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Abstract
Despite numerous studies which have explored the pathogenesis of pain disorders in preclinical models, there is a pronounced 
translational gap, which is at least partially caused by differences between the human and rodent nociceptive system. An 
elegant way to bridge this divide is the exploitation of human-induced pluripotent stem cell (iPSC) reprogramming into 
human iPSC-derived nociceptors (iDNs). Several protocols were developed and optimized to model nociceptive processes 
in health and disease. Here we provide an overview of the different approaches and summarize the knowledge obtained 
from such models on pain pathologies associated with monogenetic sensory disorders so far. In addition, novel perspectives 
offered by increasing the complexity of the model systems further to better reflect the natural environment of nociceptive 
neurons by involving other cell types in 3D model systems are described.
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Introduction

The discriminative component of pain sensations includes 
the ability to identify a stimulus as originating from somatic 
or visceral tissue, to inform about the physical properties of 
the stimulus along a continuum of intensities, and to localize 
it in space and time. Of particular importance for the extrac-
tion of information on the stimulus is the primary nocicep-
tive neuron, which serves transduction and transformation 
processes and transmits the information to the next level of 
integrating neurons in the CNS [1]. The first recordings from 
nociceptive nerve fibers were pioneered by Yngve Zotter-
man [2] and Ainsley Iggo [3] in nonhuman species followed 
by microneurography recordings from human nociceptive 
afferents by Hagbarth and Vallbo [4]. Since then, nocicep-
tors have been classified according to conduction velocities 

of their axons and responsiveness to specific natural physi-
cal, chemical, and electrical stimuli. Sir Charles Sherrington 
introduced these important functions as the main tasks of 
nociceptors [5]. In addition, it is generally accepted that 
nociceptors act as chemosensors for cytokines, prostaglan-
dins, kinins, bioactive sphingolipids, and other mediators 
or chemical irritants [6, 7]. Based on these findings, the 
concept of Sherrington has been questioned, and the idea 
emerged that these primary afferents, rather than function-
ing simply as Sherringtonian nociceptors, may have more 
general and long-term roles in signaling and more recently 
even in controlling the microenvironment and components 
of the immune system in their respective target tissue [8–10]. 
Specifically, peptidergic nociceptors release neuropeptides 
in response to noxious stimuli not only by volume trans-
mission to modify spinal pain circuits but also at their 
peripheral terminals in a reaction causing vasodilation and 
plasma extravasation in their target tissue, which has been 
long known as axon reflex (alias neurogenic inflammation, 
Lewis reaction – [11–13]). Of the eleven different sensory 
neuron subtypes emerging from recent unbiased transcrip-
tomic studies [14], peptidergic and non-peptidergic small 
neurons serve different roles: peptidergic nociceptors control 
specific immune cell types but non-peptidergic neurons are 
equally important for balancing of the local immune reaction 
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via the release of the fast neurotransmitter glutamate from 
nerve terminals in their target tissues [15, 16].

To date, nociceptor excitation and sensitization processes 
have mainly been explored and seminal findings made in 
nonhuman model systems, but increasing numbers of stud-
ies are exploiting the human dorsal root ganglion (DRG) 
as a model system [17–21]. The studies available to date, 
however, suggest fundamental differences between mice and 
men. In particular, there are human nociceptor populations 
that are not found in mice [21]. Also, transcripts for transient 
receptor potential channels, cholinergic receptors, potassium 
channels, sodium channels, and other markers/targets are 
differentially expressed, suggesting human-specific spatial 
and functional organization of neuronal cell subpopulations 
and supporting the idea that sensory system organizational 
principles are different between both species [22].

A major drawback, however, is the restricted availability 
of live human nociceptive neurons for transcriptomic and 
functional in vitro studies for ethical and logistic reasons. 
The results from nonhuman models turn out to be only 
partially transferable to healthy humans and even less to 
patients suffering from pain disorders arising from nocicep-
tor pathologies [23]. Primary cultures of human or mouse 
DRG neurons also suffer from drawbacks as they adopt a 
neuropathic phenotype under culture conditions [24]. To 
better elaborate on human nociceptor (patho)physiology 
towards patient-centered mechanistic insight and the devel-
opment of mechanism-based treatments, rigidly controlled 
human model systems are largely favorable over nonhuman 
models and offer major advantages to develop personalized 
medicines tailored to the individual needs of each patient. 
This review article compares nociceptor phenotypes in mice 
and humans and genetic pain disorders and summarizes 
additional cellular components interacting with nociceptors 
as well as recent approaches towards improved modeling of 
human nociception to provide an overview on the current 
state of the art and identify methodological needs.

Exploring molecular sensory neuron 
phenotypes

The cell bodies of primary afferent neurons serving differ-
ent functionalities are located within dorsal root ganglia 
and trigeminal ganglia (TG). In general, large diameter 
neurons give rise to low-threshold mechanosensitive fib-
ers whereas small diameter neurons are slowly conduct-
ing, unmyelinated C-fibers or thinly myelinated Aδ-fibers 
implicated in thermosensation or the transduction of nox-
ious stimuli. Immunoreactivity to specific cell markers is 
generally used to distinguish these neuron classes since, for 
example, neurofilament heavy chain (NEFH) is abundant 
in large, myelinated neurons, and the intermediate filament 

protein type 3 (peripherin) is typically found in small diam-
eter sensory neurons [25–27]. These small diameter sensory 
neurons are further subclassified into C-fiber nociceptors 
expressing the high-affinity neurotropic growth factor (NGF) 
receptor TrkA, Aδ-fiber nociceptors expressing the TrkB 
receptor for brain-derived neurotrophic factor (BDNF), and 
mechanoreceptors or pruriceptors expressing TrkC for neu-
rotrophin-3 (NT-3) [28]. While the expression of TrkA in 
nociceptors is highly correlated with a peptidergic sensory 
neuron phenotype, the absence of TrkA and the expression 
of the Runt-related transcription factor-1 (RUNX1) and RET 
more likely drive sensory neurons towards a non-peptidergic 
fate [29]. Electrophysiological classification of nociceptors 
is usually based on the presence of TTX-sensitive and resist-
ant voltage-gated sodium channels or endogenous tempera-
ture transducers belonging to the class of transient receptor 
potential channels (TRP channels) [30–37]. These classifica-
tions were the basis for a broad range of studies in rodents 
investigating the different roles and distinct synaptic con-
nections in the spinal dorsal horn of peptidergic nociceptors 
that express neuropeptides such as calcitonin gene–related 
peptide (CGRP)/somatostatin (SST) or substance P (TAC1) 
and non-peptidergic nociceptors that bind the isolectin B4 
[38–42]. Although sensory neurons largely share transcrip-
tional signatures, specific molecular genetic profiles and a 
high-resolution atlas of sensory neuron subtypes illustrate 
cell-type–specific functionalities such as mechanoreceptors 
expressing TrkB, the two-pore potassium channel KCNK4, 
and the mechanotransducer channel PIEZO2 or propriocep-
tors expressing TrkC and parvalbumin (PVALB) [43, 44].

Bulk RNA sequencing and bulk proteomics reveal a 
strong overlap of DRG developmental transcription fac-
tors such as PRDM12, BRN3A, and DRGX, suggesting 
conserved developmental signatures of sensory neurons 
between humans and rodents [45, 46]. However, with the 
recent rise of single-cell RNA (scRNA) sequencing tech-
nologies, increasing evidence documents that even noci-
ceptor subtypes are much more complex than initially 
thought: Five clusters of larger diameter sensory neurons 
are tied together by the expression of NEFH and sepa-
rated by the abundance of TrkC, TrkB, PVALB, and RET, 
revealing mechanoreceptors  (TrkBhigh,  REThigh) as well as 
proprioceptors  (TrkChigh,  Pvalbhigh) [14]. In addition, two 
subclusters of peptidergic sensory neurons and three sub-
clusters of non-peptidergic neurons can be distinguished 
by the unique transcriptomic signatures of the P2X puri-
noceptor 3 (P2RX3, non-peptidergic nociceptors) and 
tachykinin precursor 1 (TAC1, peptidergic nociceptors) 
[14]. More recent studies further increased the resolution 
of cell type clustering by enhancing the read coverage, 
adding different species (i.e., primates), and extending the 
number of cells as well as adding disease phenotypes such 
as neuropathic pain, which led to more refined clusters of 
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sensory neurons [47–49]. These subclusters are defined 
by the expression of SST and PVALB, the nociceptor-
specific voltage-gated sodium channels  Nav1.7 (SCN9A) 
and  Nav1.8 (SCN10A), and the unique expression pattern 
of cytokine receptors such as IL31RA [49, 50]. Thus, 11 
different clusters with unique gene expression signatures 
were associated with mechano-heat sensory neurons, 
which are predominantly distinguished by the expression 
of the neuropeptide galanin (GAL), claudin-9 (CLDN9), 
zinc finger CCHC-type containing 12 (ZCCHC12), 
lysophosphatidic acid receptor 2 (LPAR2), TRPM8 or 

TRPA1, and mechanoceptive markers such as PIEZO2, 
KCNK2, as well as MRGPRB4.

In contrast to the extensive literature on rodent nocicep-
tors, to date only two scRNA transcriptomic studies address 
human DRG (hDRG) neurons [51, 52]. In general, expres-
sion signatures and cell type clusters appear badly conserved 
between rodents, nonhuman primates, and humans, and 
several neuronal subpopulations were identified (Fig. 1A, 
[47, 52]). For example, the most abundant marker NEFH 
used to distinguish rodent small diameter nociceptors from 
larger diameter sensory neurons is gradually expressed in 
the majority of hDRG sensory neurons and cannot be used 

Fig. 1  A Tree view of hDRG sensory neuron subpopulations, derived from Tavares-Ferreira et al. [52]. B Mapping of iPSC-derived sensory neu-
ron equivalents to hDRG single-nuclei data derived from Nguyens (2021)
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as a reliable discriminator in human DRGs [22, 51, 53, 54]. 
To overcome this hurdle, recent advances in the field of spa-
tial transcriptomics allow for a more precise correlation of 
cell soma sizes with RNA expression signatures, thereby 
efficiently separating small from large-diameter sensory 
neurons [52]. Cell clustering and marker expression sug-
gest that the majority of hDRG sensory neurons adopt a 
peptidergic phenotype, and non-peptidergic human DRG 
neurons expressing the oncostatin M receptor (OSMR) 
and SST are implicated in the perception of itch rather 
than pain [51]. Five nociceptor-related neuron types can 
be distinguished from non-nociceptive neurons based on 
the conserved expression of TrkA and  Nav1.8 [51]. Human 
nociceptors responding to different modalities such as cold 
or heat show specific expression of the marker molecules 
TRPA1, proenkephalin (PENK), TRPM8, the alpha 3 subu-
nit of nicotinic acetylcholine receptor (CHRNA3), or  TrkC+ 
nociceptors. Species differences were especially evident for 
putative silent nociceptors that are usually activated follow-
ing inflammation [52].

Human‑derived sensory neuron 
differentiation

Since acquisition of human sensory neuron tissue is chal-
lenging and mostly relies on postmortem material from 
elderly patients, research started to adopt recent advances in 
induced pluripotent stem cell (iPSC) models. Human iPSCs 
are generated from somatic cells such as fibroblasts obtained 
from skin biopsies or blood samples [55–57]. Since their 
discovery, the Yamanaka factors Oct4, SOX2, c-Myc, and 
KLF4/NANOG are used to initialize the reprogramming of 
somatic cells into iPSCs that exhibit pluripotent properties 
[56]. This was the initial kickoff to establish and develop 
differentiation protocols that enable the differentiation of 
iPSCs into virtually every cell type, such as cardiomyocytes, 
immune cells, as well as neurons [58, 59].

In contrast to cortical neurons, differentiation proto-
cols for sensory neurons were established relatively late 
[60–63]. Induced sensory neurons are established via inter-
mediate neural crest cells, which express SOX9, SNAIL, 
and dHAND [64, 65]. Subsequent studies extended these 
protocols by selectively blocking activin/TGF-β and BMP 
signaling, also called dual-SMAD inhibition, and cells that 
express markers comparable to mouse neural crest cells 
(which can differentiate into sensory neuron-like cells), such 
as the SRY-box transcription factor 9/10 (SOX9, SOX10) 
and the paired box 3 gene (PAX3), which are established 
efficiently [60, 66]. In 2012, Chambers et al. identified a set 
of three small molecule inhibitors (CHIR99021, SU5402, 
and DAPT,called 3i for “three inhibitors”) that efficiently 
induce sensory neuron-like cell differentiation following 

dual-SMAD inhibition [61]. While the administration of 
CHIR99021 is indispensable for the differentiation process, 
SU5402 and DAPT enhance the efficiency and the speed of 
the differentiation process [61]. The resulting “mature” dif-
ferentiated cell types are positive for POU domain class 4 
transcription factor 1 (POU4F1, BRN3A) and islet-1 (ISL1) 
and exhibit neuronal morphology indicated by neurite out-
growth and synapse formation [67, 68]. In addition, TrkA 
and neurogenin-1 (NEUROG1) suggest peripheral neuronal 
induction and expression of  Nav1.7,  Nav1.8, and TRPV1 spe-
cialization into nociceptor-like sensory neurons at D12 [61, 
68]. Maturation of neurons is induced by co-administration 
of the nerve growth factor (NGF), the glial cell–derived 
neurotrophic factor (GDNF), BDNF, and NT-3. These more 
mature iPSC-derived sensory neurons fire single as well as 
trains of action potentials and are immune-positive for the 
peptide hormone precursors TAC1 (substance P, neurokinin 
A, neuropeptide K, and neuropeptide gamma) and CALCA 
(CGRP, calcitonin, and katacalcin), indicating that they 
adopt a peptidergic sensory neuron phenotype [61, 68, 69].

Although this protocol is considered the “gold stand-
ard” for iPSC-derived sensory neuron and nociceptor dif-
ferentiation, several studies introduced modifications by 
inhibiting 3i until day 12 instead of day 10 of differen-
tiation, replating cells before passaging, neglecting NT-3 
as growth factor, adding ascorbic acid, changing media 
gradients, or adding proliferation inhibitors (such as AraC 
or MitoC), which overall can lead to an increased effi-
ciency of differentiation [69–71]. Different timings of 3i 
inhibition, changes in growth factor administration (NGF, 
BDNF, GDNF, and NT-3), and addition of BMP-4 or 
cAMP produce different subtypes of sensory neurons such 
as proprioceptors, mechanoreceptors, as well as pruricep-
tors [72–74] (for an overview of the available differen-
tiation protocols, see Table 1). Neuronal induction media 
composed of DMEM, N2, NEAA, and heparin, followed 
by administration of retinoic acid and BMP4, successfully 
induce  TrkA+ nociceptors from human embryonic stem 
cells [75]. However, the effect on the cell phenotype of 
these adjustments has not yet been sufficiently resolved.

In addition, alternative approaches are emerging such as 
trans-differentiation to generate  TrkA+/CGRP+ peptidergic 
sensory neurons from human and mouse embryonic fibro-
blasts overexpressing a fusion construct of BRN3A with 
neurgenin-1/2 [76] or to differentiate human iPSCs into 
mechanoreceptors [77]. A chemically defined differentia-
tion strategy followed by immunopanning invokes differ-
entiation into functional nociceptors, proprioceptors, and 
mechanoceptors simultaneously [78]. Even iPSC-derived 
DRG organoids can be generated with iPSCs differentiat-
ing into sensory nociceptors, mechanoreceptors, and pro-
prioceptors [79].
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Mapping iDN phenotypes to the landscape 
of human DRGs

Although iPSC-derived sensory neurons are increasingly 
used as a model system, phenotypic characterization of 
the retrieved cells and comparison to human sensory neu-
rons are only insufficiently explored. Recently published 

hDRG scRNA datasets offer the opportunity to phenotype 
the iPSC-derived neurons against expression data derived 
from human DRG sensory neuron subpopulations (Fig. 1A, 
[52]). Mapping signatures of marker genes such as neuro-
peptides (CGRP, TAC1, SST), voltage-gated sodium chan-
nels  (Nav1.7,  Nav1.8), TRP channels (TRPV1, TRPM8, 
TRPA1), and transcription factors (DRGX, MAF) suggest 

Table 1  Differentiation protocols of iPSC-derived sensory neurons

Cell type Differentiation 
initiation

Differentiation Maturation Sensory neuron 
subtype

Publication Notes

iPSC SB431542(D0-D5)
LDN192189(D0-

D5)

CHIR990021
SU5402
DAPT

NGF
BDNF
GDNF
(NT-3)
(cAMP, ascorbic 

acid)

Peptidergic nocic-
eptors

Chambers et al. 
[61]

Minor adjustments 
in, e.g.,

Young et al. [68]
Meets et al. (2019)
Pettingill et al. [71]
Schoepf et al. [67]

MEFs/HEFs BRN3A
NEUROG1/NEU-

ROG2

NGF
BDNF
GDNF

Mature sensory 
neurons

Blanchard et al. 
(2014)

smNPCs CHIR990021
SU5402
DAPT
BMP4 (DAY4)

dbcAMP
GDNF
BNDF
NGF

LTMR Zhu et al

iPSC SB431542(D0-D5)
LDN192189(D0-

D5)

CHIR990021 (D2-
D7)

SU5402 (D2-D8)
DAPT (D2-D8)

NGF
GDNF
BDNF
NT-3

Proprioceptor Dionisi et al. [72]

iPSC Noggin(D0-D10)
SB431542(D0-D10)

SB431542(D11-
D18)

EGF(D11-D18)
FGF(D11-D18)

BDNF
GDNF
NGF
NT-3
ascorbic acid
cAMP

Puriceptor Umehara et al. [74]

hESC Retinoic acid
BMP4

NEUROG1 NGF
GDNF
GDF-7
IGF-1

Nociceptors Boisvert et al. [75]

iPSC SB431542
bFGF/EGF

BRN3A
NEUROG2

BDNF
GDNF
NT-3
NGF

C-LTMR Nickolls et al. [77]

iPSC SB431542(D0-D10)
LDN192189(D0-

D10)

CHIR990021
SU5402
DAPT

BDNF
GDNF
NGF
NT3
ascorbic acid

Nociceptors
Proprioceptors
Mechanoceptors

Mazzare et al. 
(2020)

Differentiation in 
low-adhesion 
96-well plates

iPSC CHIR99021 (D0-2)
BMP(D0-D2)
Y-27632(D0-2)

SB431542(D2-12)
CHIR99021(D2-

D12)

NGF
GDNF
BDNF
NT-3
DAPT
retinoic acid (RA)

Nociceptors
Proprioceptors
Mechanoreceptors

Saito-Diaz et al. 
[78]

Immunopanning to 
retrieve different 
sensory neuron 
subtypes

hESC Sphere Medium,
FGF
EGF

RA
NGF
BDNF
GDNF
NT-3

*Differentiation Mechanoreceptors Katrin Schrenk-
Siemens et al. 
(2015)

Sphere medium 
consists of

DMEM/F12, neu-
robasal medium, 
B27, N2, glu-
tamine, insulin
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that most iPSC-derived nociceptor-like neurons represent 
an immature state of peptidergic nociceptors that express 
substance P,  Nav1.8, TRPV1, NEFH, and peripherin but also 
the P2X-purinoreceptor 3, which is a common marker for 
non-peptidergic sensory neurons (Fig. 1, [22, 67, 69]). In 
addition, a trajectory analysis of all relevant and enriched 
human transcription factors (DRGX, PIRT, BRN3A, and 
TLX3) reveals that most of these factors are also enriched 
in iPSC-derived sensory neurons and abundant in human 
peptidergic sensory neurons. Furthermore, iPSC-derived 
nociceptor-like neurons transcriptionally approach to hDRG 
throughout differentiation [69]. Likewise, iPSC-derived 
low-threshold mechanoreceptors (LTMRs), propriocep-
tors, as well as pruriceptors can be mapped to their human 
DRG orthologs, due to the abundant expression of TrkC and 
TrkB. While proprioceptors show strong expression of TrkC, 
mechanoreceptors are either positive for TrkC, TrkB, parval-
bumin, and the transcription factor short stature homeobox 2 
(SHOX2) [72]. iPSC-derived pruriceptor expression of itch-
related molecules such as IL31R, IL-4R, and the histamine 
receptor HRH1 is highly correlated with non-peptidergic 
itch-related human DRG neurons [74].

In general, it is difficult to estimate the affiliation of dif-
ferent iPSC-derived sensory neurons to specific sensory neu-
ron clusters, since these cells represent an immature devel-
opmental state in contrast to mature human DRG sensory 
neurons and only a minor fraction of nociceptor-like neurons 
are truly mature [80] [79]. Thus, there is a considerable need 
for protocols to improve the maturity state of iPSC-derived 
sensory neurons, as already shown for cortical neurons [81]. 
This further suggests the necessity for more comparative 
studies between hDRGs and iPSC-derived sensory neurons, 
to elucidate the actual maturity state of the derived neu-
rons as well as meta-analyses and deconvolution studies to 
compare the different iPSC-derived sensory neuron subtypes 
and identify differences as well as similarities with hDRG 
sensory neurons.

Modeling hereditary disorders affecting 
nociceptors

With the increase of routinely performed genomic diagnostic 
testing of patients, our knowledge about hereditary disorders 
affecting nociceptors has enormously increased in the last 
decades. Not only have different hereditary sensory neuropa-
thies been described based on the particular clinical symp-
tom presentation, but also their genetic predisposition has 
been revealed for the majority of them [82]. Likewise, famil-
ial hemiplegic subtypes of migraine – a common primary 
headache disorder that presents with moderate to severe uni-
lateral pain attacks with several typical variants with or with-
out aura – are associated with specific disease-associated 

mutations in the voltage-gated calcium channel CACNA1A 
(FHM1), the sodium/potassium-transporting ATPase subunit 
ATP1A2 (FHM2), and the voltage-gated sodium channel 
SCN1A (FHM3) genes [83]. This knowledge about disease-
causing mutations in the affected genes opens new possibili-
ties to investigate the underlying pathogenetic mechanisms 
and to generate personalized treatment strategies based on 
patient-derived iPSC models (Table 2).

Currently, nine different subtypes of hereditary sensory 
neuropathies (HSN; if the autonomic nervous system is 
involved: HSAN; 1–9) are listed in the National Center for 
Biotechnology Information (NCBI) database MedGen for 
human medical genetics (NCBI 2022; [84]. They are gener-
ally classified based on age of onset, clinical features, type 
of inheritance, and genetic background [82, 85]. To date, 
iPSC-derived nociceptor models offer particularly promis-
ing opportunities to explore personalized pharmacological 
treatments for those HSNs with a hypernormal pain phe-
notype such as gain-of-function mutations in the SCN9A 
gene, coding for the DRG, and sympathetic neuron-specific 
voltage-gated sodium channel  Nav1.7 [86, 87].

Primary erythromelalgia patients suffer from unbearable 
pain episodes and redness, mainly in the distal extremities, 
impaired distal temperature sensation, and itching. This 
is caused by a gain-of-function mutation of SCN9A [88]. 
Erythromelalgia patient–derived nociceptors have recently 
been generated that exhibit decreased firing thresholds 
together with a hyperpolarizing shift of  Nav activation as 
compared to control neurons [70]. This model system will 
be helpful for further investigations of the disease-causing 
mechanisms as well as for the screening of potential treat-
ment-effective compounds [89].

Paroxysmal extreme pain disorder (PEPD) is similar to 
erythromelalgia also caused by a gain-of-function mutation 
of SCN9A. Symptoms include skin redness and flushing as 
well as severe pain attacks in different parts of the body [90]. 
To date, no iPSC models for PEPD-specific SCN9A muta-
tions are available.

Familial hemiplegic migraine 1 (FHM1) is in the majority 
of cases caused by a missense mutation of the CACNA1A 
gene that codes for the pore-forming subunit of the neuronal 
voltage-gated calcium channel  Cav2.1, leading to gain-of-
function effects that result in hyperexcitability [83, 91]. No 
studies on iPSC-derived neurons from FHM1 patients have 
been performed yet. Nevertheless, a number iPSC model 
systems derived from a different patient group of spinocer-
ebellar ataxia 6, which is based on loss-of-function muta-
tions in the CACNA1A gene, were generated and in part 
functionally investigated [92–94, 94, 95, 95].

Familial hemiplegic migraine 2 (FHM2) has been asso-
ciated with mutations in the ATP1A2 gene that encodes a 
catalytic subunit of the  Na+/K+-ATPase ion transport pump 
[83]. It is therefore generally important for the regulation of 



971Pflügers Archiv - European Journal of Physiology (2022) 474:965–978 

1 3

electrochemical gradients across cell membranes but spe-
cifically relevant for the function of excitable cells, includ-
ing neurons. No functional investigations of patient-derived 
iPSCs carrying ATP1A2 mutations are available to date.

Familial hemiplegic migraine 3 (FHM3) is caused 
by mutations in the voltage-gated sodium channel gene 
SCN1A coding for  Nav1.1. This ion channel is important 
for the sodium ion permeability of excitable membranes and 
was shown to be mainly expressed in inhibitory GABAe-
rgic interneurons [83]. Due to this prominent role in the 
modulation of network excitability,  Nav1.1 is also highly 

associated with different epilepsy syndromes. And while in 
epilepsies, the associated mutations mainly lead to loss-of-
function effects provoking seizure activity, FHM3 mutations 
usually cause gain-of-function effects. Therefore, functional 
investigation of the plethora of iPSC-derived model systems 
(e.g., [96–98]) from epilepsy patients can only partly be used 
to decipher the mechanisms behind migraine pain.

Migraine with or without aura 13 (MGR13) has been 
directly linked to a specific gene, the potassium channel 
KCNK18. This gene codes for the two-pore potassium chan-
nel TRESK and is important for regulating the excitability of 

Table 2  Monogenetic sensory neuropathies

HSN, hereditary sensory neuropathy; HSAN, hereditary sensory and autonomic neuropathy; CIP, congenital indifference to pain; CIPA, con-
genital insensitivity to pain and anhydrosis; FHM, familial hemiplegic migraine; MGR, migraine. * Associated genes were extracted from the 
MedGen Database

Disease term Abbreviation MedGen UID Genes* References

Neuropathy, hereditary sensory and autonomic, type IA HSAN1A 1,716,450 SPTLC1 (9q22.31) [121]
Neuropathy, hereditary sensory and autonomic, type IB,
with cough and gastroesophageal reflux

HSN1B, HSAN1B 330,880 HSN1B (3p24-p22) –

Hereditary sensory and autonomic neuropathy, type IC HSAN1C 462,246 SPTLC2 (14q24.3) None
Hereditary sensory neuropathy, type ID HSN1D 462,322 ATL1 (14q22.1) [128]
Hereditary sensory and autonomic neuropathy, type IE HSN1E 481,515 DNMT1 (19p13.2) [129]
Hereditary sensory neuropathy, type IF HSN1F 816,524 ATL3 (11q13.1) None
Hereditary sensory and autonomic neuropathy, type IIA HSAN2A 416,701 a.KIF1A (2q37.3)

b.RETREG1 (5p15.1)
c.SCN9A (2q24.3)
d.WNK1 (12p13.33)

a.[130]
b.None
c.[70, 101]
d.None

Hereditary sensory and autonomic neuropathy, type IIB HSAN2B 413,474 RETREG1 (5p15.1) None
Hereditary sensory and autonomic neuropathy, type IIC HSAN2C 481,798 KIF1A (2q37.3) [130]
Neuropathy, hereditary sensory and autonomic, type IID HSAN2D 860,491 SCN9A [131] [70, 101]
Hereditary sensory and autonomic neuropathy, type III;
familial dysautonomia

HSAN3 41,678 ELP1 (9q31.3) [132–135]

Hereditary sensory and autonomic neuropathy, type IV;
CIPA, congenital insensitivity to pain and anhidrosis

HSAN4 6915 NTRK1 (1q23.1) [136]

Hereditary sensory and autonomic neuropathy, type V;
congenital sensory neuropathy with selective loss of small myelinated 

fibers

HSAN5 6916 NGF (1p13.2) [137]

Neuropathy, hereditary sensory and autonomic, type VI HSAN6 761,278 DST (6p12.1) [138]
Neuropathy, hereditary sensory and autonomic, type VII; congenital 

insensitivity to pain with hyperhidrosis and gastrointestinal dysfunc-
tion

HSAN7 816,212 SCN11A (3p22.2) None

Neuropathy, hereditary sensory and autonomic, type VIII HSAN8 894,363 PRDM12 (9q34.12) None
Neuropathy, hereditary sensory and autonomic, type IX; spastic para-

plegia 49, autosomal recessive
HSAN9 762,260 TECPR2 (14q32.31) None

Indifference to pain, congenital, autosomal recessive; channelopathy-
associated

CIP 344,563 SCN9A (2q24.3) [101]

Primary erythromelalgia – 8688 SCN9A (2q24.3) [70]
Paroxysmal extreme pain disorder PEPD 331,565 SCN9A (2q24.3) None
Charcot-Marie-Tooth disease, type 2B CMT2B 371,512 RAB7A (3q21.3) [139]
Familial hemiplegic migraine, type 1 FHM1 331,388 CACNA1A (19p13.13) [92, 93]
Familial hemiplegic migraine, type 2 FHM2 355,962 ATP1A2 (1q23.2) none
Familial hemiplegic migraine, type 3 FHM3 400,655 SCN1A (2q24.3) none
Migraine, with or without aura 13 MGR13 462,258 KCNK18 (10q25.3) [71]
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neurons in the pain pathway [83]. Pettingill et al. [71] could 
show in nociceptors differentiated from patient-derived 
iPSCs that a CRISPR-Cas9–mediated repair of a TRESK 
frameshift mutation normalized neuronal excitability. This 
and a few other studies point toward exciting novel possibili-
ties for gene therapeutic treatments of neuropathies associ-
ated with nociceptor dysfunction, which are currently still 
in their infancy.

Modeling complex pathologies

Healthy nociceptors serve important roles as an important 
alarm system and in host defense by sensing physical and 
chemical stimuli including noxious heat, cold, pressure, 
and danger signals [99]. Nociceptive transduction, trans-
formation, or transmission may be affected by monoge-
netic pathologies, and these can be sufficiently modeled in 
nociceptors derived from patient iPSC clones [70, 86, 100, 
101]. However, the pathogenesis of acquired pain disorders 
such as painful arthritis, complex regional pain syndrome 
(CRPS), or postherpetic neuralgia is more complex, and 
numerous studies have reported the contribution of immune 
and glia cells to nociceptor dysfunction in preclinical mod-
els of pathological pain. For example, inflammatory pain 
is characterized by immune processes at the nociceptor 
nerve terminal, which liberates a multitude of different pro-
inflammatory mediators [102]. Although the different noci-
ceptor subtypes and even more each individual nociceptor 
expresses only a certain subset of membrane receptors and 
ion channels, the nociceptor population as a whole possesses 
the full equipment to sense these mediators and react to their 
presence with the discharge of action potentials or by lower-
ing their activation thresholds for physical stimuli [14, 48, 
103]. Since Elspeth McLachlan and her team first published 
on immune cells invading the space between sensory neuron 

cell bodies and the covering satellite cell layer in the DRG 
as a consequence of peripheral nerve injury, neuroimmune 
processes have emerged as critical components for inflam-
matory and even neuropathic pain disorders [102, 104, 105]. 
Neuroimmune processes are active following peripheral 
nerve injuries, and the neuroimmune triad contributes to the 
generation of neuropathic pain at the lesion site but also at 
non-injured parts of the axon and even the DRG or the cen-
tral process connecting the nociceptor to spinal projection 
neurons [104, 106–108]. Modeling the complexity of the 
nociceptor neuron in 3D organoid models employing human 
iPSC-derived nociceptors therefore needs to include relevant 
components reflecting its healthy or diseased environment 
by co-culturing with relevant interactors at the peripheral 
terminal, the axon, DRG, as well as the central terminal in 
the spinal cord such as keratinocytes, macrophages, glia 
cells, and other types of immune cells (Fig. 2).

Skin and other target organs

Starting from a 3D platform of human iPSCs-derived nocic-
eptors for peripheral nerve modeling and tissue innervation 
with heterologous Schwann cells, organoid models engi-
neered from human cells only are now becoming available, 
which employ sensory neurons and Schwann cells differen-
tiated in parallel even from the same iPSC donor together 
with engineered skin [109–111]. In the skin, specific non-
neuronal cell types are crucial for nociceptor function such 
as keratinocytes releasing ATP [111–114] and enterochro-
maffin cells closely collaborating with nociceptive primary 
afferents in the gut by the exchange of chemical signals for 
chemosensation [115]. Within target tissues, the commu-
nication between target cells and nociceptors is bilateral 
whereby nociceptors sense danger signals on the one hand 
and regulate immunity on the other for example in the lung 
as well as in the skin. This immunomodulation is mediated 

Fig. 2  Nociceptors and associ-
ated cells in the target tissue 
(skin, left), DRG, and the spinal 
cord (right) to be implemented 
in complex model systems (gen-
erated with BioRender®)
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by different types of afferents through the release of gluta-
mate or the neuropeptide CGRP [10, 116].

Schwann cells and satellite cells

Bidirectional signaling between axons and the peripheral 
nerve glia Schwann cells is essential for both the devel-
opment and maintenance of sensory neuron morphology 
and function. However, primary human Schwann cells are 
challenging as a resource for nerve tissue engineering (for 
a review, see [117]). Co-cultures of iPSC-derived sensory 
neurons with myelinating Schwann cells were first developed 
to explore mechanisms of demyelination and neurodegenera-
tion underlying respective disorders such as Guillain–Barre-
Syndrome and remyelination therapies [118–120]. First, 
human iPSC–derived sensory neurons were cultured with 
rat Schwann cells and produced long-term and stable mye-
linating co-cultures, which developed specialized domains 
of axonal interaction with myelinating Schwann cells, such 
as clustered voltage-gated sodium channels at the node of 
Ranvier and Shaker-type potassium channels  (Kv1.2) at 
the juxtaparanode. Several regulators of myelination were 
explored in these models such as BACE1 or NRN1 and may 
be relevant for the function of myelinated nociceptors of the 
A-fiber type or even nonmyelinating Schwann cells cover-
ing C-fiber nociceptive axons [120, 121]. However, specific 
models for directed iPSC differentiation into human non-
myelinating Schwann cells and co-cultivation with human 
nociceptive neurons are currently unavailable and modeling 
the role of Schwann cells for nociceptor function has even 
received less attention.

Immune cells (macrophages, lymphocytes)

Mutual neuroimmune cross talk thus appears to be impor-
tant for maintaining tissues such as skin or the gut in a 
healthy state. Nociceptors are important regulators of resi-
dent immune cells in the skin by balancing their activity 
through the release of neuropeptides and glutamate [16]. 
However, a disbalance of pro- and anti-inflammatory com-
ponents characterizes disorders leading to inflammatory or 
neuropathic pain with respective alterations of nociceptor 
functions. In particular, neuropathic pain shows relevant 
features of a neuroimmune disorder and involves not only 
neuronal components, but also Schwann cells and satellite 
cells, different cell types of the peripheral immune system 
at the lesion site or in the DRG, as well as spinal microglia 
and astrocytes (for a review, see [122]). More recently, more 
painful disorders with neuroimmune pathologies are emerg-
ing. For example, fibromyalgia, which has been enigmatic 
until very recently, has a striking autoimmune component 
and metabolic disturbances that can be explored in human 
model systems [123, 124]. Co-cultivation of iPSC-derived 

nociceptors with relevant immune cells of the same donor 
may help to model the causative changes on a more person-
alized basis for monogenetic disorders or even more com-
plex pathologies.

Concluding remarks

Human nociceptors are different from rodents such as they 
show specific signatures of gene expression and neuropep-
tides that are typically found in the majority of native human 
nociceptors such as CGRP or substance P [110, 125]. These 
differences are partially preserved in nociceptive neurons 
derived from human iPSCs [14, 52, 69], and these can 
be exploited for human-centered mechanistic studies and 
patient-targeted drug discovery in particular for monogenetic 
pain disorders, which, however, provide benefit only for a 
minor subgroup of chronic pain patients.

Furthermore, complex 3D systems model human noci-
ceptors in a more precise manner and their natural envi-
ronment. Based on these considerations and in light of the 
individual genetic background, all relevant cell types within 
the 3D model are to be obtained from the same donor. This 
approach precisely constructs a platform to explore indi-
vidual nociceptive processes, and the new organoid models 
offer intriguing possibilities to study the pathophysiology 
of nociceptors together with their environment and further 
develop them into screening assays for novel analgesic phar-
macies and even personalized treatments.

However, such organoid models are less easily acces-
sible to controlled read-out systems due to their increased 
complexity and 3D structure. Neuropeptide release evoked 
by depolarizing concentrations of KCl or irritants such as 
capsaicin can serve as a quantitative read-out measure of 
nociceptor excitation [110, 126]. In addition, individual 
iPSC-derived cell types are accessible to genetic modifica-
tions using CRISPR/Cas9 or introduction of Cre recombi-
nase under respective driver constructs. Optogenetic tools 
as well as reporter dyes can be introduced into the indi-
vidual cellular components before implementing them in the 
engineered organoid. Recent developments of specifically 
designed multi-electrode array chips for 3D organoids will 
help to overcome the challenges [127].

Overall, specifically tailored co-cultivation of all relevant 
cell types as an engineered model for particular disorders 
such as neuropathic pain, fibromyalgia, or even inflam-
matory bowel disease offers major advantages for a better 
understanding of mutual interaction of the involved cells 
with nociceptors and can be exploited for analgesic drug 
discovery purposes [89]. Modeling human nociception, in 
particular by reprogramming patient-derived iPSCs into 
complex organoids involving all relevant cell types, thus 
rises great expectations to overcome the translational gap 
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between preclinical research and unmet clinical needs for 
effective analgesic pharmaceuticals.
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