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Abstract: We propose an encoder–decoder architecture using wide and deep convolutional layers
combined with different aggregation modules for the segmentation of medical images. Initially,
we obtain a rich representation of features that span from low to high levels and from small to
large scales by stacking multiple k × k kernels, where each k × k kernel operation is split into
k × 1 and 1 × k convolutions. In addition, we introduce two feature-aggregation modules—multiscale
feature aggregation (MFA) and hierarchical feature aggregation (HFA)—to better fuse information
across end-to-end network layers. The MFA module progressively aggregates features and enriches
feature representation, whereas the HFA module merges the features iteratively and hierarchically to
learn richer combinations of the feature hierarchy. Furthermore, because residual connections are
advantageous for assembling very deep networks, we employ an MFA-based long residual connec-
tions to avoid vanishing gradients along the aggregation paths. In addition, a guided block with
multilevel convolution provides effective attention to the features that were copied from the encoder
to the decoder to recover spatial information. Thus, the proposed method using feature-aggregation
modules combined with a guided skip connection improves the segmentation accuracy, achieving a
high similarity index for ground-truth segmentation maps. Experimental results indicate that the
proposed model achieves a superior segmentation performance to that obtained by conventional
methods for skin-lesion segmentation, with an average accuracy score of 0.97 on the ISIC-2018, PH2,
and UFBA-UESC datasets.

Keywords: convolutional neural network; medical-image segmentation; feature fusion

1. Introduction

Medical-image segmentation, such as tooth segmentation [1] and skin-lesion seg-
mentation [2], is a common step in the analysis of medical images. The main objective
of medical-image analysis is to serve as an efficient diagnosis and treatment tool to radi-
ologists and physicians [3]. Medical imaging, e.g., X-rays, computed tomography, and
magnetic resonance imaging (MRI), can nondestructively provide anatomical and func-
tional information about diseases and abnormalities inside the body. However, there are
several challenges associated with the automatic segmentation of medical images. Medical
images can be acquired using various protocols, and they often have a low contrast and
inhomogeneous appearance, making them difficult to segment [4]. Additionally, some
structures are characterized by large variations in scale and shape, such as skin lesions in
dermoscopic images, which makes it difficult to construct prior models of their shapes in
advance [5]. Challenges associated with panoramic X-ray images include variations in teeth
among patients and spaces between missing teeth [6]. To achieve a better segmentation
performance, automated segmentation techniques should consider the scale and position
of the target.
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In recent years, various models have been proposed for segmenting medical images
using deep convolutional neural networks (CNNs) [7]. CNNs have better representation
abilities than traditional approaches, allowing them to automatically learn the most useful
features from large datasets compared to traditional machine-learning approaches. At
present, most CNNs suffer from the following issues. First, the convolutional-layer design
uses shared weights at different spatial positions, resulting in a lack of spatial awareness.
This degrades the performance for targets with variable shapes and positions—particularly
small targets. Second, CNNs generally utilize numerous redundant feature channels. Third,
CNNs do not always recognize the most appropriate scale for identifying the segmentation
features of an image [8,9]. Finally, most existing CNNs do not have a straightforward way
to explain their decisions and are used in a black-box manner because they are nested
nonlinear structures, which makes their application in clinical decision-making difficult.

Hence, the goal of the study in this paper is to design a CNN architecture for the
task of medical image segmentation that uses novel feature aggregation modules (which
solve the first problem) and guided skip-connections (which solve the second problem).
The proposed architecture can also provide accurate border localization and delineation
through the proposed guided block. Furthermore, the proposed method using residual-
based feature aggregation modules shows an improved performance, with a significant
reduction in the number of trainable parameters (mitigating the third problem). To address
the aforementioned problems, Ronneberger et al. [10] introduced the U-Net architecture
for the segmentation of neural structures in electron microscopic recordings and cell iden-
tification in microscopic images. Adiga et al. [11] developed an M-Net architecture for
fingerprint image inpainting and denoising by adding the left-leg path to the encoder side
and the right-leg path to the decoder side. However, the M-Net architecture can lose local
information when complete images are provided as inputs. Zhou et al. [12] proposed a
U-Net++ architecture based on encoders and decoders for medical-image segmentation.
Each block in the network is connected through a series of densely nested skip paths. Gu
et al. [13] developed a context encoder network (CE-Net) for medical-image segmentation
that utilizes a pre-trained ResNet block in the feature encoder. However, CE-Net has the
drawback that the use of dense connections in the network leads to an increase in the
number of parameters. In [14], the M-SegNet architecture was used for the segmentation of
brain tissues in MRI. The global attention technique is used in the decoder stage to capture
rich contextual information by combining local features with their global dependencies. Jin
et al. [15] proposed a residual attention-aware UNet (RA-UNet) architecture for liver and tu-
mor segmentation using a two-dimensional (2D) network followed by a three-dimensional
(3D) network. Initially, the input image is fed into a 2D boundary extraction network to
segment only the liver region. The 2D outputs are stacked to form the input for the 3D
network, which produces tumor-segmentation maps. The overall RA-UNet involves train-
ing the 2D network, followed by training the 3D network. This multiple-model training
method created a computationally expensive network. Mohammed et al. [16] introduced
a contextual multiscale multilevel network (CMM-Net) for medical-image segmentation.
In CMM-Net, a pyramid pooling module (PPM) is combined with dilated convolution to
extract multiscale information for biomedical-image segmentation. The PPM is used to
generate global multilevel information at every encoder layer, whereas dilated convolutions
learn various spatial scales of the target with minimal resolution loss. Fabian et al. [17]
introduced the nnU-Net architecture for biomedical-image segmentation. In nnU-Net, the
first 3D U-Net is trained on downsampled 3D images, and the segmentation result is then
upsampled and passed to a second 3D U-Net trained on patches at the full resolution. The
nnU-Net can handle large disparities in dataset properties and diversity in target structures.
However, nnU-Net was designed with a focus on the training process rather than algorithm
improvements, leading to suboptimal segmentation performance.

To overcome these limitations, we developed a novel multiscale and hierarchical
feature-aggregation network for the segmentation of medical images. Our objective was to
improve the fusion of semantic and spatial information for the segmentation of medical
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images by aggregating layers. We introduce two aggregation structures—multiscale feature
aggregation (MFA) and hierarchical feature aggregation (HFA)—to aggregate deep layers.
The MFA module gradually accumulates and enriches the representations of features,
and the HFA structure repeatedly and hierarchically merges the features to learn richer
feature combinations. In addition, guided skip connections facilitate the transfer of features
between the encoder and the decoder, ensuring the recovery of the spatial information
lost during downsampling. The proposed approach significantly outperformed recently
developed medical-image segmentation methods in multiple evaluation metrics. The main
contributions of this study are summarized as follows:

� The proposed model was designed with a multiscale and hierarchical feature-aggregation
network to better fuse feature information for the segmentation of medical images.

� Guided skip connections from the encoder block to the decoder block are used to
improve the segmentation accuracy and the convergence of deep neural networks.

� The proposed approach has a good generalization ability according to the results of
comparisons with state-of-the-art methods for different challenging tasks involving
skin-lesion and tooth segmentation.

The remainder of this paper is organized as follows. Section 2 discusses related
works. Section 3 describes the proposed method in detail and explains its architecture. The
experimental setup, comparative studies, and a comprehensive analysis are presented in
Section 4. Finally, Section 5 concludes the paper.

2. Related Work
2.1. Multiscale Networks

In recent studies, the performance of neural networks for multiple semantic segmen-
tation tasks was improved via multiscale feature fusion. Several methodologies have
been proposed to encode contextual information at different scales [18]. As an alternative
to the aforementioned encoder–decoder structure, image pyramid structures [19,20] are
frequently used to obtain different scales of objects in the network. Further, the dilated
or atrous spatial pyramid pooling (ASPP) convolutions employed in a parallel or cascade
design help to expand the network receptive field without demanding additional network
parameters [21]. ASPP modifies the atrous convolution simultaneously in relation to spatial
pyramid pooling to obtain features on arbitrary scales [22]. In addition, deformable convo-
lution enhances atrous convolution by increasing the number of sampling locations [23].
Furthermore, maintaining a high-resolution image representation is essential for segmen-
tation networks to capture spatial information and generate accurate segmentation maps.
The purpose of multiscale fusion is to exchange low- and high-resolution features during
the segmentation process, instead of recovering these representations from low-level repre-
sentations [24]. Wang et al. [25] showed that such a feature transfer strategy can increase
the feature resolution, thus increasing the spatial accuracy of segmentation maps.

2.2. Skin-Lesion Segmentation

Researchers have introduced several deep-learning frameworks for the detection and
segmentation of skin lesions. In [26], multistage fully convolutional networks were pro-
posed for skin-lesion segmentation. In multistage processing, localized coarse appearances
are initially learned, and specific boundary characteristics are learned in the later stages.
Yuan et al. [27] used a leveraging 19-layer deep CNN method for skin-lesion segmenta-
tion. Furthermore, the authors compared the results obtained using different input sizes,
optimization methods, augmentation strategies, and loss functions [12,16,17]. In [28], the
fully convolutional method was introduced for the multiclass segmentation of dermoscopic
images. This was the first study in which a multiclass segmentation method was used
to separate melanocytic nevus, melanoma, and seborrheic keratosis from a single skin
lesion. Vesal et al. [29] introduced a two-stage CNN-based approach for the detection and
segmentation of skin lesions. The first stage uses a faster region-based CNN for multitask
learning, which improves the identification accuracy for image lesions, whereas the second
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employs a region proposal network, which generates multiple bounding boxes for each
image. Mohammed et al. [30] used a convolutional network for skin-lesion segmentation
that learned the full-resolution features of each pixel from dermoscopic images.

2.3. Tooth Segmentation

Recently, numerous studies have been performed on tooth segmentation, as the diag-
nosis in dentistry is based on the analysis of teeth and surrounding tissues. In traditional
image-segmentation approaches [31,32], dental information is extracted from a single type
of radiograph. However, these methods depend on well-designed manual features and
do not provide sufficient generalization. In recent years, deep-learning techniques have
increased the accuracy of dental segmentation under various conditions, e.g., cavities, bone
loss, and hidden dental structures [33]. Generally, deep-learning mechanisms for image
segmentation are based on end-to-end learning; both training and inference are performed
via dense feedforward computing, as well as backpropagation, to learn the entire image
at once. Jader et al. [34] were the first to employ panoramic radiography to segment and
detect teeth without numbering. In [35], deep learning was first used for the detection and
counting of teeth in panoramic X-ray images.

In deep learning, most CNN networks can extract the features of convolution kernels of
different sizes. During the encoding process, the CNN networks increase the depths of the
feature maps while reducing the spatial dimension, whereas, during the decoding process,
these low-dimension feature maps are up-sampled to recover the output segmentation
maps. A CNN uses larger kernels when the pixels are homogeneous and global, whereas a
smaller kernel is preferred when the pixels are fine and detailed. An individual k × k kernel
is not sufficient for extracting all the necessary information from the CNN networks. With
an increase in the kernel size, the number of learnable parameters increases, increasing
the risk of overfitting [36]. Increasing the scale of deep neural networks is the most
effective technique to improve performance. This entails an increase in the number of
network layers and units at each level, as well as increasing the depth and width of the
architecture [36]. In [10–17], medical-image segmentation using conventional methods
has limitations. For example, the U-Net [10] model reduces the feature resolution for
abstract feature representations through convolution striding and pooling operations.
M-Net [11] achieves a tradeoff between speed and the maintenance of high-resolution
feature maps. Conventional methods [13–17] have more learnable parameters, which
increases the computational complexity. Moreover, these conventional methods use a series
of convolutional filters of 3 × 3 and 5 × 5 kernels, which are used for to train a large
amount of labeled data, with an increase in memory requirements for deeper networks. To
overcome these limitations, we developed a hierarchical and multiscale feature-aggregation
network for the segmentation of medical images. During the MFA process, features are
accumulated, enriching the feature representation. In the HFA process, the features are
merged repeatedly and hierarchically to generate richer feature combinations. Furthermore,
guided skip connections transmit information from the encoder to the decoder, thereby
restoring the spatial information that is lost during downsampling.

3. Proposed Methodology

As discussed in Section 1, despite their promising results, conventional methods
for segmenting medical images suffer from significant drawbacks, including the loss of
local information and their high computational complexity. To solve these problems,
we proposed a multiscale HFA method for medical-image segmentation. The following
subsections present (i) an overview of the proposed method and (ii) the proposed feature-
fusion architecture.

3.1. Overview of Proposed Method

Figure 1 shows the proposed architecture. As shown, the proposed method comprises
four phases: input data, preprocessing, training, and testing. In the input phase, the
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ISIC-2018 [37] and PH2 [38] datasets are used for skin-lesion segmentation of dermoscopic
images, and the UFBA-UESC [39] dataset was used for tooth segmentation of X-ray images.
Furthermore, preprocessing was performed on the skin lesion to improve the quality of
the input images. Before training the model, the skin-lesion datasets were preprocessed
to improve the quality of images using morphology-based inpainting and gray-color
constancy algorithms [40,41]. Figure 2 shows the preprocessing stages of dermoscopic
images for skin hair removal and conversion to gray-color images. First, contrast-limited
adaptive histogram equalization (CLAHE) was employed to improve the visibility of the
dermoscopic images. As shown in Figure 2c, the curvilinear mask was extracted using
the curvilinear object detector, which employs soft color top-hat transforms [42]. The
difference between Figure 2b,c produced a hairless image with pixel information removed,
as shown in Figure 2d. The inpainting method utilized morphological operations to rewrite
information from the removed pixels, resulting in a hairless image, as shown in Figure 2e.
After hair removal, the color of the dermoscopic images was normalized using the gray
shade algorithm [41] before training and testing to improve the segmentation results.
Furthermore, the datasets were augmented to increase the amount of training data. Images
were center-cropped, rotated randomly by 90◦, subjected to grid distortion with a limit of
0.3, and flipped horizontally and vertically for data augmentation.
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3.2. Proposed Feature-Fusion Architecture

In this paper, aggregation is defined as the combination of different convolution
kernels throughout the network layers, and an architecture for the effective aggregation of
feature information across different scales is proposed. Figure 3 presents a schematic of
the proposed method. As shown, MFA and HFA structures are used for effective feature
extraction via an end-to-end network layer.
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The MFA structure focuses on fusing spatial convolution kernels with different scales,
and the HFA merges features from all the MFA blocks. The MFA structure follows the
basic stacking of multiscale spatial kernels (context encoding module (CEM), intermediate
module (IM), and local encoding module (LEM)) with the respective network layers. The
HFA employs an identity connection that crosses and merges MFA blocks to aggregate dif-
ferent levels of feature representation. Furthermore, MFA-based long residual connections
are used to stabilize the gradient updates along the aggregation paths. In addition, the
guided block with multilevel convolution provides effective attention to the features passed
from the encoder to the decoder to recover spatial information. The proposed architecture
consists of three components: (a) MFA, (b) HFA, and (c) encoder and decoder blocks. A
detailed description of each component is presented in the following subsection.
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3.2.1. Multiscale Feature Aggregation (MFA)

The MFA module consists of the stacking of multiple k × k convolution kernels, and each k
× k kernel operation is split into a k × 1 kernel, followed by a 1 × k kernel. The MFA is divided
into three modules according to the type of feature extraction: the CEM, IM, and LEM.

• Context Encoding Module (CEM)

The CEM is designed to capture local and contextual information from the input data
using both smaller (3 × 3) and larger kernels (5 × 5 and 7 × 7). In each of these k × k kernels,
the operation is decomposed into two smaller spatial kernels: a k × 1 kernel followed by a
1 × k kernel. This method of splitting kernels produces a two-layer convolution structure
that increases the depth of the feature space. Furthermore, the CEM consists of a stack of
multiple kernels (k = 1, 3, 5, 7), which increases the width of the network layer. The outputs
of all these kernels are combined to form a CEM output. This causes the CEM to increase
the width and depth of the network layer and learn global abstract structures. Considering
x[l] as the input sample with network layer index l, the convolutional output CEM (CEo) is
defined as follows:

CEo = ∑k=1,3,5,7

{((
x[l] ∗ w[l]

k×1

)
∗ w [l]

1×k + b[l]
)}

, (1)

where w[l]
k×1 is the weight associated with kernel size k, b[l] is the bias term, and ∗ represents

the convolution operation with rectified linear unit (ReLU) activation.

• Intermediate Module (IM)

In the IM, the network layer is kept narrow and deep to extract local and complex
features. Furthermore, the IM contains only 3 × 3 and 5 × 5 convolution kernels; that is,
the 3 × 3 kernel operation is divided into 3 × 1 and 1 × 3 kernels and the 5 × 5 kernel
operation is divided into 5 × 1 and 1 × 5 kernels, and the outputs are added elementwise
to form the IM output (IMo), which is expressed as follows:

IMo = ∑
k=1,3,5

{((
x[l] ∗ w[l]

k×1

)
∗ w [l]

1×k + b[l]
)}

. (2)

• Local Encoding Module (LEM)

The LEM includes only a 3 × 3 kernel operation that is divided into 3 × 1 and 1 × 3
kernels to extract local and fine detailed features. The LEM output (LEo) is computed as
follows with k = 1 and 3:

LEo = ∑
k=1,3

{((
x[l] ∗ w[l]

k×1

)
∗ w [l]

1×k + b[l]
)}

(3)

3.2.2. Hierarchical Feature Aggregation (HFA)

The HFA block combines all the MFA modules to preserve and combine the feature
channels. To combine multiple MFA blocks, short identity residual connections are used,
because they are advantageous for the assembly of very deep networks. As shown in
Figure 3, the deep branching structure of the HFA employing multiple MFA blocks con-
nected through short residual paths diminishes gradient vanishing problems along the
aggregation paths and is defined as follows:

HFA = concatenate [CEo, IMo, LEo]. (4)

3.2.3. Encoder and Decoder Blocks

The general structures of the MFA and HFA are employed in the encoder and decoder
paths. The encoder is a sequence of convolution kernels and downsampling operators
used to extract high-order features. In contrast, in the decoder, these features are decoded
by upsampling operators to generate segmentation masks. We propose an HFA as the
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backbone of the encoder path, providing multiscale discriminative feature extraction. Fur-
thermore, the encoder and decoder paths are coupled with different residual connections
corresponding to different network layers. As this residual connection traverses from the
input layer to the deeper network layers, we denote them as “long residual connections”
(blue dotted line in Figure 3). As initial network layers pose generic context details, the
deeper stages are semantic and local. Thus, to obtain layer-specific feature information, we
present the CEM-based residual connections at the initial network layers (l = 1). Further-
more, the second network layer (l = 2) is designed with an IM-based residual connection.
Similarly, the third network layer is integrated with an LEM-based residual connection. The
CEM-, IM-, and LEM-based residuals are employed with stride convolutions to maintain
the dimensions that are proportional to the encoder and decoder paths. All the feature-
aggregation blocks in the initial network layer (l = 1) have an input filter size of 32, a filter
size of 64 in the second network layer (l = 2), and have a filter size of 128 they in the third
network layer (l = 3), respectively. In summary, each encoder layer consists of a sequence of
an HFA block coupled with the respective MFA-based long residual connection, followed
by 2 × 2 max pooling. Similarly, 2 × 2 upsampling is integrated with the MFA-based
long residual connection at the decoder path. The MFA-based long residual connection
from shallower to deeper layers progressively aggregates multiscale feature information
and enhances feature representation. The process of aggregation begins at the shallowest,
largest scale and then progressively merges into deeper, smaller scales. In this manner,
deep features are improved as they are distributed through different stages of aggregation.
In addition, the guided block with multilevel convolution (3 × 1 followed by 1 × 3 and
1 × 3 followed by 3 × 1) provides effective attention for the features copied from the
encoder to the decoder, forming guided skip connections. These guided skip connections
use both higher- and lower-resolution feature information while performing upsampling
operations and help learn and refine misaligned boundaries simultaneously. In the final
step, the decoder layer output is passed to the 1 × 1 convolutional layer with sigmoid
activation functions. These layers function as classifiers, independently determining the
probability of each pixel belonging to there background or foreground.

4. Experimental Results

Extensive comparative experiments were conducted to evaluate the performance of
the proposed method and compare it with state-of-the-art methods. In addition, an ablation
study was performed to highlight the importance of each architectural module in the
proposed method.

4.1. Datasets
4.1.1. Skin-Lesion Dataset

We used the ISIC-2018 [37] and PH2 [38] datasets for our experiments. In the ex-
periments, the augmented ISIC-2018 and PH2 datasets were composed of 15,564 and
1200 images, respectively, with their associated ground-truth binary masks. The ISIC-2018
dataset included 15,564 images, which were partitioned into three categories: training
(9340 images), validation (3112 images), and testing (3112 images). Of the 1200 images in
the PH2 dataset, 960 were used for model training, 120 were used for validation and the
remaining 120 were used for model testing.

4.1.2. UFBA-UESC Dental Dataset

The diagnostic imaging center of the Southwest State University of Bahia (UFBA-
UESC) dental dataset [39] contained 1500 images for the classification and segmentation
of teeth in panoramic X-ray images. After data augmentation, there were 5400 images; of
these, 4320 were used for model training, 540 were used for validation and the remaining
540 were used for model testing.
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4.2. Experimental Settings

To ensure a fair comparison, all the experiments were performed under identical
conditions. The Keras framework and an NVIDIA GeForce RTX 3090 graphics processing
unit (GPU) were used for model training. GPU implementation was performed using the
NVIDIA CUDA deep neural network library (cuDNN). For comparison, we obtained the
codes of existing models and altered the parameters such as network layers to maintain
the same experimental environment across all methods. All existing and proposed models
were trained using the input dimensions of 256 × 256 × 3 and produce output dimensions
of 256 × 256 × 1 with the following hyperparameters; we selected Adam as an optimizer
for stochastic gradient descent, which optimizes the objective information of the model.
The batch size was set as 4, the learning rate was 0.001, the validation split was 0.2, the
maximum number of iterations was 100, and the total number of network layers was set to
3. Encoder and decoder blocks of the conventional methods used k × k sized convolution
kernels with k = 1 and 3, while the proposed method used a spatial group convolution with
k × 1 and 1 × k kernels where k = 1, 3, 5, and 7. In addition, all the comparison models used
a max-pooling operation 2 × 2 with a stride of 2. However, the proposed method used
max-pooling operations 2 × 2, 4 × 4, and 8 × 8 with a stride of 2. The Sigmoid function was
used as an output classifier for all models. The segmentation performance of the proposed
method was evaluated using accuracy (ACC). The accuracy was the percentage of pixels
correctly categorized in the input image and was defined as in (5). However, a higher
accuracy value does not always imply a superior ability for image segmentation. To better
correlate the performance of the obtained metric value against the obtained segmentation
outputs, we also evaluated the proposed method using two alternative metrics, such as
dice similarity coefficient (DSC) and Jaccard index (JI), which were defined as (6) and (7).

ACC =
TP + TN

TP + TN + FP + FN
(5)

DSC =
2.TP

2.TP + FP + FN
(6)

J I =
TP

TP + FP + FN
(7)

where TP (TN) represents the number of pixels correctly classified as positive (negative),
and FP (FN) represents the number of pixels incorrectly classified as positive (negative). The
DSC, JI, and ACC metrics were used to assess the segmentation accuracy by determining
whether the pixels were correctly classified as positive or negative. The evaluation metrics
Dice and JI are highly comparable. Both DSC and JI range from 0 to 1, with 1 denoting the
most similarity between predicted and true values. We also measured the processing times
of existing and the proposed methods by summing total training time and average test
time. Total training time is the total required time for a model to train and average test time
indicates the average times required to produce segmentation maps on the test images by
the given trained model.

4.3. Results and Discussions

The proposed method was compared with U-Net [10], M-Net [11], CE-Net [13], M-
SegNet [14], RA-UNet [15], nnU-Net [17], and CMM-Net [16]. Table 1 presents the ex-
perimental results for the proposed method and conventional methods with regard to
the segmentation accuracy for skin and tooth segmentation tasks. The proposed method
achieved a significantly higher segmentation accuracy than the other methods according to
the DSC, JI, and ACC metrics. As shown in Table 1, U-Net achieved a mean segmentation
accuracy of 0.92 for skin lesions and 0.93 for tooth segmentation with 1.9 M parameters.
The performance is attributed to the skip connections, which made the semantic level of
the encoder feature maps closer to that of the feature maps waiting in the decoder. M-Net
and CE-Net consistently outperformed U-Net, with CE-Net generating a large number of
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model parameters (approximately 7 M). M-SegNet with deep supervision (5 M parameters)
outperformed both M-Net and CE-Net regarding the DSC, with average improvements
of 3% and 2%, respectively. Although U-Net and M-Net exhibited lower computational
complexity, they achieved lower DSC values for both tooth and lesion segmentation. CE-
Net and M-SegNet exhibited comparable similarity scores to the proposed method but had
higher computational complexities.

Table 1. Comparison of the segmentation accuracy among the proposed method and conventional ones.

PH2 [38] ISIC-2018 [37] UFBA-UESC [39]Models
ACC DSC JI

Processing
Time ACC DSC JI

Processing
Time ACC DSC JI

Processing
Time

# of
Parameters

U-Net [10] 0.92 0.89 0.80 9.1 min 0.90 0.84 0.72 109.2 min 0.93 0.91 0.83 64.2 min 1,946,881
M-Net [11] 0.93 0.90 0.82 10.4 min 0.91 0.85 0.74 128.5 min 0.94 0.92 0.85 79.3 min 2,337,505
CE-Net [13] 0.94 0.91 0.84 36.2 min 0.93 0.86 0.75 188.9 min 0.95 0.92 0.85 168.9 min 7,356,929

M-SegNet [14] 0.96 0.93 0.87 19.2 min 0.94 0.86 0.75 159.5 min 0.96 0.93 0.87 123.6 min 5,468,932
RA-UNet [15] 0.94 0.90 0.82 12.6 min 0.93 0.86 0.75 137.8 min 0.95 0.90 0.83 84.2 min 2,935,505
nnU-Net [17] 0.95 0.91 0.84 91.9 min 0.94 0.87 0.77 767.5 min 0.95 0.91 0.84 591.3 min 28,285,984

CMM-Net [16] 0.96 0.94 0.87 45.3 min 0.95 0.88 0.79 309.6 min 0.96 0.92 0.85 268.4 min 10,252,673
Proposed 0.97 0.95 0.90 17.8 min 0.95 0.89 0.80 127.1 min 0.97 0.94 0.89 108.5 min 3,165,825

RA-UNet trains a 2D network, followed by a 3D network, resulting in a computationally
expensive network with poorly segmented results. Similarly, the nnU-Net and CMM-Net
architectures focus on effective model training and ignore architectural changes that are crucial
for accuracy improvements. Compared with the conventional methods, the proposed method
achieved higher ACC and DSC values with a moderate number of model parameters, exhibiting
the best performance. The improved performance of the proposed method was due to the
combination of the guided block and feature-aggregation modules. The HFA in the proposed
method acts as the backbone for discriminative feature extraction with MFA-based long residuals,
aggregates the network layers, and allows for gradients to flow through the network. The
MFA-based modules such as CEM, IM, and LEM use different kernel sizes k = 1, 3, 5, and 7 and
extract the features information at multiscale levels. Aggregating this multiscale information
helps to maintain the output feature resolutions. It is different from conventional U-net, M-net,
and CE-net methods, which use the low-resolution feature information obtained from fixed-
size kernel operations. In addition, although the proposed method uses larger kernel sizes
k = 5 and 7, it can be computed with smaller spatial kernel operations (1 × k and k × 1) with
the same kernel effect at the cost of significantly reduced model parameters. The MFA block
captures local feature information, whereas MFA-based long residuals help the model learn
latent features with reference to the input layer, and thus prevent the information loss which
usually occurs in the non-residual-based deep architectures such as nnU- Net and M-SegNet.
The proposed method employing the HFA and MFA obtained a hierarchically structured,
multiscale representation and achieved a higher segmentation accuracy than the other methods
with fewer parameters. Furthermore, the feature maps of the encoder are directly received
by the decoder in conventional methods, while the proposed method performs multilevel
convolution through the guided block, which can improve the boundary representation of the
skin lesions and teeth, and refines the misaligned boundaries with a multilevel spatial kernels.
Figure 4 shows the segmentation results for a skin lesion obtained using the proposed and
conventional methods with the PH2 and ISIC-18 datasets. Figure 4a,b show the original input
and preprocessed skin-lesion images, respectively. The input images with an overlay of ground
truth (red outline) and predicted lesion segmentation output (blue outline) for U-Net, M-Net,
CE-Net, M-SegNet, RA-UNet, nnU-Net, CMM-Net, and the proposed methods are shown in
Figure 4c–j. Similarly, Figure 5 shows the segmentation results for a tooth from the UFBA-UESC
dental dataset obtained using the proposed method and conventional methods. As shown in
Figures 4 and 5, U-Net, M-Net, and CE-Net misclassified some parts of the background skin as
lesions and failed to accurately distinguish between normal and lesion pixels. The M-SegNet
and RA-UNet models produced segmentation results with more noise in the dermoscopic
images. Compared with the proposed method, the outputs of both nnU-Net and CMM-Net
exhibited a significant variance from the ground-truth segmentation map. Furthermore, the
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proposed method produced subjectively well-segmented results by accurately capturing lesion
contours and sharp tooth boundary transitions.
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Figure 4. Qualitative comparison of the proposed method and conventional methods for a skin-lesion
dataset. From left to right: (a) original input images; (b) preprocessed images; (c–j) input images
with the overlay of ground truth (blue contour) and predicted outputs (red contour) indicating the
segmentation results obtained by U-Net, M-Net, CE-Net, M-SegNet, RA-UNet, nnU-Net, CMM-Net,
and the proposed method, respectively.
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Figure 5. Qualitative comparison of the proposed method and existing methods for the UFBA-UESC
dental dataset. From left to right: (a) original input image; (b) ground-truth segmentation map;
(c–j) segmentation results obtained using U-Net, M-Net, CE-Net, M-SegNet, RA-UNet, nnU-Net,
CMM-Net, and the proposed method, respectively.
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4.4. Ablation Study

The proposed framework is composed of three main components: an MFA, an HFA,
and a guided block for the segmentation of medical images. To verify the contributions of
each component, we performed ablation studies with skin-lesion datasets using four variants
of the proposed model. The details of the proposed architecture variants are presented in
Table 2. Variation 1 was the basic encoder–decoder network with a 3 × 3 convolution ker-
nel for feature extraction, followed by 2 × 2 max pooling and 2 × 2 upsampling layers
at the encoder and decoder, respectively. Feature maps were copied from the encoder
to the decoder via skip connections. Variation 2 comprised the proposed HFA module,
which replaced the typical 3 × 3 convolution in variation 1. Similarly, for both the en-
coder and decoder stages, Variation 3 included a normal 3 × 3 convolution combined
with MFA-based long residual connections. In addition, the proposed guided block was
incorporated into Variation 1 to obtain attention-based skip connections, which resulted
in Variation 4. Finally, the proposed method (with all the components) was tested for
comparison. According to the experimental results, the Variation 1 model with the basic
encoder–decoder architecture exhibited the fewest model parameters and low DSC and
ACC values. For Variation 3 with multiscale-based long residuals, the ACC and DSC were
improved by 0.5% and 1%, respectively, and the number of parameters was slightly re-
duced (approximately 1.2 M) compared with Variation 1. Variation 2, in which the standard
3 × 3 convolutions were replaced with the HFA, exhibited ACC and DSC improvements of
1.5% and 2%, respectively, compared with Variation 3. Hence, the HFA was advantageous
compared to the MFA, achieving higher accuracy and similarity scores. Furthermore, the
guided block, which produced guided skip connections, contributed to the maximum
results compared with the individual HFA- and MFA-based Variations 2 and 3.

Table 2. Comparison of the proposed method and its variations for skin-lesion test images.

Model ACC DSC JI Basic HFA MFA with
Residual

Guided
Block

# of
Parameters

Variation 1 0.926 0.893 0.809 3 × × × 1,946,881
Variation 2 0.947 0.923 0.865 × 3 × × 2,045,089
Variation 3 0.932 0.903 0.828 3 × 3 × 1,209,345
Variation 4 0.956 0.935 0.885 3 × × 3 2,119,809

Proposed 0.972 0.951 0.903 3 3 3 3 3,165,825

However, the segmentation outcomes obtained by the individual components were
inferior to those obtained by the proposed method, which integrated all the components.
Furthermore, the combination of HFA, MFA and guided attention led to the optimal per-
formance: 97% ACC, 95% DSC, 90% JI, and 3 M parameters. These results represent an
improvement of 6% in the DSC compared with the baseline encoder–decoder architecture,
demonstrating the superiority of the proposed combination of aggregation modules and
guided blocks to the individual components.

We performed a Wilcoxon rank-sum test to compare the proposed method with
existing methods to verify a statistically significant difference in the DSC scores. Table 3
presents the p-values from the Wilcoxon rank-sum tests for the DSC metric obtained using
the PH2 dataset. As shown in Table 3, the proposed method with higher DSC scores for
most of the skin image samples attains a p-value of less than 0.05 (5%), which indicates that
the proposed method outperforms the other conventional methods.

Figure 6 presents a box plot of the ACC metric for the proposed method and existing
methods for the tooth segmentation task. As shown, the proposed method achieved better
results than the state-of-the-art methods with regard to the statistical dispersion of the
samples in the dental dataset. This indicates that the proposed method can achieve more
consistent results regarding segmentation accuracy.
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Table 3. p-values from Wilcoxon rank-sum tests for the DSC metric using the PH2 dataset.

Metric
U-Net

vs.
Proposed

M-Net
vs.

Proposed

CE-Net
vs.

Proposed

M-SegNet
vs.

Proposed

RA-UNet
vs.

Proposed

nnU-Net
vs.

Proposed

CMM-Net
vs.

Proposed

DSC 0.010 0.015 0.024 0.031 0.033 0.035 0.038
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5. Conclusions

We propose a novel and effective multiscale and hierarchical feature-aggregation
network for the segmentation of medical images. It contains two feature-aggregation
modules—MFA and HFA—to better fuse information across the network layers. In addition,
guided skip connections are used to transfer features from the encoder to the decoder
for recovery of the spatial information lost during downsampling. Experimental results
obtained using publicly available datasets indicated that the proposed model has a good
generalization ability and can, therefore, be applied to various medical image segmentation
tasks. For further performance improvements, we will consider transfer learning and
cascading structures for medical-image segmentation. In the future, it would be important
to modify the structures of the current convolutional neural network models to construct
more effective systems. Furthermore, well-defined architectures that can work with various
types of health data are required to solve complicated challenges in the area of healthcare.
In terms of explainable artificial intelligence, it is also critical to integrate deep learning
models in distributed systems, which can drastically reduce processing times.
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