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A B S T R A C T

Metabolic brain networks can provide insight into the network processes underlying progression from healthy
aging to Alzheimer's disease. We explore the effect of two Alzheimer's disease risk factors, amyloid-β and ApoE
ε4 genotype, on metabolic brain networks in cognitively normal older adults (N = 64, ages 69–89) compared to
young adults (N = 17, ages 20–30) and patients with Alzheimer's disease (N = 22, ages 69–89). Subjects un-
derwent MRI and PET imaging of metabolism (FDG) and amyloid-β (PIB). Normal older adults were divided into
four subgroups based on amyloid-β and ApoE genotype. Metabolic brain networks were constructed cross-sec-
tionally by computing pairwise correlations of metabolism across subjects within each group for 80 regions of
interest. We found widespread elevated metabolic correlations and desegregation of metabolic brain networks in
normal aging compared to youth and Alzheimer's disease, suggesting that normal aging leads to widespread loss
of independent metabolic function across the brain. Amyloid-β and the combination of ApoE ε4 led to less
extensive elevated metabolic correlations compared to other normal older adults, as well as a metabolic brain
network more similar to youth and Alzheimer's disease. This could reflect early progression towards Alzheimer's
disease in these individuals. Altered metabolic brain networks of older adults and those at the highest risk for
progression to Alzheimer's disease open up novel lines of inquiry into the metabolic and network processes that
underlie normal aging and Alzheimer's disease.

1. Introduction

Distinct patterns of change in brain and cognitive functions dis-
sociate the processes of healthy aging and Alzheimer's disease. Beyond
the brain changes and gradual cognitive decline characteristic of
normal aging (Park and Reuter-Lorenz, 2009), the hallmark of Alzhei-
mer's disease is a stereotyped spatial pattern of neuritic plaques (amy-
loid-β or Aβ) and neurofibrillary tangles (tau), alongside loss of epi-
sodic memory and cognitive decline. Early identification of
vulnerability to Alzheimer's disease - prior to the onset of clinical
symptoms - is a central problem for the study of aging. PET imaging has
revealed that some cognitively normal older adults harbor substantial
Aβ (Sperling et al., 2011) and/or tau (Schöll et al., 2016) pathology,
and are thought to be in a “preclinical” stage of Alzheimer's disease.
Examining older adults with and without evident Alzheimer's disease
pathology is necessary to dissociate brain changes of aging from the
earliest stages of Alzheimer's disease.

Aging and Alzheimer's disease are associated with distinct changes
in cerebral metabolism. Alzheimer's disease is associated with a char-
acteristic pattern of cerebral hypometabolism in angular gyrus, pos-
terior cingulate, precuneus, temporal, and parietal regions (de Leon
et al., 1983; Minoshima et al., 1997). This pattern is distinct from that
seen in normal aging, which is associated with hypometabolism in
prefrontal, precentral, perisylvian, and anterior cingulate cortices
(Chételat et al., 2013). The spatial pattern of hypometabolism is a
reasonably sensitive biomarker for predicting future progression to
Alzheimer's disease and can discriminate between normal aging, Alz-
heimer's disease, and other neurodegenerative diseases (Mosconi, 2005;
Herholz et al., 2002). However, there is no consensus on changes in
cerebral metabolism specific to preclinical Alzheimer's disease - while
some studies detect hypometabolism (Drzezga et al., 2011; Lowe et al.,
2014), other studies find hypermetabolism (Cohen et al., 2009; Oh
et al., 2014), and others still find no differences in metabolism (Cohen
et al., 2009; Altmann et al., 2015) associated with Aβ in normal aging
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and mild cognitive impairment (MCI).
Cerebral metabolism may not only be useful as a biomarker - it

could play a causal role in the development of Alzheimer's disease pa-
thology (Bero et al., 2011; Jagust and Mormino, 2011; Mosconi, 2013).
Although the spatial pattern of atrophy and hypometabolism largely
overlap in Alzheimer's disease, there is marked regional variability in
their interrelationship, which suggests that hypometabolism may pre-
cede atrophy and possibly even pathology (Chételat et al., 2008). Sus-
taining high levels of metabolism may come at a cost (Bullmore and
Sporns, 2012; Tomasi et al., 2013), the effects of which may be com-
pounded across the lifetime (Jagust and Mormino, 2011) and induce
vulnerability to Aβ deposition (Vlassenko et al., 2010; Oh et al., 2016).
Highly metabolically active areas of the brain tend to be more highly
connected (Tomasi et al., 2013) and exhibit a distinct pattern of gene
expression (Goyal et al., 2014) compared to areas of the brain with
lower metabolic demand. Further study of cerebral metabolism across
the lifespan and prior to the onset of clinical symptoms is necessary to
understand the role of metabolic processes in aging and the develop-
ment of Alzheimer's disease.

However, these approaches are restricted to investigating univariate
increases or decreases in metabolism between groups, whereas multi-
variate approaches may be more sensitive for investigating the re-
lationship between Aβ and metabolism in the earliest stages of
Alzheimer's disease. Researchers began looking at pairwise regional
dependencies of glucose metabolism (Horwitz et al., 1984) near the
advent of the use of [18F] fluorodeoxyglucose (FDG) to measure cere-
bral metabolic rate (Phelps et al., 1979). This approach has recently
reemerged and grown in popularity, reconsidered in a network frame-
work that allows for the application of the mathematical tools of graph
theory (Bullmore and Sporns, 2009). By investigating pairwise de-
pendencies across the brain, network approaches extract a shared pat-
tern of covariation over time in the case of fMRI (Salvador et al., 2005)
and electrophysiological methods (Bassett et al., 2006; Stam et al.,
2007) or across subjects in the case of PET (Horwitz et al., 1986;
Sepulcre et al., 2013), structural MRI (He et al., 2007), and gene ex-
pression (Richiardi et al., 2015). Studies of brain networks have re-
vealed important insights into the phenomena of healthy aging and
progression to Alzheimer's disease, including reduced connectivity af-
fecting the main intrinsic brain networks (ICNs) in healthy aging (Sala-
Llonch et al., 2015), profound reductions particularly to the default
mode network in Alzheimer's disease (Dennis and Thompson, 2014),
and accelerated desegregation of brain networks from healthy aging to
Alzheimer's disease (Brier et al., 2014). However, potential re-
organization of metabolic brain networks in aging and Alzheimer's
disease progression remain poorly characterized.

Studies of metabolic brain networks, which measure co-variation in
metabolism across individuals, complement univariate analyses of
metabolism and other analyses of functional and structural brain net-
works. Metabolic brain networks are closely related to cortical thick-
ness networks in that they estimate pairwise dependence of brain re-
gions by examining correlations across individuals - just of metabolism
measured by FDG PET, rather than cortical thickness measured by MRI
(Alexander-Bloch et al., 2013). Early work on metabolic brain networks
demonstrated age-related reductions of frontal-parietal metabolic cor-
relations (Horwitz et al., 1986; Azari et al., 1992) and Alzheimer's-re-
lated reductions of metabolic correlation in frontal-parietal and
homologous brain regions (Horwitz et al., 1987). More recent studies of
MCI and Alzheimer's disease reported discrepant effects of ApoE gen-
otype (Yao et al., 2015; Carbonell et al., 2014) and reduced metabolic
correlation associated with Aβ in MCI (Carbonell et al., 2014). How-
ever, no studies have examined either (1) the joint effects of Alzheimer's
disease risk factors (Aβ and ApoE ε4) in cognitively normal older adults,
which have confounded studies of network function during resting state
fMRI in normal aging (Brier et al., 2014) or (2) metabolic connectivity
within- and between- canonical ICNs and graph theoretic properties of
metabolic brain networks in cognitively normal aging. These gaps in

knowledge obfuscate the link between metabolic brain networks and
inquiries into aging, Alzheimer's disease progression, and brain network
function in general.

It remains unclear whether Alzheimer's disease risk factors in cog-
nitively normal older people will reflect a transitional stage between
normal aging and Alzheimer's disease, if they will be indistinguishable
from normal aging, or if they will demonstrate a unique profile of
metabolic correlation. Using [11C] Pittsburgh compound B (PIB) -PET to
divide cognitively normal subjects into groups based on Aβ (PIB- for
low and PIB+ for high Aβ load) as well as ApoE genotype (ApoE ε4-
and ApoE ε4+), we explore differences in properties of group meta-
bolic brain networks using FDG-PET for young adults, subgroups of
cognitively normal older adults, and patients with Alzheimer's disease.

2. Materials and methods

2.1. Participants

The study examined 17 young adults, 64 cognitively normal older
adults, and 22 patients with Alzheimer's disease. All participants com-
pleted MR and PET imaging, as well as genetic testing for ApoE ε4
carrier status using previously published methods (Agosta et al., 2009).
Because the ε4 polymorphism of the apolipoprotein E gene (ApoE) is a
major genetic risk factor for Alzheimer's disease (Corder et al., 1993;
Schellenberg, 1995), we stratified subjects based upon the presence of
this allele as well as their Aβ status. Prior to participation all subjects
provided informed consent in accordance with the Institutional Review
Boards at UC Berkeley, UC San Francisco, and Lawrence Berkeley Na-
tional Laboratory.

Young adults and cognitively normal older adults were recruited
from the community via newspaper advertisements as part of the
Berkeley Aging Cohort (BAC) at UC Berkeley. Subjects were required to
live in the community independently, without any major medical,
neurological, and psychiatric illnesses that could influence cognition;
young adults were 18 to 30 years old and old adults were at least
60 years old. All subjects had scores on the Mini Mental State
Examination ≥26 and performance on memory tests within 1.5 stan-
dard deviations of age-adjusted norms. The study included all eligible
young adults who underwent both MR and FDG-PET imaging and were
Aβ negative on PIB-PET scanning. From the population of cognitively
normal older BAC participants meeting our criteria (N = 141), we
formed four subpopulations based on PIB status (PIB- or PIB+, see
Section 2.2.3) and ApoE ε4 carrier status (ApoE ε4- or ApoE ε4+), then
identified the subgroup which included the fewest number of partici-
pants: those who were PIB- and ApoE ε4+ (N = 16). Three other
subgroups (PIB- ApoE ε4-, PIB+ ApoE ε4-, and PIB+ ApoE ε4+) were
then each formed by individually selecting 16 participants that best
matched the demographic characteristics of participants in the PIB-
ApoE ε4+ group based on age, gender, and years of education.

Alzheimer's disease patients were recruited at the University of
California San Francisco Memory and Aging Center. Alzheimer's disease
diagnosis was based on a comprehensive multi-disciplinary evaluation
(Kramer et al., 2003); patients met criteria for probable Alzheimer's
disease (McKhann et al., 2011), were Aβ positive on PIB-PET scanning,
and were without any major comorbid medical, neurological, and
psychiatric illnesses.

A single set of Alzheimer's disease and young controls were ex-
amined throughout the study; older control subjects were initially se-
parated only by PIB status. For the remainder of analyses, the cogni-
tively normal older adults were divided into four subgroups (N = 16)
based on both PIB status and ApoE ε4 carrier status: Old PIB- ApoE ε4-,
Old PIB- ApoE ε4+, Old PIB+ ApoE ε4-, and Old PIB+ ApoE ε4+
groups.

Table 1 shows the expected differences between groups in age, PIB
index, and ApoE genotype based on group definitions. Two of the
Alzheimer's disease participants were missing information - one did not
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undergo ApoE genotyping and another had an incomplete PIB scan and
thus the PIB index could not be calculated but their Aβ positivity was
confirmed through visual inspection by a clinician. We found no dif-
ferences in gender and years of education between any of the groups,
consistent with our sampling protocol.

2.2. Imaging acquisition and processing

2.2.1. MRI
MR imaging of control subjects was performed at LBNL on a 1.5T

Magnetom Avanto (Siemens Medical Systems) scanner using a 12
channel head coil. Structural scans were acquired axially using a high-
resolution T1 MP-RAGE sequence (TR = 2110 ms; TE = 3.58 ms;
TI = 1100 ms; flip angle = 15°; voxel dimension = 1.00 mm3; slice
thickness = 1.00 mm with 50% gap).

MR imaging for Alzheimer's disease patients was performed at the
Memory and Aging Center at UCSF on either a 1.5 T Siemens VISION
System (N = 9) or 3 T Siemens Tim Trio (N = 13) scanner. Structural
scans were acquired using high-resolution T1 MP-RAGE sequences,
respectively acquired coronally with a quadracore head coil
(TR = 10 ms; TE = 7 ms; TI = 300 ms; flip angle = 15°; voxel di-
mension = 1.00 mm3; slice thickness = 1.40 mm with no gap) and
axially with a 12-channel head coil (TR = 2300 ms; TE = 2.98 ms;
TI = 900 ms; flip angle = 9°; voxel dimension = 1.00 mm3).

The T1 MRI data underwent anatomical tissue segmentation using
Freesurfer v5.3 (http://surfer.nmr.mgh.harvard.edu/) to produce 80
cortical and subcortical regions of interest (ROIs) in each subject's na-
tive space based on the Desikan-Killiany atlas. The segmentation was
coregistered to PET using an inverted transformation of the affine
mapping between the mean PET image and the skull-stripped brain in
Anatomical Normalization Tools (ANTs; http://picsl.upenn.edu/
software/ants/).

2.2.2. PET
PIB- and FDG-PET imaging were performed at LBNL (ECAT EXACT

HR or BIOGRAPH Truepoint 6 PET scanners in 3D acquisition mode),
enabling in vivo measurements of Aβ and metabolism respectively.
Imaging began with injection for 15-mCi of [11C] PIB, followed by 6 to
10-mCi of [18F] FDG at least 2-h later and included a 10-min trans-
mission scan or an X-ray CT for attenuation correction. PIB-PET scan-
ning began immediately upon injection, with dynamic acquisition
frames obtained over 90-min (4 × 15 s, 8 × 30 s, 9 × 60 s, 2 × 180 s,
10 × 300 s, and 2 × 600 s). FDG-PET scanning began after 30-min of
eyes-open quiet rest, with 6 × 5 min emission frames. Distribution
volume ratio (DVR) images of PIB were produced by Logan graphical
analysis with a cerebellar grey reference region. Standardized uptake
value ratio (SUVR) images of FDG were produced with the pons as a
reference region. Compared to other proposed FDG-PET reference re-
gions, the pons has stable FDG tracer uptake across the aging and

Alzheimer's disease spectrums (Minoshima et al., 1995). (For further
details on PET acquisition and processing, see Wirth et al., 2013).

2.2.3. PIB index
A PIB index was computed for each subject as the mean DVR across

prefrontal, lateral temporal, parietal, and cingulate cortices, and was
then used to separate the cognitively normal older subjects into Old
PIB- (PIB index< 1.08) or Old PIB+ (PIB index ≥1.08) groups
(Mormino et al., 2012). This threshold has previously been validated
versus post-mortem Aβ burden (Villeneuve et al., 2015).

2.3. Metabolic brain network generation

Group metabolic brain networks were constructed for each group by
computing Pearson's correlations of the FDG SUVR values across sub-
jects between all pairs of ROIs. These correlations reflect relationships
between brain regions across subjects, and are not based on canonical
resting state networks but rather an approach used in graph theory in
which the network reflects the interdependencies of all regions across
the brain. FDG SUVR values were computed for each ROI by finding the
mean SUVR value across all voxels within the ROI. This resulted in a
fully weighted, symmetric 80 × 80 adjacency matrix for each group.
The adjacency matrix was then converted to a fully weighted network,
composed of 80 nodes (one for each ROI) and 3240 undirected
weighted edges (one for each pairwise correlation between two ROIs,
i.e. the values in the adjacency matrix).

2.4. Analysis

2.4.1. Metabolic correlation strength
To summarize the metabolic correlation strength for each group, we

computed the average correlation between all ROIs in the metabolic
brain network. Metabolic correlation strength was computed on Fisher's
Z-transformed correlation data, which was then inverse transformed
back to correlation values with a possible range from −1 to 1. We also
computed metabolic correlation strength at the region level by aver-
aging the strength of the correlations of each individual ROI with all
other ROIs (Carbonell et al., 2014).

2.4.2. Statistical testing
All descriptive statistics and statistical testing were performed on

Fisher's Z-transformed data. We conducted ANOVA with a family-wise
error rate of 0.05 to test for group differences in analyses of demo-
graphic data and metabolic brain networks, followed by Tukey's HSD
post-hoc test to examine pairwise differences between groups. We
conducted chi-squared tests to test for group differences of dichotomous
demographic data followed by pairwise differences between groups,
adjusting the p-value using Bonferroni correction.

Table 1
Group demographics.

Young Alzheimer's disease Old PIB- ApoE4- Old PIB- ApoE4+ Old PIB+ ApoE4- Old PIB+ ApoE4+

# Subjects 17 22 16 16 16 16
Gender (female/male) 10/7 12/10 7/9 7/9 9/7 11/5
Agea 23.59 ± 2.79

(20−30)
74.82 ± 4.98
(69–89)

75.19 ± 3.68
(71–84)

74.81 ± 3.76
(71–83)

76.31 ± 3.23
(70–80)

75.23 ± 4.57
(69–89)

PIB Indexb 0.98 ± 0.04
(0.92–1.05)

1.62 ± 0.25
(1.11–2.09)

1.01 ± 0.03
(0.96–1.06)

1.00 ± 0.08
(0.72–1.07)

1.26 ± 0.14
(1.09–1.54)

1.37 ± 0.24
(1.08–1.76)

# ApoE carriersc (ε4+/ε4-) 6/11 14/7 0/16 16/0 0/16 16/0
Years of education 15.59 ± 1.68

(12−20)
16.27 ± 2.72
(12−22)

16.88 ± 2.23
(12–20)

16.88 ± 2.42
(12–20)

16.63 ± 1.36
(14–20)

16.75 ± 2.22
(12–20)

Scanner # ECAT/BIOGRAPH 13/4 15/7 11/5 8/7 8/8 7/9

a Young group < Old groups and Alzheimer's disease group.
b Young group and Old PIB- groups < Old PIB+ groups < Alzheimer's disease group.
c Young group < Old ApoE ε4+ groups; Old ApoE ε4- groups < Old ApoE ε4+ groups and Alzheimer's disease group.
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2.4.3. Permutation testing of regional differences in correlation strength
The statistical significance of differences in mean regional correla-

tion strength between groups was estimated using permutation testing.
We pooled subjects in the two groups under comparison, and then
randomly assigned N subjects to the first group and the remaining
subjects to the second group, extracting their FDG SUVR data to gen-
erate group metabolic brain networks. We then computed differences in
mean regional correlation strength between the groups. Differences
were computed on Fisher's Z-transformed data before being trans-
formed back into correlations with a possible range from −1 to 1. We
repeated this procedure 100,000 times, with the results used to estimate
a 95% confidence interval of group differences. If the empirical value of
the difference between groups lay outside the 95% confidence interval
of differences produced by this random assignment procedure, then we
rejected the null hypothesis and the empirical difference between the
groups was deemed significant.

2.4.4. Control for spatial proximity based on anatomical distance
We computed the Chebyshev distance (the number of grey matter

voxels that must be traversed to connect 2 points) between the centers
of mass for each pair of ROIs using the Freesurfer average brain par-
cellation in MNI152 space. We computed the center of mass for each
ROI using Chebyshev distance in a similar manner, by finding the voxel
within each ROI that minimized the number of grey matter voxels that
must be traversed to connect the voxel and all other voxels within the
ROI. We deemed connections long-distance if the Chebyshev distance
was above the median of all pairwise distances. We then employed
statistical testing, as described in Section 2.4.2 to compare group dif-
ferences in metabolic correlation strength for only long-distance con-
nections.

2.4.5. Intrinsic connectivity network analysis
Using the functional atlas proposed by Shirer et al. (2012), com-

posed of 84 ROIs associated with 14 intrinsic connectivity networks
(ICNs), we sought to compare features of metabolic correlations within-
and between-ICNs derived from resting-state fMRI. The ICNs are com-
posed of ROIs that functionally coordinate in the absence of evoked
activity, i.e. during a “resting” scenario similar to that in which the
participants engaged during the FDG-PET scan. To examine the meta-
bolic correlations within- and between-ICNs, we used the approach
described in Section 2.3 to generate metabolic brain networks from the
84 ROIs in the functional atlas. We then computed the metabolic cor-
relation strength within each ICN and between each pair of ICNs. We
computed within-ICN correlation strength for a given ICN by calcu-
lating the average correlation strength of the connections between all
ROIs within an ICN. Given two ICNs, we computed between-ICN cor-
relation strength by calculating the average correlation strength of the
connections between all ROIs in one ICN and all ROIs in the other ICN.
As described in Section 2.4.1, metabolic correlation strengths were
calculated by averaging Fisher's Z-transformed data, before inverse-
transforming the data to correlation values between with a possible
range of −1 to 1.

3. Results

3.1. Group differences in metabolic brain networks when normal older
groups dichotomized by Aβ alone

3.1.1. Qualitative differences in metabolic brain network correlation
matrices

Adjacency matrices of the metabolic brain networks are shown in
Fig. 1, revealing qualitative differences in the pattern of metabolic
correlation strengths in the young, Alzheimer's disease, Old PIB-, and
Old PIB+ groups, prior to splitting the cognitively normal older adults
into four subgroups. The Young group exhibits the most heterogeneous
pattern of correlations, with the strength of the correlations ranging

from moderate negative correlations to strong positive correlations, and
a combination of strong local (i.e. within-lobe) and distant (i.e. be-
tween-lobe) associations. Although the Alzheimer's disease group also
exhibits a relatively heterogeneous pattern of correlation strengths, a
notable characteristic of the Alzheimer's disease group is reduction in
correlation strength of homologous brain regions and between hemi-
spheres (respectively the diagonal and off-diagonal of the upper right
quadrant of the adjacency matrix in Fig. 1). Both the Old PIB- and Old
PIB+ groups exhibit a homogenous increase in correlation strength
across cortical (and to a lesser extent subcortical) ROIs relative to young
adults and patients with Alzheimer's disease, with smaller increases in
correlation strength in the Old PIB+ group.

3.1.2. Mean metabolic correlation strength
The ANOVA examining group differences in mean metabolic cor-

relation strength revealed a significant difference between the groups
(F = 1159.01, p≪ 1.00e−10, df = 12,636). The highest mean corre-
lation strengths were seen in the Old PIB- group, followed by the Old
PIB+, the young, and the Alzheimer's disease groups (Tukey's HSD
post-hoc test FWE = 0.05).

3.2. Group differences in metabolic brain networks when normal older
groups dichotomized by both Aβ and ApoE 4 genotype

3.2.1. Qualitative differences in metabolic brain network correlation
matrices

Adjacency matrices of the metabolic brain networks for older sub-
jects defined by Aβ and ApoE genotype are shown in Fig. 2. The Old
PIB- ApoE ε4-, Old PIB- ApoE ε4+, and Old PIB+ ApoE ε4- groups all
exhibit a similar homogeneous pattern of increased correlation strength
between most cortical ROIs compared to the young and Alzheimer's
disease groups in Fig. 1. This indicates that across subjects, the meta-
bolic relationships between region-pairs are relatively consistent.
However, the Old PIB+ ApoE ε4+ group exhibits a distinct, more
heterogeneous pattern of correlation than other cognitively normal
older adult subgroups, indicating that across all subjects, metabolism in
one region inconsistently predicts metabolism in another region com-
pared to other cognitively normal older adults. While the overall pat-
tern of correlation strength may be dampened for the Old PIB+ ApoE
ε4+ group relative to other subgroups of cognitively normal older
adults, the reduced correlation strength of the Old PIB+ ApoE ε4+
group is particularly prominent in cingulate and temporal lobe ROIs.

3.2.2. Mean metabolic correlation strength
The ANOVA examining group differences in mean metabolic cor-

relation strength revealed a significant difference between the groups
(F = 1151.30, p≪ 1.00e−10, df = 18,954). The highest mean corre-
lation strengths were seen in the Old PIB- ApoE ε4-, Old PIB- ApoE ε4+,
and PIB+ ApoE ε4- groups, which were not significantly different from
one another, while all other groups differed (Tukey's HSD post-hoc test
FWE = 0.05) (Fig. 3). The Old PIB+ ApoE ε4+ group was inter-
mediate in correlation strength between the young subjects and the
other old subjects.

3.2.3. Mean regional metabolic correlation strength
We examined the mean regional metabolic correlation strengths of

each group's metabolic brain network by computing the average cor-
relation strength of each ROI with all other ROIs. All groups exhibited
relatively high correlation strengths in frontal, parietal, and lateral and
superior temporal ROIs and relatively low strengths observed in medial
temporal lobe, temporal pole, cingulate, and subcortical ROIs (Fig. 4).
Young adults and Alzheimer's patients show distinct patterns of re-
gional metabolic correlation strength. Similar patterns of relative cor-
relation strength emerged across the subgroups of older adults, al-
though the PIB+ ApoE ε4+ subgroup appeared to be in an
intermediary stage between normal aging and Alzheimer's disease.
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3.2.4. Group differences in mean regional metabolic correlation strength
We examined the topography of group differences in mean regional

metabolic correlation strength using permutation testing (Fig. 5). Per-
mutation testing revealed minimal differences between the Old PIB-
ApoE ε4-, Old PIB- ApoE ε4+, and Old PIB+ ApoE ε4- groups. For this
reason, we combined the results from these groups to simplify the
analysis. This resulted in a comparison between the young, Alzheimer's
disease, Old PIB+ ApoE ε4+, and all other cognitively normal older
subjects (i.e. “Other Old group”, N = 48).

The Young group differed profoundly from the Other Old group
(Fig. 5B) showing widespread reductions in correlation strength, but
exhibited less extensive differences with the Alzheimer's disease group
(Fig. 5A) and the Old PIB+ ApoE ε4+ group (Fig. 5 C). Of interest, the
Old PIB+ ApoE ε4+ group exhibited significant reductions relative to
the Young group in right entorhinal cortex, and increases relative to the
Young group in ROIs in the left pars orbitalis, right rostral middle
frontal, and bilateral inferior parietal cortex. The Old PIB+ ApoE ε4+
showed relatively few differences with the Alzheimer's disease group

(Fig. 5E), but exhibited moderate differences with the Other Old group
(Fig. 5F). A notable commonality between the Old PIB+ ApoE ε4+ and
the Alzheimer's disease groups is the low metabolic correlation strength
in ROIs in the entorhinal cortex and medial temporal lobe compared to
young and other old subjects.

3.3. Control for spatial proximity

Because partial volume effects of age- and disease-related atrophy
may artificially inflate the metabolic correlation between spatially
proximal regions (i.e. regions with short anatomical distance), we: (1)
examined the relationship between the spatial proximity and correla-
tion strength for all pairs of regions and (2) performed statistical testing
for group differences in mean metabolic correlation strength on only
long-distance connections that eliminate any shared effect of spatial
proximity on correlation strength.

The Alzheimer's disease group demonstrated substantial decay in
correlation strength with increasing anatomical distance (R = −0.52,

Fig. 1. Group metabolic adjacency matrices. Adjacency matrices are composed of pairwise correlation strength between all ROIs shown for young, Alzheimer's disease, Old PIB-, and Old
PIB+ groups. Regions of interest are numbered with label color corresponding to lobe membership: red = cingulate, orange = frontal, yellow = insula, green = occipital, blue = -
parietal, purple = subcortical, magenta = temporal. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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p ≪ 1.00e−10), and a small but significant negative relationship was
also found in the Young (R =−0.07, p = 3.45e−5), Old PIB- ApoE ε4-
(R =−0.09, p = 4.38e−7), and Old PIB+ ApoE ε4- (R = −0.11,
p = 8.51e−10) groups. No relationship was found in the Old PIB+
ApoE ε4+ group and a small but significant positive relationship was
found in the Old PIB+ ApoE ε4- group (R = 0.05, p = 0.007). Group
differences in mean correlation strength persisted even after examining
only long-distance connections (F = 927.24, p ≪ 1.00e−10,
df = 9348), where Tukey's HSD post-hoc test revealed significant dif-
ferences between all groups except the Old PIB- ApoE ε4- with the Old
PIB- ApoE ε4+ and Old PIB+ ApoE ε4- groups. The overall pattern of
relative metabolic correlation strengths was identical to those reported
in Section 3.2.2.

3.4. Intrinsic connectivity network connectivity

For each group we examined the relationships within- (diagonal)

and between- (off diagonal) ICNs (Fig. 6). Unlike the previously pre-
sented graphical whole brain approach, this approach was designed to
specifically test the expectation that the dependency of metabolic rate
between regions should be greater for regions within the same ICN
compared with regions outside of the ICN.

Examination of mean correlation within- and between- ICNs re-
vealed clear qualitative distinction between the metabolic brain net-
works of young and Alzheimer's disease groups; high correlations for
the Alzheimer's disease group were largely restricted to within-ICN
associations, whereas the young group exhibited high correlations
within most ICNs as well as a rich pattern of high and low correlations
between ICNs. Both of the older PIB+ subgroups also exhibited high
correlations within most ICNs and a diverse pattern of correlations
between ICNs, which generally showed more between-ICN correlations
than seen in the young or Alzheimer's disease patients and fewer be-
tween-ICN correlations than the PIB- subgroups. The PIB+ ApoE ε4+
between-ICN metabolic correlations were weaker than seen in the PIB+

Fig. 2. Older subgroup metabolic adjacency matrices based on Aβ and ApoE genotype. Adjacency matrices are composed of pairwise correlation strength between all ROIs shown for Old
PIB- ApoE ε4-, Old PIB- ApoE ε4+, PIB+ ApoE ε4-, and Old PIB+ ApoE ε4+ groups. Regions of interest are numbered with label color corresponding to lobe membership: red = -
cingulate, orange = frontal, yellow = insula, green = occipital, blue = parietal, purple = subcortical, magenta = temporal.(For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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ApoE ε4- group. The Old PIB- subgroups exhibited a homogeneous
pattern of widespread high correlations both within and between most
ICNs. Interestingly, some of the most striking differences between the
older subgroups were lower between-ICN metabolic correlation
strengths between the dorsal DMN and the other ICNS in the older PIB
+ subgroups compared with the older PIB- subgroups.

4. Discussion

We examined metabolic brain networks of young adults, patients
with Alzheimer's disease, and four subgroups of cognitively normal
older adults based on the presence or absence of two Alzheimer's risk
factors: Aβ deposition and the ApoE ε4 allele. Cognitively normal older
adults exhibited widespread high metabolic correlation strength com-
pared to young and Alzheimer's disease subjects. The extent of elevated
metabolic correlation was reduced in the subgroup with both Aβ and
ApoE ε4 genotype (Fig. 2) and in PIB+ older subgroups generally
(Fig. 1). By comparison, young adults and patients with Alzheimer's
disease both had lower mean metabolic correlation strength than cog-
nitively normal older adults, with the metabolic correlation strength of
Alzheimer's patients being somewhat lower than that of young adults.
The pattern of metabolic dependencies across the brain differed be-
tween young adults, Alzheimer's patients, older adults with both Aβ and
ApoE ε4 genotype, and other older adults.

We also examined metabolic brain network correlations within- and
between- canonical resting state ICNs identified using resting-state
fMRI by Shirer et al. (2012). These ICNs reflect sub-networks of ROIs
that functionally couple at rest and underlie subject-driven cognitive
states. Young adults showed relatively high metabolic correlation
strength within-ICNs and a rich pattern of varied metabolic correlation
strengths between-ICNs. In contrast, Alzheimer's patients showed a
dramatic reduction in correlation strength between ICNs. PIB- older
adults showed homogeneous high metabolic correlation strength both
within- and betweeen-ICNs. PIB+ older adults appeared to be inter-
mediary to Alzheimer's patients and PIB- older adults, exhibiting similar
within- and between-ICN correlation patterns to the young subjects.
These findings identified previously undescribed alterations in meta-
bolic networks in aging, Alzheimer's disease, and those at the highest
Alzheimer's disease risk.

Metabolic brain networks, which reflect the co-variation in meta-
bolism across individuals, should be interpreted differently than pre-
viously reported univariate analyses of metabolism and other analyses
of functional brain networks. For example, while Alzheimer's patients

may be hypometabolic in two ROIs compared to young adults (Fig. 7A),
the relative metabolism in one ROI compared to the other may be
preserved (Fig. 7B and C) - demonstrating the presence of a univariate
group difference, but not a bivariate difference between groups in these
ROIs. Alternately, while the metabolic rate may be indistinguishable
across subgroups of older adults in two ROIs (Fig. 7D), the groups may
demonstrate different patterns of linear dependence between the two
ROIs (Fig. 7E and F) - demonstrating the presence of a bivariate group
difference, but not a univariate difference between groups. Thus, sig-
nificant univariate results do not imply significant bivariate results, and
vice versa. Moreover, unlike functional brain networks, which utilize
fluctuations in brain activity over time, metabolic brain networks uti-
lize fluctuations in metabolism across individuals to infer dependence
of metabolism in ROIs (Fig. 7C and F). High metabolic correlations are
consistent with low individual variability in the relative metabolism
between brain regions (i.e. “metabolic homogeneity” across in-
dividuals), such that metabolism in one region can be used to infer
metabolism in another region due to a consistent linear relationship in
relative metabolism across individuals. Low metabolic correlations are
consistent with high individual variability in the dependency of meta-
bolism between brain regions (i.e. “metabolic heterogeneity” across
individuals), such that metabolism in one region cannot be used to infer
metabolism in another region due a lack of a consistent linear re-
lationship across individuals. These separate ways of exploring group
differences provide distinct insights into the underlying processes of
aging and Alzheimer's disease in the brain.

Metabolic brain networks share commonalities with cortical thick-
ness networks, both of which examine covariance between brain re-
gions across subjects. In such networks positive correlations indicate
that both ROIs are either increasing or decreasing consistently across
subjects, negative correlations indicate that one ROI is increasing and
the other is decreasing consistently across subjects, and near-zero cor-
relations indicate inconsistency in the relative rates of the ROIs across
subjects. Decreased structural covariance within the DMN has been
reported in older adults and patients with MCI and Alzheimer's disease
(Spreng and Turner, 2013; Montembeault et al., 2016), however other
brain networks were also disrupted and reflected an inverted-U pattern
consistent with maximal segregation of functional networks in young
adults followed by dedifferentiation in old age (DuPre and Spreng,
2017). Disruption is more exaggerated in patients with Alzheimer's
disease (Montembeault et al., 2016) and in ApoE ε4 carriers (Spreng
and Turner, 2013). Patients with Alzheimer's disease further exhibited
increased local interregional correlations and disrupted long distance
correlations (Yao et al., 2010), and altered graph theoretic properties
(He et al., 2008; Yao et al., 2010). Our findings in metabolic brain
networks of Alzheimer's patients mirror those reported in cortical
thickness networks, however the widespread elevation of correlation
strength, as we found in metabolic brain networks of older adults, was a
divergent finding from previous reports of reductions in correlation
strength for cortical thickness networks of older adults. Thus, metabo-
lism may undergo a more homogenous pattern of change in older
adults, compared to a more heterogeneous pattern of atrophy across
individuals. Importantly, studies of cortical thickness networks in older
adults have not accounted for the effects of Aβ. Exploration of pre-
clinical Alzheimer's pathology on cortical thickness networks in old age
would further clarify the relationship between the processes of atrophy
and metabolic change, which have shown evidence of divergence in
univariate studies (Ibáñez et al., 1998; Chételat et al., 2008; La Joie
et al., 2012; Grothe et al., 2016; Kljajevic et al., 2014) and metabolic
brain networks (Di et al., 2012).

Widespread elevations in correlation strength of metabolic brain
networks observed in cognitively normal older adults suggest a novel
phenomenon in aging - metabolic homogeneity. Previous work posited
that weaker metabolic correlation strength in Alzheimer's disease re-
flects “metabolic heterogeneity” due to variability in compensatory
and/or degenerative process that lead to inter-individual variability in

Fig. 3. Group differences in metabolic correlation strength. Error bars show the si-
multaneous confidence intervals from Tukey's HSD post-hoc test. * p≤ 0.05.
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metabolism (Carbonell et al., 2014; Sanabria-Diaz et al., 2013). We
found the opposite effect - very strong metabolic correlation strength -
in cognitively normal older adults, which would be consistent with
“metabolic homogeneity”. Interestingly, this homogeneity must be oc-
curring despite the presence of age-related compensatory and degen-
erative processes. As white matter integrity typically decreases in old
age, the pervasive metabolic “hyper-connectivity” observed in the
present study does not reflect increased structural connectivity between
brain regions. Rather, this phenomenon may reflect dedifferentiation
that occurs with age-related loss of aerobic glycolysis (Goyal et al.,
2017), functional connectivity (Geerligs et al., 2015), white matter
integrity (Andrews-Hanna et al., 2007; Saenger et al., 2017), and BOLD
variability (Garrett et al., 2011) that negatively affect dynamic

exploration of functional brain states (McIntosh et al., 2010; Deco et al.,
2011). Our finding that reduction of correlations was related to further
anatomical distance in two of the normal older groups (Section 3.4)
may be consistent with white matter alterations leading to metabolic
homogeneity. Further work is needed to explore age-related metabolic
homogeneity, including its potential relationship with aerobic glyco-
lysis, functional connectivity, white matter alterations, and other
measures of brain structure and function, as well as the effects of de-
viation from this old age-related metabolic correlation profile on brain
function and degeneration.

Metabolic homogeneity may be a form of “dedifferentiation”, an
age-related process previously posited in light of reductions in hemi-
spheric asymmetry (Dolcos et al., 2002), loss of functional

Fig. 4. Mean regional metabolic correlation strength for each group. A. Young B. Alzheimer's disease C. PIB- ApoE ε4- D. PIB- ApoE ε4+ E. PIB+ ApoE ε4- F. PIB+ ApoE ε4+. Regions
with high metabolic correlation strength are metabolic brain networks “hubs”.
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specialization (Park et al., 2004), and reduced task-related deactivation
(Prakash et al., 2012). Age-related dedifferentiation was further con-
firmed by our ICN analysis, which revealed widespread high between-
ICN metabolic correlation strength in cognitively normal older adults,
indicative of desegregation. This was true across all subgroups of older
adults, regardless of Aβ and ApoE status, although desegregation was
greater in older subgroups without Aβ compared to those with Aβ
which may be indicative of divergent process of aging and Alzheimer's
disease. Segregation of the brain into functionally specialized subnet-
works is a key organizational feature of structural and functional brain

networks that supports differentiation of brain function (Chen et al.,
2008; He et al., 2009). Studies in other modalities have also demon-
strated age-related desegregation of brain networks (Chen et al., 2011;
Geerligs et al., 2015), as well as step-wise decreases in segregation with
Alzheimer's disease severity (Brier et al., 2014). Overall, widespread
elevated metabolic correlation was consistent with a profound loss of
independence in metabolism across brain systems in normal aging,
leading to dedifferentiation and desegregation of metabolism.

Individuals possessing both Aβ and the ApoE ε4 genotype appeared
to be on an altered metabolic trajectory compared to other cognitively

Fig. 5. Group differences in regional metabolic correlation strength. A. Young > Alzheimer's disease (warm) and Young < Alzheimer's disease (cool) B. Young > Other Old (warm)
and Young < Other Old (cool) C. Young > Old PIB+ ApoE ε4+ (warm) and Young < Old PIB+ ApoE ε4+ (cool) D. Alzheimer's disease > Other Old (warm) and Alzheimer's
disease < Other Old (cool) E. Alzheimer's disease > Old PIB+ ApoE ε4+ (warm) and Alzheimer's disease < Old PIB+ ApoE ε4+ (cool) F. Other Old > Old PIB+ ApoE ε4+ (warm)
and Other Old < Old PIB+ ApoE ε4+ (cool). The significance of the difference between groups is indicated by the region's color, in terms of the logit of the uncorrected p-value obtained
via permutation testing.(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Intrinsic connectivity networks metabolic correlation strengths for each subgroup. Metabolic correlation strengths shown within- (diagonal) and between- (off diagonal) intrinsic
connectivity networks. dDMN= dorsal Default Mode Network, vDMN = ventral Default Mode Network, Prec = Precuneus, lECN = left Executive Control Network, rECN = right
Executive Control Network, aSal = anterior Salience, pSal = posterior Salience, SM = sensorimotor, VS=Visuospatial, hVis = high Visual, pVis = primary Visual, Lang = Language,
Aud = Auditory, BG = Basal Ganglia.
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normal older adults without both risk factors. Because the network
correlation pattern of this group was intermediate between young and
Alzheimer's disease patients, and quite different from their normal old-
aged peers, the altered trajectory could represent either preservation of
youth-like function or the start of decline towards Alzheimer's disease.
While the latter seems more likely, increased neural activity that might
be associated with persistence of youth-like metabolic function has
been proposed as an underlying mechanism linking ApoE genotype, Aβ,
and aging (Jagust and Mormino, 2011; Oh et al., 2016). However, the
relatively low metabolic correlation strength in the entorhinal cortex
and temporal lobe - regions that exhibit marked neurodegeneration in
Alzheimer's disease (Du et al., 2001) as well as neurodevelopmental
differences in early life (Shaw et al., 2007) - bore intriguing similarity
to the Alzheimer's group (Figs. 3 and 4). Moreover, prior work de-
monstrating an interaction of Aβ and ApoE ε4 genotype in healthy older
adults reported lower cognitive performance (Kantarci et al., 2012) and
faster rates of cognitive decline (Mormino et al., 2014) only in subjects
with both risk factors. Various mechanisms may make ApoE ε4 carriers
more vulnerable to the toxic effects of Aβ, including alterations in tau
phosphorylation, neuroinflammation, mitochondrial function, synaptic

function, and/or neurodevelopmental differences in cortical thickness
and connectivity (Wolf et al., 2013; Brown and Jessup, 2009). However,
another possibility is that individuals with both risk factors were further
along the Alzheimer's disease continuum, given the younger age of
onset of Alzheimer's disease in patients with ApoE ε4 genotype (Corder
et al., 1993).

Due to the plurality and diversity of age-related processes, the study
of aging is rife with confounding variables and ultimately it is beyond
the scope of any single study to address all of these challenges. The
major limiting factor of the present study was the small number of
subjects. We attempted to control for spurious results by confirming
consistency using permutation testing, which helped protect against
individual subject or a subset of subjects having undue influence on the
results, and conducted some analyses on a larger group (i.e. Other Old,
N = 48) composed of all older adults except those in the PIB+ ApoE
ε4+ group (which remained lower powered at N = 16). The limited
number of subjects precluded the use of partial correlations to control
for additional variables. However, we were able to match subgroups for
sex, years of education, and, when appropriate, age. While brain
atrophy and partial volume effects consequent to the relatively low

Fig. 7. A closer look at univariate versus bivariate relationships.* (A) Boxplots of the distribution of FDG SUVR values for young adults and patients with Alzheimer's disease in two ROIs
(lmOrFr = left medial orbitofrontal, rEntr = right entorhinal) reveals univariate differences in FDG SUVR between groups (Young > Alzheimer's disease) and between ROIs (left medial
orbitofrontal > right entorhinal). (B) Difference in FDG SUVR values between ROIs for individual participants. Each line segment represents one young adult (blue) or patient with
Alzheimer's disease (red). This demonstrates a similar bivariate metabolic relationship between the two ROIs across participants. (C) Scatter plot of the relationship between FDG SUVR
values for two ROIs. Each point represents one participant. A regression line shows the relationship of FDG SUVR between the ROIs for each group. The linear relationship of FDG SUVR
between the ROIs suggests that metabolism from one ROI predicts metabolism in the other ROI across all of the subjects in the analysis; there is a linear dependence of metabolism
between these ROIs across subjects, and both young adults and patients with Alzheimer's disease demonstrate this similarly. Young R2 = 0.54, Alzheimer's disease R2 = 0.55 (D) Boxplots
of the distribution of FDG SUVR values for Other Old and Old PIB+ ApoE ε4+ in two ROIs. This reveals no univariate differences in FDG SUVR for either ROI between groups. (E)
Difference in FDG SUVR values between ROIs. Each line segment represents one older adult. This demonstrates group differences in the bivariate metabolic relationship between the two
ROIs. (F) Scatter plot of the relationship between FDG SUVR values for two ROIs. Each point represents one participant. Regression line shows the relationship of FDG SUVR between the
ROIs for each group. The linear relationships differ between groups; metabolism from one ROI predicts metabolism from the other ROI for the Other Old group, but not for the PIB+ ApoE
ε4+ group since that group does not demonstrate a consistent dependence in metabolism between the ROIs. Other Old R2 = 0.67, Old PIB+ ApoE ε4+ R2 = 0.13. *This example was
specifically selected to explain how univariate and bivariate results can differ within the same data, and is not necessarily representative of the dataset as a whole.(For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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resolution of PET will increase regional metabolic covariance, this did
not seem likely to explain the pattern of results (see Section 3.4).
Moreover, atrophy was unlikely to explain opposite effects on meta-
bolic correlation strength: elevated metabolic correlation strength in
cognitively normal older adults, but reduced metabolic correlation
strength in Alzheimer's patients. We conducted the analysis using pons-
normalized fully-connected weighted graphs for each group, and thus
our results should not be directly compared with studies using binary
graphs or partially-connected (i.e. thresholded) graphs, whole-brain-
normalized graphs, as well as graphs generated from other neuroima-
ging modalities. However, our results suggested that there may be
significant differences in the appropriate “connection density” (i.e.
number of edges in a graph) between groups, providing a strong case
against the use of binary graphs or graphs thresholded based on con-
nection density when examining age- and disease-related differences in
metabolic brain networks (and possibly other neuroimaging modalities
as well). We recognize that glucose metabolism is a complex phenom-
enon reflecting multiple metabolic processes (Zimmer et al., 2017).
Nevertheless, it is clearly related to synapse structure and function as
well as measures of brain function and connectivity using multiple
modalities (Riedl et al., 2014; Tomasi et al., 2013; Rocher et al., 2003;
Goyal et al., 2014).

In conclusion, metabolic brain networks revealed distinct effects of
aging and Alzheimer's disease risk on metabolic processes in cognitively
normal older adults. We identified a previously undescribed process of
widespread elevated metabolic correlation in aging, which disrupted
the segregation of ICNs across the brain. Moreover, we demonstrated
that the metabolic brain network of normal older adults with both Aβ
and ApoE ε4 genotype differed substantially from that of their normal
old-aged peers without both risk factors, possessing a pattern of meta-
bolic correlations that is more similar to that of young adults and
Alzheimer's disease patients. Analysis based on ICNs further dis-
tinguished PIB+ from PIB- older adults, showing greater dediffer-
entiation in PIB- subgroups and a profile more similar to Alzheimer's
patients in PIB+ subgroups. The effect of dual Alzheimer's risk factors
appeared to be much more prominent when examining metabolic brain
networks than the weak and inconsistent effects identified using other
approaches, suggesting that the alterations captured by metabolic brain
networks may be especially important for understanding cognitive de-
cline and progression to Alzheimer's disease. While the clinical appli-
cations of these results are unclear, the findings of alterations in me-
tabolic networks that differ significantly in aging and those at high risk
of Alzheimer's disease may motivate the exploration of these effects in
the further search for biomarkers and mechanisms important in the
earliest stages of Alzheimer's disease.
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