri-arte-

riolar Oln-iCreER targeted cells led to a decrease in common

lymphoid progenitors (CLPs), but no change in the num-

ber of HSCs in the bone marrow. Similar to prior studies

showing that mature osteoblastic cell depletion affects

CLPs but not HSCs (Ding and Morrison, 2013; Greenbaum

et al., 2013; Yu et al., 2015), the Oln+ cells contribute to a

lymphoid niche in the bone marrow (Shen et al., 2021).

These data do not exclude the possibility of other cell types

(e.g., cells at early stages along osteogenesis) in endosteal

regions supporting HSCs. Indeed, N-cad+ bone-lining cells,

giving rise to osteoblasts, adipocytes, and chondrocytes,

maintain long-termHSCs during homeostasis and regener-

ation (Zhao et al., 2019).

HSCs are constantly moving in and out of the bone

marrow and peripheral blood in a steady state, and adren-

ergic signaling through the b3-adrenergic receptor downre-

gulates CXCL12 levels in the bone marrow and facilitates

HSC release from the bone marrow (Mendez-Ferrer et al.,

2008). This was the first time that neural contributions to

a stem cell niche had been defined, and, in so doing, Dr.

Frenette expanded the concept of a niche to include sys-

temic inputs. In a subsequent study, Mendez-Ferrer et al.

(2010) showed that stromal cells withGfp expression under

the control of nestin promotor (Nes-GFP+) have MSC po-

tential and modulate HSC release from bone marrow

through b3-adrenergic signals. Nes-GFP+ cells in the bone

marrow are classified according to the intensity of GFP

expression into Nes-GFPbright cells, which are distributed

around arterioles and strongly express GFP, and Nes-

GFPdim cells, which are distributed mainly around sinu-

soids and show low GFP expression (Kunisaki et al.,

2013). Dr. Frenette and his group developed bone marrow

three-dimensional (3D) image analysis using mouse

whole-mount sternum to evaluate the relationships be-

tween and within bone marrow structures. Using these im-

aging systems, endogenous HSCs were reported to be pre-

dominantly distributed in the vicinity of Nes-GFPbright
1518 Stem Cell Reports j Vol. 17 j 1509–1535 j July 12, 2022
cells around arterioles, while regenerative HSCs during

the recovery process after fluorouracil (5-FU) administra-

tion were further from Nes-GFPbright cells. Nes-GFPbright

cells express the pericyte marker nerve/glial antigen 2

(Ng2), and the deletion of cells targeted by NG2-CreERTM

in vivo resulted in a reduction of HSCs, loss of quiescence,

and relocation of HSCs further away from arterioles, sug-

gesting that Nes-GFPbrightNg2+ peri-arteriolar stromal cells

function as an HSC niche (Kunisaki et al., 2013). Others

have shown that Tie2-expressing HSCs are preferentially

distributed around arterioles (Asada et al., 2017; Ito et al.,

2016; Kunisaki et al., 2013). In contrast, studies analyzing

the distribution of HSCs defined byCtnna1-GFP expression

and c-kit immunostaining in optically cleared bone

marrow reported that most of these HSCs are in contact

with the very abundant LepR+ cells (Acar et al., 2015).

Another study used homeobox B5 (Hoxb5)-GFP mice to la-

bel LT-HSCs and demonstrated that >94% of Hoxb5-GFP+

HSCs are in contact with VE-cadherin+ vascular endothelial

cells in optically clearedmice tibia, although the roles of ar-

terioles and sinusoids were not separately assessed (Chen

et al., 2016). Another study using optically cleared bone

marrow sections explored the special relationship between

various niche cells and Ctnna1-GFP+ HSCs, Mds1-GFP+

HSCs, or label-retaining HSCs. Interestingly, the authors

failed to see an enrichment of HSCs in any particular loca-

tion and concluded that the distribution ofHSCs is random

(Kokkaliaris et al., 2020). Indeed, prior studies on Lpr+ cells

as niche cells have also shown that HSCs are distributed

equivalent to random dots (Kiel et al., 2005). These varying

results have yet to be reconciled, but the concept that mul-

tiple non-hematopoietic cell types contribute to HSC regu-

lation is undisputed and it may occur without requiring

direct cell-cell interaction.

While both types of Nes-GFP-positive cells express

niche factors, most Nes-GFPdimLepR+ cells overlap with

CAR cells and LepR+ cells, and exhibit higher levels of

expression of Cxcl12 and Scf than Nes-GFPbrightNg2+

peri-arteriolar cells (Baccin et al., 2020; Baryawno et al.,

2019; Kunisaki et al., 2013). However, when Cxcl12 was

deleted from peri-arteriolar Nes-GFPbright cells using

NG2-CreERTM or Myh11-CreERT2, these conditional

knockout mice exhibited a reduced number of HSCs in

the bone marrow (Asada et al., 2017). The conditional

deletion of Cxcl12 in Nes-GFPdimLepR+ cells had little

impact on HSC numbers in the bone marrow, while

mobilization of HSCs to the peripheral blood and spleen

was enhanced (Asada et al., 2017; Ding and Morrison,

2013). Imaging of endogenous HSCs in bone marrow re-

vealed that Cxcl12 deletion in peri-arteriolar Nes-

GFPbright cells, but not from Nes-GFPdimLepR+ cells, iden-

tified HSCs far from arterioles (Asada et al., 2017). In

contrast, deletion of Scf in Nes-GFPbright cells had no
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effect on HSC numbers, but mice with Scf removal from

Nes-GFPdimLepR+ cells showed a marked decrease in the

number of HSCs (Asada et al., 2017; Ding et al., 2012).

These results support that identical niche factors from

distinct niche cells may have different functions in

HSCs. A similar phenomenon has been reported for other

niche factors. For instance, pleiotrophin (PTN) is an

important niche factor, secreted by both perivascular

LepR+ cells and vascular endothelial cells. PTN from

vascular endothelial cells facilitates the regeneration of

HSCs after irradiation, while PTN from LepR+ cells is

indispensable for HSC maintenance (Himburg et al.,

2010, 2018).

It remains a matter of debate whether cellular compo-

nents of the bone marrow microenvironment (e.g., peri-

arteriolar, peri-sinusoidal, or endosteal areas) provide

distinctive functional HSC niches (Comazzetto et al.,

2019; Pinho and Frenette, 2019). Vascular-forming endo-

thelial cells compose the bone marrow vascular network,

and blood vessel sub-types may be associated with specific

micro-anatomical regions and distinct properties to regu-

late HSC maintenance and cellular trafficking. Indeed,

direct measurements of pO2 in the bone marrow of live an-

imals has revealed a unique hypoxic landscape (Spencer

et al., 2014) in which quiescent HSCs with low levels of

ROS were localized around arterioles, while HSCs with

high ROS levels were distributed among the sinusoids (It-

kin et al., 2016). Lymphoid-biased von Willebrand factor

(vWF)-GFP� HSCs are selectively regulated by Ng2+ peri-

arteriolar cells and enriched in their vicinity, while

myeloid-biased vWF-GFP+ HSCs (Sanjuan-Pla et al., 2013)

are located adjacent to megakaryocytes, which regulate

their reconstitution potential (Pinho et al., 2018).

Megakaryocytes

One of the descendants of HSCs, the megakaryocytes

(MKs), are primarily responsible for platelet production,

and play indispensable roles in HSC regulation. In vitro

co-culture with MKs has led to slight increases in the repo-

pulation potential of HSCs (Heazlewood et al., 2013).

Several groups independently reported that �20% of

phenotypic HSCs in the bone marrow are in contact with

MKs, which maintain HSC quiescence through secretion

of CXCL4 (also known as platelet factor 4), transforming

growth factor b1 (TGF-b1), and thrombopoietin (TPO) in

steady-state conditions (Bruns et al., 2014; Nakamura-Ish-

izu et al., 2014, 2015, 2020; Zhao et al., 2014). Interestingly,

in contrast to steady state, MKs accelerate the recovery of

HSCs after chemotherapeutic stress by producing fibroblast

growth factor 1 (Zhao et al., 2014). MKs also increase the

number of osteoblasts by secreting platelet-derived growth

factor-BB during hematopoietic recovery to support HSC

engraftment (Olson et al., 2013). Recent studies from Dr.

Frenette’s laboratory separately analyzed two distinct sub-
types of HSCs based on their vWF expression (vWF-GFP+

and vWF-GFP� HSCs) and showed that MKs specifically

confer on vWF-GFP+ HSCs a differentiation potential

toward a myeloid-biased output (Pinho et al., 2018).

Nervous system

Anatomical studies using laboratory animals have reported

that autonomic nerves and sensory nerves are predomi-

nantly distributed in the bonemarrow. Sympathetic nerves

enter the bone marrow along the nutrient arteries, and

most of them wrap around the arteries and travel, but

some leave the arteries and stretch their nerve endings to

the bone marrow parenchyma (Mach et al., 2002). The

roles of sympathetic nerves distributed in the bonemarrow

were largely unknown until 2002 when Takeda et al. re-

ported that sympathetic nerve stimulation inhibits osteo-

blast function via b-adrenergic receptors (ARs) on osteo-

blasts, which are responsible for osteogenesis on the

endosteum (Takeda et al., 2002). HSCs reside in niches in

the bone marrow, but administration of granulocyte col-

ony-stimulating factor (G-CSF) mobilizes them into the

blood circulation. Although the mechanism of G-CSF-

induced HSC mobilization has not been fully elucidated,

Katayama et al. (2006) demonstrated that mice lacking gal-

actocerebroside, a major glycolipid component of the neu-

romyelin sheath, have impaired osteoblast function and

lack G-CSF-induced HSC mobilization. Osteoblasts were

functionally suppressed by G-CSF administration. In mice

lacking catecholamine signaling due to blocked adrenergic

neurotransmission, osteoblasts were not suppressed by

G-CSF administration, while HSC mobilization was

impaired. These results suggest the indispensable roles of

the sympathetic nervous system (SNS) in HSC niche regu-

lation (Katayama et al., 2006) (Figure 4). Adrenergic signals

triggered by G-CSF also suppress osteocytes, terminally

differentiated osteolineage cells, through b2-AR, and serve

as another suppressor for the HSC niche and its mobiliza-

tion (Asada et al., 2013). Sympathetic nerves express

G-CSF receptors, and Lucas et al. (2012) have shown that

direct stimulation by G-CSF enhances local sympathetic

signaling by reducing the efficiency of norepinephrine re-

uptake at nerve endings. Administration of desipramine,

a norepinephrine reuptake inhibitor, enhanced the effi-

ciency of G-CSF-induced mobilization.

SNS signals modulate HSC niche function in steady state

as well as under stress conditions. Non-myelinating

Schwann cells are the glial cells of the sympathetic nerves,

which travel along arteries in the bone marrow, and main-

tain HSC quiescence by activating latent TGF-b and SMAD

signaling (Yamazaki et al., 2011). In this study, surgical

denervation of sympathetic nerves led to reduced HSC

numbers along with a decrease in non-myelinating

Schwann cells. However, the resulting outcomes were

dependent on the method of sympathetic denervation.
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Figure 4. Neural regulation of HSC and
their niche
(A and B) Increased sympathetic nervous
tone induced by granulocyte colony-stimu-
lating factor (G-CSF) treatment suppressed
osteolineage cells via b2-ARs, leading to
HSC mobilization into the circulation. CGRP
released from nociceptive nerves drove
G-CSF-induced HSC mobilization. Cholin-
ergic signals mediated by the ACh-Chrm1
axis in the CNS is required to optimize gluco-
corticoid levels in the bone marrow for
optimal HSC mobilization (A). Diurnal alter-
ations in bone marrow microenvironment
controlled by the autonomic nervous system
promote the circadian fluctuation of HSC
mobilization. In the daytime, sympathetic
adrenergic/cholinergic signals promote
HSC egress by the reduction of C-X-C motif
chemokine ligand 12 (CXCL12) expression
from Nes-GFP+ bone marrow niche cells
(red) and the suppression of adhesion mol-
ecules on endothelial cells (blue) (B, left).
At night, parasympathetic cholinergic
signals in CNS diminish sympathetic norad-

renergic tone and decrease HSC egress into the blood (B, right). Anti-cancer drugs cause sympathetic neuropathy, leading to niche cell
dysfunction and delayed hematopoietic recovery. HSC, hematopoietic stem cell; ACh, acetylcholine; Chrm1, cholinergic receptor musca-
rinic 1; HPA, hypothalamus-pituitary-adrenal; CGRP, calcitonin gene-related peptide; NE, norepinephrine; CALCRL, calcitonin receptor-
like; RAMP1, receptor activity modifying protein 1; b2-AR, beta 2 adrenergic receptor; PSN, parasympathetic neuron.
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Systemic chemical denervation of sympathetic nerves by

treatment with 6-hydroxydopamine had no effect on

HSCs in bone marrow (Lucas et al., 2013; Mendez-Ferrer

et al., 2008), while local surgical sympathectomy showed

a decrease in functional HSCs only in the denervated

bone marrow (Maryanovich et al., 2018). Chemothera-

peutic agents are still the mainstay of anti-cancer treat-

ment. It is well known that repeated anti-cancer drug ther-

apy delays the recovery of hematopoiesis. Neurotoxic

drugs, cisplatin and/or vincristine, cause sympathetic neu-

ropathy in the bone marrow and sensory neuropathy. Loss

of niche protection by SNS signaling leads to exit from

quiescence by Nes-GFP+ HSC niche cells, resulting in

increased susceptibility to chemotherapy and delayed he-

matopoietic recovery (Lucas et al., 2013). These niche im-

pairments are alleviated by the administration of either

the neuroprotective agent 4-methylcatechol or glial-

derived neurotrophic factor prior to chemotherapy, which

potentially promotes hematopoietic recovery after chemo-

therapy (Lucas et al., 2013).

As in homeostatic tissue regulation, the function of the

autonomic nervous system in tumor formation, growth,

progression, and metastasis mechanisms in various malig-

nant tumors has recently receivedmuch attention (Zahalka

and Frenette, 2020). Hanoun et al. (2014) reported that, in
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mice with transduced MLL-AF9, aggressive acute myeloid

leukemia (Wei et al., 2020) cells, abnormal expansion of

functionally impaired Nes-GFPdim stromal cells, and reduc-

tion of Nes-GFPbrightNG2+ peri-arteriolar niche cells were

observed along with a decrease in healthy HSCs in the

bone marrow. These alterations in niche components

induced by AML were mediated by the disruption of SNS

signaling, and treatment with b2-AR agonist led to both a

reduction in leukemic stem cells in the bone marrow and

prolonged survival of leukemic mice (Hanoun et al.,

2014). In a mouse model of myeloproliferative neoplasm

caused by mutations in Janus kinase 2, interleukin (IL)-1b

secreted by abnormal HSCs caused damage to sympathetic

nerves and Schwann cells in the bone marrow, resulting in

a reduction of healthy HSCs due to impaired function of

Nes-GFP+ stromal cells. The administration of b3-AR

agonist prevented tumor progression by restoring Nes-

GFP+ stromal cells and reducing LSCs (Arranz et al., 2014).

The role of the parasympathetic nervous system (PNS) in

the regulation of hematopoiesis is less understood than the

role of the SNS. Cholinergic signals via hypothalamic

muscarinic receptors induces corticosterone production

in the adrenal gland via the hypothalamic-pituitary-adre-

nal axis toward an optimal level for maintenance of HSC

migration potential during HSC mobilization induced by
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G-CSF (Pierce et al., 2017). Garcia-Garcia et al. (2019)

explored the function of the PNS in the mechanism of

HSC transit between peripheral blood and bone marrow.

SNS signals guide HSCs to the bone marrow at night by up-

regulating adhesion molecules on bone marrow vascular

endothelial cells via b2-AR, and, during the day, promote

HSC egress into the peripheral blood by downregulating

niche factors via b3-AR. PNS signals in the CNS suppressed

sympathetic nerve activity at night and reducedHSC egress

from the bone marrow (Garcia-Garcia et al., 2019). The

rhythmic movement of HSCs following circadian rhythms

is finely tuned through skillfulmanipulation of the balance

between SNS and PNS.

Sensory fibers are also distributed in the bone marrow

and express neuropeptides CGRP and substance P (Bjur-

holm et al., 1988; Chartier et al., 2018; Mach et al.,

2002). Notably, CGRP+ nociceptive fibers and tyrosine hy-

droxylate (TH)-positive sympathetic fibers exhibit similar

nerve lengths in the bone marrow. Denervation of either

sympathetic or nociceptive nerves in vivo had little effect

on HSCs in the bone marrow; however, dual denervation

of both nerves led to an expansion of HSCs and increased

themyeloid bias of hematopoiesis (Gao et al., 2021). Deple-

tion of nociceptive nerves using resiniferatoxin (RTX) or

Nav1.8-Cre transgenic mice blunted G-CSF-induced HSC

mobilization, and these mobilization defects were amelio-

rated by CGRP supplementation. CGRP acts on its hetero-

dimeric receptor RAMP1/CALCRL on HSCs and promotes

HSC mobilization by activating downstream Gas-adenyl

cyclase-cAMP signaling (Gao et al., 2021). CGRP treatment

also alleviates the mobilization defect via G-CSF in mice

with cisplatin-induced injury of SNS signaling in the

bone marrow (Lucas et al., 2013). More interestingly,

feeding mice with spicy food containing capsaicin, which

stimulates nociceptors, increased the efficiency of mobili-

zation via activation of the nociceptive nerve (Gao et al.,

2021), suggesting that nociceptor stimulation may be a

newpathway for improving the efficiency ofHSCmobiliza-

tion by G-CSF.

Progeny of HSCs that regulate niche cells

Matured hematopoietic cells participate in the regulation

of the HSC niche in the bone marrow. For example, in vivo

depletion of macrophages, as found in macrophage Fas-

induced apoptosis transgenic mice or produced by clodr-

onate-containing liposome administration to wild-type

mice, induced disruption of niche function and mobiliza-

tion of HSPCs into the blood (Winkler et al., 2010). Chow

et al. (2011) independently revealed that removal of

CD169 (SIGLEC1)-expressing macrophages results in a

decrease of CXCL12 in Nes-GFP+ perivascular niche cells

and HSPC mobilization. The Nes-GFP+ niche requires

support signals from macrophages and sympathetic sig-
nals via b3-ARs to maintain niche function (Mendez-Fer-

rer et al., 2010). G-CSF administration cancels these sup-

portive signals but increases sympathetic tone to inhibit

niche function of Nes-GFP+ cells, promoting HSC

mobilization.

Neutrophils, the most abundant cell types among leu-

kocytes in circulation in mammals, are also involved in

regulating the HSC niche. The number of neutrophils

in the circulating blood oscillates in a circadian manner.

Aged neutrophils circulate back to the bone marrow and

are cleared by macrophages, and the clearance of aged

neutrophils by macrophages alters CAR cell function to

retain HSPCs through activation of liver X receptors

(LXRa and LXRb) in macrophages, eventually leading

to a release of HSPCs into the circulation (Casanova-

Acebes et al., 2013). Bone marrow-derived neutrophils,

but not peripheral blood neutrophils, enhance endothe-

lial cell regeneration after transplantation, leading to

accelerated hematopoietic recovery. In this recovery pro-

cess, neutrophil-derived TNF-a acts on TNFR1 on endo-

thelial cells to promote vessel growth (Bowers et al.,

2018). As discussed before, aged neutrophils are abun-

dant in blood from SCD patients and SCD mice and

have been associated with severe vaso-occlusive processes

in vivo. However, the impact of this imbalance on the

bone marrow microenvironment remains unknown. It

would not be surprising if abnormal oscillations in

bone marrow release or clearance of neutrophils could

negatively affect bone marrow homeostasis or recovery

after transplantation in these patients.

Lymphoid descendants of HSCs are also involved in HSC

regulation. HSCs in the bone marrow are resistant to

various cytotoxic stresses, and FoxP3+ regulatory T cells

(Tregs), which suppress the function of effector T cells,

play crucial roles in providing immune-privileged sites to

HSCs in the bone marrow (Fujisaki et al., 2011; Hirata

et al., 2018). Allogeneic HSCs transplanted in non-irradi-

ated mice survived for 1 month without immunosuppres-

sive drugs, and most of them colocalized with Tregs in

the bone marrow (Fujisaki et al., 2011). Depletion of Tregs,

as observed in vivo in FoxP3-GFP diphtheria toxin receptor

(DTR) mice or after injection of anti-CD25 antibody, led to

a robust reduction of surviving donor HSCs in the bone

marrow, suggesting that Tregs enable HSCs to escape

from the attack by allogeneic immune cells (Fujisaki

et al., 2011). A distinct subpopulation of Tregs that express

high levels of CD150 maintained HSC quiescence and pro-

vided immune privilege through adenosine (Hirata et al.,

2018).

HSC niche in the dawn and dusk of hematopoiesis

In mammals, definitive hematopoiesis emerges through

endothelial-to-hematopoietic transitions in the AGM
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Figure 5. Alterations in the microenvi-
ronment in the aged bone marrow
The changes of microenvironment during
aging include the diminished b3-adrenergic
receptor (AR) signals due to neuropathy of
sympathetic nerves, arteriole shortening
accompanied by decreased Nes-GFPbrightNG2+

stromal cells, differentiation skewing of
mesenchymal stem and progenitor cells to-
ward adipogenesis at the expense of osteo-
genesis, alterations in adrenergic signaling
and inflammation, and endothelial cell
dysfunction. These functional changes in
the HSC niches upon aging contribute to
HSC aging with myeloid-biased hematopoie-
sis and their downstream progeny. HSC, he-
matopoietic stem cell; Nes-GFP, nestin-GFP;
NG2, nerve/glial antigen 2; ROS, reactive ox-
ygen species; Sirt2, Sirtuin 2; NLRP3, NLR
family pyrin domain containing 3; LepR, lep-
tin receptor; SCF, stem cell factor; IL-1b,
interleukin 1 beta; IL-6, interleukin 6.
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region of the fetus (Medvinsky and Dzierzak, 1996; Muller

et al., 1994). HSCs migrate to the fetal liver at E11.5,

where HSCs progressively proliferate until E16 before

migrating to the bone marrow at E17.5 (Bowie et al.,

2006; Morrison et al., 1995). Specific stromal cell lines es-

tablished from the fetal liver support HSC expansion for

up to 5–7 weeks in vitro, suggesting that HSCs are regu-

lated by extrinsic signals in the fetal liver as well as the

bone marrow (Moore et al., 1997; Wineman et al.,

1996). Although various extrinsic signals have been iden-

tified in the microenvironment that maintain and expand

fetal liver HSCs in vitro (Lewis et al., 2021), our knowledge

of niche cells in vivo is limited. In mouse fetal livers, endo-

thelial cells, hepatoblasts, and mesenchymal stromal cells

have been proposed as HSC niche cells. Endothelial pro-

tein C receptor (EPCR)+ HSCs reside in close proximity

to Lyve-1+ endothelial cells in fetal livers. Co-culturing

of EPCR+ HSPCs with Lyve-1+ endothelial cells restored

their repopulation capacity, suggesting the pivotal roles

of endothelial cells for niche cells in the fetal liver (Iwa-

saki et al., 2010).

A line of evidence indicates that the cells expressing

SCF in the fetal liver are hepatoblasts, which have the

potential to differentiate into hepatocyte and biliary

epithelial cells. SCF+ DLK (delta-like leucine zipper ki-

nase)+ hepatoblasts highly express cytokines that expand

HSCs in vitro, including angiopoietin-like 3 (Angptl3),

TPO, and CXCL12. These cells are able to support the re-

populating activity of fetal liver HSCs in a co-culture sys-
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tem (Chou et al., 2013; Chou and Lodish, 2010; Zhang

et al., 2006).

Nes-GFP+ stromal cells, the key component of the HSC

niche in adult bone marrow, also conduct HSC expansion

in the fetal liver. Khan et al. (2016) have revealed that

HSCs exhibit close association with Nes-GFP+Ng2+ peri-

cytes located around portal vessels in fetal liver. Nes-

GFP+Ng2+ cells express high levels of HSC niche genes,

including Cxcl12, Scf, Angptl2, and Igf2 (encoding insulin-

like growth factor 2). Depletion of Ng2+ cells in vivo using

transgenic Ng2-Cre mice crossed with Cre-inducible diph-

theria toxin A (iDTA) mice resulted in a significant reduc-

tion of fetal liver HSCs at E14.5, while no difference was

observed in HSCs at E12 to E12.5. 3D imaging analyses of

consecutive cryosections of Nes-GFP+ fetal liver from E12

to E14.5 demonstrated that portal vessels and Nes-GFP+

niche cells expanded at the same scale as HSCs, according

to fractal geometries (Khan et al., 2016). These results indi-

cate that rapid growth of the portal vascular tree during the

fetal liver stage boosts the expansion of HSCs before their

movement toward the bone marrow.

Aging is inevitable for all living organisms. Aged HSCs

display increased numbers, impaired homing and repopu-

lating ability, and loss of polarity, and are skewed to

myeloid differentiation at the expense of lymphoid cell

production. Aging in HSCs depends primarily on intrinsic

cellular changes, including differential transcriptional

and epigenetic profiles, increased ROS levels, and DNA

damage (Geiger et al., 2013; Ito and Suda, 2014;



Figure 6. Paul S Frenette, MD (1965–2021)
(A) Dr. Frenette welcomed attendees to the Stem Cell Symposium at Einstein in 2017.
(B) Group photo of the second Einstein Stem Cell Institute Retreat at Mohonk Mountain House, NY, in 2018.
(C) Dr. Frenette (right) with invited speakers, Drs. Andreas Trumpp and Toshio Suda (center left and right, respectively), and Einstein
faculty Dr. Keisuke Ito (left), in the reception of an inaugural Einstein Stem Cell Symposium at a rooftop bar in 2012.
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Nakamura-Ishizu et al., 2020). A growing body of evidence

indicates that alterations in niche cells are also consider-

ably involved in HSC aging (Figure 5). Upon physiological

aging, the bone marrow microenvironment undergoes a

variety of alterations. MSCs in aged mice exhibit a reduced

ability to differentiate into osteoblasts and a bias toward

differentiating into adipocytes (Singh et al., 2016), leading

to an accumulation of adipocytes in the bone marrow and

bone loss. Bone marrow vasculature is remodeled upon ag-

ing and exhibits increased overall vascular density (Ho

et al., 2019; Maryanovich et al., 2018) but it is functionally

impaired, and exhibits increased vascular permeability,

elevated ROS levels, and decreased expression of niche fac-

tors (Poulos et al., 2017). TypeH endothelial cells, a distinct

subtype among endothelial cells, decrease in number in the

bone marrow of aged mice, which also exhibit decreases in

arterioles and artery-associated PDGFRb+/NG2+ perivascu-

lar cells along with declining SCF levels. Activation of

Notch signaling in endothelial cells restores these alter-

ations of the microenvironment but does not rescue the

function of senescent HSCs (Kusumbe et al., 2016). Consis-

tent with these findings, Nes-GFPbright arterioles and peri-

arteriolar stromal cells are disrupted in aged mice, while

Nes-GFPdimLepR+ stromal cells remain unchanged (Marya-

novich et al., 2018; Sacma et al., 2019). Age-related changes

in the bone marrow niche include higher levels of niche-

derived soluble factors, such as pro-inflammatory cyto-

kines (e.g., IL-1b, IL-6) (Pietras et al., 2016). Pro-inflamma-
tory cytokines drive myeloid-biased differentiation and

potentially contribute to the development of human age-

related clonal hematopoiesis (Jaiswal et al., 2014; Meyer

et al., 2018). ROS are known to activate an innate immune

sensor, the NLR family pyrin domain containing 3 (NLRP3)

inflammasome, and, once triggered, the NLRP3 inflamma-

some induces pro-inflammatory cytokine secretion. NLRP3

is highly expressed in neutrophils and has been studied as a

source of DAMPs in the pathogenesis of SCD, but also func-

tions in HSCs (He et al., 2020; Luo et al., 2019). NLRP3 is a

substrate of Sirtuin 2 (Sirt2). The reduction of Sirt2 in aged

HSCs activates the NLRP3 inflammasome, which enhances

mitochondrial stress-induced HSC deterioration. Further

studies will clarify whether inflammation is the cause or

the consequence of aging in neutrophils and HSCs.

Notably, however, the HSC aged phenotype is not affected

by parabiosis or transfusion, or even transplant into a

young environment, and therefore appears not to be

reversible (Ho et al., 2021).

Alteration of SNS signals has been proposed as a

contributor to HSC aging. Maryanovich et al. (2018)

demonstrated that the density of adrenergic nerve fibers

was reduced in aged mice, and this reduction was accom-

panied by numerical expansion of Nes-GFPbright cells with

deteriorated HSC niche function. Surgical denervation of

the unilateral hindlimb in young mice induced premature

aging-like HSC phenotypes, such as myeloid-biased skew-

ing, reduced repopulating capacity, loss of polarity, and
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Dr. Paul S. Frenette (Figure 6) was an outstanding scientist, both deeply insightful and extraordinarily innovative, and

was respected by his colleagues around the world for his remarkable contributions to hematology. Paul passed away on

July 26th, 2021, at the age of 56. The news of his passing stunned all those who loved him, knew him, or were aware of

his work. Paul was a prominent investigator who made key discoveries in diverse areas of research, including the HSC

niche, SCD vaso-occlusion, and the role of the nervous system in cancer. His death at an early age was tragic but his

legacy will persist.

Paul was born in Québec City, Canada, where he earned his MD degree, at the Université Laval, in 1988. He moved to

theUnited States in 1991, as a clinical fellow inhematology-oncology at NewEnglandMedical Center, Tufts University

(Boston, MA). From 1994 to 1997 he was a research fellow at the Center for Blood Research, Harvard Medical School,

and Massachusetts Institute of Technology (Cambridge, MA). In 1998, Paul started his own laboratory at the Mount

Sinai School of Medicine (New York, NY), where he joined the faculty as an Assistant Professor of Medicine; he would

become a Professor of the Department of Gene and Cell Medicine just a few years later. Then in 2010, Paul joined the

Albert Einstein College of Medicine (Bronx, NY) as a Professor of the Departments of Medicine and Cell Biology and

became the first Director and Chair of the Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative

Research, where he continued his excellent work.

Paul and his teammade revolutionary discoveries in several fields. His group discovered that leukocytes play a funda-

mental role in SCD vaso-occlusion (Turhan et al., 2002), and demonstrated that endothelial selectins mediate the ad-

hesive interactions of neutrophils and RBCs with the vasculature (Chiang et al., 2007; Hidalgo et al., 2009). These early

discoveries culminated in the recent approval of an anti-P-selectin antibody to prevent acute vaso-occlusive pain in

SCD. In subsequent studies, Paul’s group showed that the gut microbiome drives neutrophil aging and activation, pro-

motes vaso-occlusion and organ damage (Zhang et al., 2015), and regulates psychological stress-induced inflammation

(Xu et al., 2020). More recently, Paul’s team demonstrated that pain sensation protects against SCD outcomes through

the release of CGRP by sensory nerves, and that oral capsaicin reduced vaso-occlusion and prevented organ damage in

SCD mice (Xu et al., 2021).

In the bone marrow stem cell niche, Paul soon became a scientific authority as his laboratory built a track record of

remarkable discovery. Together with his team, Paul demonstrated that (1) signals from the SNS regulate the attraction

of HSCs to their niche (Katayama et al., 2006), and (2) circadian oscillations regulate the trafficking of HSCs through

ARs (Mendez-Ferrer et al., 2008). These findings were followed by several other outstanding studies that had a tremen-

dous impact on the field. Paul’s lab discovered that adrenergic nerve degeneration in the bone marrow leads to HSC

niche aging (Maryanovich et al., 2018) and that nerve signals regulate cancer progression (Hanoun et al., 2014).

More recently, his group showed that nociceptive nerves regulate HSC mobilization (Gao et al., 2021) and that HSC

fate decisions under stress are controlled by the microbiota through iron availability in the bone marrow (Zhang

et al., 2022).

However, the Frenette lab has always had simply the best when it comes to a scientific team. Paul not only knewwho to

recruit, he knew how to help them grow, reach independence, and become successful researchers, mentors, and

leaders. ‘‘Show me the data!’’ was his mantra, because, to him, talking science meant talking data. He never came to

us with answers, but instead posed questions, posited challenges. He never showed us the right path but taught us

how to find it on our own. He believed in us and wanted us to go far. Behind the ‘‘tough Paul’’ was a very passionate

researcher, a compassionate, deeply humble mentor, and a born leader who considered his team his family. And of

course, his intelligence was extraordinary—he could look far down the road to see things no one else could—but he

also had an incredible sense of humor; he was as funny as he was smart. He will be remembered with affection and

respect by everyone who had the honor of knowing him; indeed, already he is profoundly missed. But goodmemories

never go away, and to those of us who knew him, that’s a comfort. Paul inspired many during his life and will inspire

many more in the years ahead. In a way, nothing has changed; he will always be an inspiration.
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increased DNA damage. These phenotypes were observed

in the denervated bone but not the sham-operated bone.

Remarkably, b3-AR agonist but not b2-AR agonist rejuve-

nated the repopulating capacity of aged HSCs, with partial

restoration of arteriolar structure and a-SMA+ peri-arteri-
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olar cell density, in both old mice and denervated bone

marrow. Conversely, young mice in which b3-ARs were

deleted in the microenvironment showed premature

HSC aging, suggesting that loss of b3-AR signaling in

niche cells drives HSC aging (Maryanovich et al., 2018).
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In sharp contrast to these findings, Ho et al. (2019) re-

ported that sympathetic nerve fibers are increased in the

aged bone marrow and enhanced b2 adrenergic signaling

promotes MK differentiation through IL-6 from the

microenvironment, while b3-AR signaling contributes to

normalizes myeloid-biased skewing of HSCs during aging.

Future studies will clarify the roles of SNS signaling in the

aging process of the bone marrow microenvironment and

HSCs.

Concluding remarks

In the last few decades, to formally identify niche cells,

crucial regulatory factors have been conditionally deleted

in vivo from candidate cell types inmousemodels. Advances

in imaging techniques of the bonemarrowhave contributed

to remarkable progress in the research field. These efforts

have revealed that various cell types, both hematopoietic

and non-hematopoietic, serve as HSC niches in the bone

marrow. The diversity of these niches appears to be an essen-

tial mechanism for the lifelong persistence of HSCs, which

are critical for maintaining life. However, caution should

be exercised in interpreting the results of knockout studies,

which have proposed multiple constituent cell types on

the basis of cell-by-cell or signal-by-signal assays, because

depletion of a single factor in genetically engineered animals

can inducecompensatorymechanismsbyotherpathwaysor

unanticipated indirect effects. Critically, as the niche is not

composedof a single cell type, a comprehensive understand-

ing of how signaling pathways from multiple niche cells

cooperate to regulate HSC fate decisions is critical. Similarly,

attempts to define the precise anatomical localization of

HSCs in 3D have been unsatisfactory using the standard

method of labeling one or two niche components at a

time, and, more importantly, most studies so far have used

fixed samples for analysis. In future research, it would be

highly advantageous to develop a system that allows us to

precisely visualize the molecular activities between HSCs

and the bone marrow microenvironment in real time in

live animals. Additionally, recent advances in cellular ana-

lyses of the bone marrow microenvironment at single-cell

resolution have enabled us to achieve a deeper understand-

ing of the interaction between various niche cells in

steady-state, aged, and pathogenic bone marrow (Baccin

et al., 2020; Baryawno et al., 2019; Helbling et al., 2019; Ti-

khonova et al., 2019). Further elucidation of the molecular

mechanism of HSC regulation by niche cells will enable

the development of novel therapies that promote the recov-

ery of hematopoiesis after radiation therapy, chemotherapy,

targeted therapies such as Venetoclax, or HSC transplanta-

tion. Our current understanding of the crucial role of HSCs

and the bone marrow microenvironment in the genesis

and homeostasis of hematopoiesis, in combination with

recent advances in HSC-based gene therapy, represent a
promising curative opportunity for numerous inherited he-

matological disorders, including SCD.
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Kiel,M.J., Yilmaz, Ö.H., Iwashita, T., Yilmaz,O.H., Terhorst, C., and

Morrison, S.J. (2005). SLAM family receptors distinguish hemato-

poietic stem and progenitor cells and reveal endothelial niches

for stem cells. Cell 121, 1109–1121. https://doi.org/10.1016/j.

cell.2005.05.026.

Kobayashi, H., Butler, J.M., O’Donnell, R., Kobayashi, M., Ding,

B.S., Bonner, B., Chiu, V.K., Nolan, D.J., Shido, K., Benjamin, L.,

and Rafii, S. (2010). Angiocrine factors from Akt-activated endo-

thelial cells balance self-renewal and differentiation of haemato-

poietic stem cells. Nat. Cell Biol. 12, 1046–1056. https://doi.org/

10.1038/ncb2108.

Kohli, D.R., Li, Y., Khasabov, S.G., Gupta, P., Kehl, L.J., Ericson,M.E.,

Nguyen, J., Gupta, V., Hebbel, R.P., Simone, D.A., and Gupta, K.

(2010). Pain-related behaviors and neurochemical alterations in

mice expressing sickle hemoglobin: modulation by cannabinoids.

Blood 116, 456–465. https://doi.org/10.1182/blood-2010-01-2603

72.

Kokkaliaris, K.D., Kunz, L., Cabezas-Wallscheid, N., Christodou-

lou, C., Renders, S., Camargo, F., Trumpp, A., Scadden, D.T., and

Schroeder, T. (2020). Adult blood stem cell localization reflects

the abundance of reported bone marrow niche cell types and their

combinations. Blood 136, 2296–2307. https://doi.org/10.1182/

blood.2020006574.

Kunisaki, Y., Bruns, I., Scheiermann, C., Ahmed, J., Pinho, S.,

Zhang, D., Mizoguchi, T., Wei, Q., Lucas, D., Ito, K., et al. (2013).

Arteriolar niches maintain haematopoietic stem cell quiescence.

Nature 502, 637–643. https://doi.org/10.1038/nature12612.

Kusumbe, A.P., Ramasamy, S.K., and Adams, R.H. (2014). Coupling

of angiogenesis and osteogenesis by a specific vessel subtype in

bone. Nature 507, 323–328. https://doi.org/10.1038/nature13145.

Kusumbe, A.P., Ramasamy, S.K., Itkin, T., Mäe, M.A., Langen, U.H.,
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