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1  | INTRODUC TION

For hundreds of millions of years, plants have been evolving chemical 
defenses against insect herbivores; for just as long, insect herbivores 
have been evolving to overcome these defenses (Labandeira, 2013). 
Likewise, for close to a century now in agricultural systems, insect 
herbivores have been evolving to overcome another set of chem-
ical defenses: synthetic insecticides (Melander, 1914). The pre-ad-
aptation hypothesis posits that when herbivorous insects evolve 
resistance to synthetic insecticides, they do so through modifica-
tion of the same systems used against the chemical defenses of 
their host plants (Després, David, & Gallet, 2007; Gordon, 1961). 
Empirical support can be found from instances of cross-resistance, 
whereby adaptation of an herbivorous insect population to stout 

host plant defenses appears to confer increased resistance to insec-
ticides (Dermauw et al., 2013; Zhu, Moural, Nelson, & Palli, 2016). 
Further support can be found in research linking the breadth of 
an insect's resistance to insecticides to the breadth of an insect's 
diet, along with specific diet components (Hardy, Peterson, Ross, 
& Rosenheim, 2018). Nevertheless, many predictions that could be 
drawn from the pre-adaptation hypothesis have yet to be rigorously 
tested (Hardy et al., 2018). Here, we consider two aspects of herbi-
vore diet history that could influence the rate of resistance evolution: 
herbivore diet breadth and insecticide-phytochemical similarity.

The first prediction we derive from the pre-adaptation hypoth-
esis is that insecticide resistance should evolve faster in insect spe-
cies with broader diets, that is, diet generalists, since such species 
will have had evolutionary interactions with more diverse host plant 
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Abstract
Herbivorous insects must circumvent the chemical defenses of their host plants and, 
in cropping systems, must also circumvent synthetic insecticides. The pre-adaptation 
hypothesis posits that when herbivorous insects evolve resistance to insecticides, 
they co-opt adaptations against host plant defenses. Despite its intuitive appeal, few 
predictions of this hypothesis have been tested systematically. Here, with survival 
analysis of more than 17,000 herbivore–insecticide interactions, we show that resist-
ance evolution tends to be faster when herbivorous insect diets are broad (but not 
too broad) and when insecticides and plant defensive chemicals are similar (but not 
too similar). These general relations suggest a complex interplay between macro-evo-
lutionary contingencies and contemporary population genetic processes, and pro-
vide a predictive framework to forecast which pest species are most likely to develop 
resistance to particular insecticide chemistries.
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defenses and will have thereby acquired more, or more open-ended 
pre-adaptations for resistance (Ali & Agrawal, 2012; Krieger, Feeny, 
& Wilkinson, 1971). Note that this prediction runs counter to what 
one might predict based on the classical population genetics theory, 
namely that resistance evolution should be faster in diet specialists, 
as a higher proportion of a specialist population would occur on a 
crop, and therefore be exposed to selection exerted by insecticides 
(Georghiou & Taylor, 1986). In fact, the importance of selection fre-
quency is the foundation of refuge-based approaches for delaying 
resistance evolution (Carrière et al., 2012; Jin et al., 2015) (although 
empirical evidence for the efficacy of refuges has come mainly from 
genetically modified crops). Thus, if we were to observe a positive 
effect of diet breadth on the rate of resistance evolution, it would 
suggest that the legacy of diet evolution can override powerful con-
temporary population genetic forces.

The second prediction we derive from the pre-adaptation hy-
pothesis is that insecticide resistance should evolve faster when 
there is a closer similarity between the chemical structure of a pes-
ticide and the phytochemicals that occur in an insect's diet. The 
premise is that metabolic resistance mechanisms may require only 
slight modifications to be effective against nonanalog substrates 
(Berenbaum, Cohen, & Schuler, 1992; Dermauw et al., 2013). That 
being said, plant secondary metabolites involved in defense often 
play complex roles in herbivorous insect biology (Scott & Wen, 2001). 
For example, they can be reused for an herbivore's defense against 
its own natural enemies (Müller et al., 2001; Smilanich, Fincher, & 
Dyer, 2016). This complexity raises the possibility of antagonis-
tic pleiotropy for resistance-conferring alleles: Some evolutionary 
paths to resistance might come at the expense of disrupting other 
critical biological functions. Hence, the rate of resistance evolution 
might increase along with insecticide-phytochemical similarity only 
up to a point, beyond which it drops off, as higher chemical similarity 
begets pleiotropic obstacles to adaptation. If antagonistic pleiotropy 
is significant, we might expect the highest risk of resistance evolu-
tion at some intermediate level of chemical similarity.

To test these predictions, we used mixed-effect survival model 
analysis of more than 17,000 specific insect–insecticide interactions.

2  | MATERIAL S AND METHODS

2.1 | Response variable: Time until resistance 
evolved

Generic insecticide registration dates for the “all-in” data set were 
taken from the Pesticide Properties Database (https://sitem.herts.
ac.uk/aeru/ppdb/). For “top-crops” data, crop-specific insecticide 
registration dates (15,183 in all) were obtained from the Agrian 
label lookup tool (https://home.agrian.com/) and the EPA Pesticide 
Registration Database (https://iaspub.epa.gov/apex/pesti cides/ 
f?p=113:1:::NO:1,5::). In survival analysis, there are two kinds of end 
points: the occurrence of an event (here, the evolution of insecti-
cide resistance) or the end of the observational period. In the latter 

case, the observation is right-censored, that is, set equal to the most 
recent year of observations, 2020. For the first kind of stop times, 
we used the earliest reported case of resistance in the Arthropod 
Pesticide Resistance Database (https://www.pesti cider esist ance.
org/). In 72 cases, the earliest crop-specific registration date was 
more recent than the earliest documented case of resistance, usually 
because resistance preceded the formation of the EPA in 1970. For 
those cases, we defaulted start times to the generic first-registration 
date. For three additional cases, the earliest report of resistance pre-
ceded the earliest registration date of any kind. These cases were 
excluded from the analysis.

2.2 | Predictor variables

The diet breadth of each herbivorous insect species was charac-
terized as the richness of host plant genera, with data compiled by 
Hardy et al. (2018). To calculate an index of insecticide-phytochemi-
cal similarity, we began by pulling data on the chemical constituents 
of plant species from the USDA’s Phytochemical and Ethnobotanical 
Database (https://phyto chem.nal.usda.gov/phyto chem/)—in all 
30,306 phytochemical-in-plant-species occurrences. The extent of 
these characterizations varies from one plant species to another, but 
are especially comprehensive for the top 40 crop species for which 
we had crop-specific pesticide registration dates. Next, for each 
of the 15,215 unique phytochemicals in these characterizations 
along with the 240 unique insecticides to which at least one spe-
cies has evolved resistance, we downloaded—if it was available—the 
canonical SMILES (Simplified Molecular-Input Line-Entry System) 
representation from PubChem (https://pubch em.ncbi.nlm.nih.gov/). 
These are a simple text-based specification of chemical structures. 
They were obtained for 8,416 phytochemicals, a little more than half 
of the total; excluded were a mix of chemical species such as various 
alcohols, aldehydes, amino acids, inorganic salts, large proteins, and 
variants of chemical forms that were successfully characterized. We 
next calculated all pairwise Tanimoto distances between standard 
molecular feature fingerprints derived from each SMILES form using 
the R package RxnSim (Giri, 2017) in R v3.6.2 (R Core Team, 2019). 
These fingerprints are vectors of hundreds of binary molecular fea-
tures. For our index of overall similarity between an insecticide and 
an insect's diet phytochemicals, we used the highest similarity score 
(which range from zero to one). The all-in and top-crops data sets are 
provided in CSV format as Appendix S1 and S2.

In addition to these two diet-related predictors (host breadth 
and phytochemical similarity), we included several covariates that 
are also likely to affect the rate of resistance evolution. For each 
species, data on generation time (voltinism) and ploidy (diplodip-
loidy versus haplodiploidy) were from Rosenheim, Johnson, Mau, 
Welter, and Tabashnik (1996) and Hardy et al. (2018). In theory, 
resistance evolution is expected to be faster in haploid species, 
as heterozygosity cannot shield deleterious alleles from selection 
(Crowder & Carrière, 2009), and previous empirical evidence indi-
cates that voltinism may have complex effects on rates of adaptation 

https://sitem.herts.ac.uk/aeru/ppdb/
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(Rosenheim et al., 1996). As an index of the severity of pest status 
and documentation bias of each insect species, we used counts of 
PubMed citations (from now on referred to as “documentation in-
tensity”). We characterized the mode of action of each insecticide 
according to the classification schema of the Insecticide Resistance 
Action Committee, filling in missing classifications with data from 
Pesticide Properties Database.

After removing all incompletely characterized records, the top-
crops data set comprised 332 cases of resistance evolution and 
5,305 right-censored observations (i.e., cases in which resistance 
has not yet evolved and been documented). The all-in data set com-
prised 748 cases of resistance evolution and 16,654 right-censored 
observations.

2.3 | Statistical analysis

We estimated effects of predictor variables on the time until resist-
ance evolved by fitting mixed-effect proportional hazards models 
(i.e., Cox models) with the R package coxme (Therneau, 2020b). The 
main fixed effects were herbivore diet breadth, insecticide-phyto-
chemical similarity, ploidy, voltinism, and documentation intensity. 
Diet breadth and documentation intensity were log-transformed. 
Diet breadth, documentation intensity, and voltinism were mean-
centered and max–min-scaled. We did not center and scale insecti-
cide-phytochemical similarity, as it already ranged from zero to one. 
In addition to the main fixed effects, we included second-order poly-
nomial terms for herbivore diet breadth, insecticide-phytochemical 
similarity, and voltinism. The model also included as random-effects 
insecticide mode of action and a nesting of species identities within 
taxonomic families. In addition to this proportional hazards model—
which was the best fit as measured by AIC—we looked at a variety of 
alternative parameterizations. Full model specifications are provided 
as R code in Appendix S3.

In addition to fitting models with the response variable derived 
from crop-specific versus generic insecticide registration dates (top-
crops versus all-in data sets), we took two additional steps to exam-
ine the robustness of our estimates. Proportional hazards models 
assume that fixed effects are proportional, that is, that covariate 
effects on event hazards do not change over time. Moreover, they 
assume that hazards are linear combinations of covariate effects. 
To examine the robustness of our inferences to violations of the 
assumption of proportionality, we fit additive hazards models (i.e., 
Aalen's models), which relax the assumption of proportionality, using 
the R package survival (Therneau, 2020a). Additive hazards models 
were fit with the same fixed effects as the best-fitting proportional 
hazards model, but current implementations are limited to just one 
random-effect variable, specified as a so-called liability term. Thus, 
we could not incorporate the full random-effect structure in our 
main proportional hazards model. Instead, we included as a ran-
dom-effect-only insecticide mode of action, which accounted for 
the greatest random variation in the proportional hazards model 
(Table S1). To examine the robustness of our inferences to potential 

nonlinear interactions between model covariates, we used the R 
package ranger (Wright & Ziegler, 2017) to conduct a random forests 
survival analysis. In this approach, complex nonlinear interactions 
are built-in, and there is no distinction between fixed and random 
effects. Because in the ranger implementation there is a limit to the 
number of states that can be taken by a discrete variable, we could 
not include a term for herbivore species identity.

3  | RESULTS

We restricted our analysis to 103 species of North American crop 
pests for which resistance of any kind has been documented (more 
than half of which have evolved resistance to multiple insecticides) 
and for which we could obtain information about several potential 
risk factors. Our aim was to predict rates of insecticide resistance 
evolution using survival analysis. At the core of a survival analysis 
is a hazard function that estimates the risk of an event occurring, in 
this case, the risk of a particular herbivorous insect species evolving 
resistance to a particular insecticide. We wanted the outputs of that 
hazard function to depend on a herbivorous insect's diet breadth, 
and some measure of the chemical similarity between an insecti-
cide and the phytochemicals in a herbivorous insect's diet, as well 
as several additional covariates that could affect resistance risk, spe-
cifically, insecticide mode of action and a herbivorous insect's gener-
ation time, ploidy, severity of pest status, and phylogenetic ancestry.

To characterize how long it took for each case of resistance to 
evolve, we needed evolutionary start and stop times. For start times, 
we used pesticide registration dates. In one data set, which we refer 
to as the “all-in” data, we used the year at which a pesticide was first 
registered for use on any crop, and in a second data set, referred 
to as the “top-crops” data, and which was restricted to the top 40 
crop species (spanning 25 genera) in the United States, we used as 
evolutionary start times the first year at which an insecticide had 
been registered for use on a crop genus used by the insect herbivore.

The main features of the fitted hazards models were consistent 
across top-crops and all-in data sets. Here, we share in detail only 
the results of the crop-specific (top-crops) models. We leave a full 
summary of the all-in results in Figures S1-S3 and Tables S1 and S2.

Looking at the top-crops data, each of the 72 examined insec-
ticides was a closest match to one of 55 phytochemicals known to 
occur in the diets of the insect herbivores, which occur on at least 
one of our top crops, with maximum insecticide-phytochemical sim-
ilarities ranging from 0.18 to 1 (Figure 1). For the all-in data set, we 
examined 169 pesticides, which most closely matched one of 1,016 
phytochemicals in herbivore diets. Maximum insecticide-phyto-
chemical similarities ranged from 0.079 to 1. The majority of clos-
est (or identical) insecticide-phytochemical matches were between 
synthetic pyrethroids and pyrethrins (sodium channel modulators; 
Figure 1), well-known naturally occurring insecticides.

Estimated effects for a proportional hazards model are shown 
in Figure  2 and summarized in Table S3. Herbivore diet breadth had 
a U-shaped effect on the rate of insecticide resistance evolution; 
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the main effect was insignificant, whereas the second-order ef-
fect was significant and positive (coefficient: 40.6; p-value = .004). 
Thus, the mapping of diet breadths to resistance times was a con-
cave function with no overall increasing or decreasing trend. 
Insecticide-phytochemical similarity had a hump-shaped effect on 
rates of resistance evolution; the main effect was insignificant, but 
the second-order effect was significant and negative (coefficient: 
−13.2; p-value = .02). Documentation intensity positively covaried 
with resistance evolution (coefficient: 5.3; p-value < .001). Neither 
Voltinism nor ploidy had a significant effect.

Proportional hazards models assume that hazards are constant 
over time. We also fit an additive hazards model that relaxed this 
assumption, although at the cost of a less realistic set of random 
effects. Results of this additive model were largely congruent 
with those from proportional hazards models (Figure 3, Table S4), 
but differed in the following ways. In the additive model, the main 
effect of diet breadth was positive and just short of significant 
(coefficient: 0.02; p-value = 0.07). Simply put, increasing diet 
generalism appeared to increasingly elevate the risk of resistance 
evolution, and there was no realized rate of adaptation advantage 
for specialists. The first- and second-order effects from voltinism 
were negative and significant (first-order coefficient: −0.037; 
first-order p-value = .0027; second-order coefficient: −0.034; 
second-order p-value = .0013). Also, in the all-in model, the main 
effect of insecticide-phytochemical similarity was positive and 
significant (coefficient: 0.027; p-value 0.0035), meaning that 
there was an overall increase in risk from chemical similarity. To 
repeat, this additive hazards model relaxes the assumption that 
effects are constant over time, but has a less complex set of ran-
dom effects.

The relative importance of predictor variables in a random for-
ests survival analysis is shown in Figure 4. This ranking is consistent 
across the top-crops and all-in data sets (Figure S3). The prediction 
error (1 – Harrell's concordance index) was ~18%. This error was 
~15% for the all-in data set. In a random forest analysis, one does not 
estimate variable coefficients per se, but we can get a sense for the 
overall congruence between the random forest survival analysis and 
the proportional hazards model analysis by looking at the correlation 
between predictions of resistance evolution rates, for each herbi-
vore–insecticide combination. Pearson's coefficient for the correla-
tion between predictions was 85% (p-value < 2.2e-16).

4  | DISCUSSION

Does an herbivorous insect's evolutionary diet history predict the 
rate of insecticide adaptation? It seems so, although in complex 
ways. We tested two main predictions. The first was that the risk of 
resistance evolution would depend on an herbivore's diet breadth. 
Following the pre-adaptation hypothesis, we expected faster evo-
lution of resistance in generalists, as generalists should have more 
pre-adaptive capacity (Dermauw et al., 2013; Krieger et al., 1971). 
On the other hand, following classical population genetics theory, we 
expected faster evolution of resistance in specialists, as specialists 
would be more often exposed to selection from insecticide applica-
tions on specific crops (Georghiou & Taylor, 1986). What we found 
was evidence in support of both predictions. Resistance evolution 
was faster in the most specialized species, and in the most general-
ist. Thus, we have indirect evidence for the importance of population 
genetic features affecting the efficiency of selection, as well as the 

F I G U R E  1   Chemical similarity 
between insecticides and phytochemicals. 
Boxplots depict Tanimoto similarity 
(0 = highly dissimilar; 1 = highly similar) 
between 72 insecticides and their closest 
phytochemical analogs, grouped according 
to insecticide mode of action Insecticide mode of action
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potential for macro-evolutionary history to override those population 
genetic forces by shaping the pre-adaptive capacity of populations.

The second main idea we sought to test was that the rate of re-
sistance evolution would depend on the chemical similarity between 
a particular insecticide and the phytochemicals that occur in an her-
bivore's diet. Following the pre-adaptation hypothesis, we predicted 
faster resistance evolution when insecticides and phytochemicals 
were more similar in chemical structure. If herbivorous insects 
overcome insecticides with adjustments to systems to overcome 

plant defenses (Després et al., 2007; Gordon, 1961), a close simi-
larity between plant defenses and insecticides could mean that rel-
atively small adjustments would suffice. On the other hand, since 
the secondary metabolites that are used in plant defense often play 
multifarious roles in herbivorous insect biology (Raubenheimer & 
Simpson, 2009; Scott & Wen, 2001), we expected that high insec-
ticide-phytochemical similarity could impede resistance adaptation 
via antagonistic pleiotropy. Here again, we found evidence support-
ing both predictions. The risk of resistance evolution increased with 
increasing insecticide-phytochemical similarity up to a point and 

F I G U R E  2   Effects of predictors on probability of insecticide 
resistance evolution. Forest plots depict top-crops proportional 
hazards model risk factors. Boxes denote estimated fixed effects. 
Whiskers show 95% confidence intervals (+ or − 1.96 * SE). The 
vertical red line denotes an effect of zero

Diet breadth
Diet breadth2

Chem. similarity
Chem. similarity2

Voltinism2

Voltinism
Ploidy

Doc. intensity

F I G U R E  3   Effects of predictors on 
probability of insecticide resistance 
evolution over time. Line plots depict 
cumulative hazards effects from top-crops 
additive hazards model (light shading 
represents 95% confidence intervals). The 
intercept plot shows how the baseline 
risk of insecticide resistance increases 
over time. The rest of the plots show how 
each model covariate modify that baseline 
hazard

InterceptDoc. intensity Ploidy

VoltinismChem. similarityHost breadth

tceffe drazah evitalu
mu

C

Time (years)

Host breadth2 Chem. similarity2 Voltinism2

F I G U R E  4   Top-crops random forest survival model variable 
importance

Chem. similarity
Ploidy

Insect order
Insect family

Doc. intensity
Diet breadth

Insecticide MoA
Voltinism
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then dropped off toward the highest similarities. As for diet breadth, 
we found that the risk of resistance evolution is determined by both 
the legacy of diet history and contemporary genetic constraints on 
adaptation.

We have stressed the results of the mixed-effect proportional 
hazards model (versus the additive hazards model), as it is the model 
that most fully accounts for the potentially confounding factors of 
phylogenetic coancestry and variation in insecticide modes of action. 
The influential predictors were largely the same across models, but 
the shape of some relationships differed. Specifically, in the addi-
tive hazards models, increases across the full range of diet breadths 
were linked to increases in resistance evolution risk (Figure 3 and 
Figure S2). Thus, if we relax the assumption that risks have been con-
stant over time, and use a simpler (and less realistic) random variable 
structure, pre-adaptive capacity (greater diet generalism) would seem 
to be even more important than contemporary population genetic 
forces (acting disproportionately on diet specialists) in governing the 
risk of resistance evolution. Another difference was that in the addi-
tive hazards model of the all-in data, the risk of resistance evolution 
increased monotonically with increasing insecticide-phytochemical 
similarity. As a reminder, in the proportional hazards model, the effect 
was hump-shaped. In this case, the differences in fixed effects could 
be due to changes in the random-effects structure; if we drop the tax-
onomic random effects from the proportional hazards model (leaving 
only random effects from insecticide mode of action), we also find 
a positive monotonic relationship. The additive hazards model also 
found a significant convex effect of voltinism on the risk of resistance 
evolution. This is consistent with results from previous work (Hardy 
et al., 2018; Rosenheim et al., 1996), but so far has eluded explanation. 
Here, we treat voltinism as a nuisance parameter and refrain from in-
terpretation. The same goes for ploidy. In the additive hazards models, 
haplodiploidy caused a small but significant increase in the risk of re-
sistance evolution. This is consistent with theory: In haploids, selec-
tion against insecticide-susceptible alleles is stronger, as they cannot 
be masked by heterozygosity (Crowder & Carrière, 2009).

To justify our predictions of how host-use history might affect 
rates of resistance evolution, we focused on metabolic resistance. 
Another common mode of resistance is target site insensitivity, where 
a mutation causes a structural change in the vicinity of an insecticide's 
binding site—for example, on a sodium-ion channel protein or a neu-
ral modulator receptor (Sparks & Nauen, 2015)—that reduces binding 
efficiency. Target site insensitivity is also a means by which herbivo-
rous insects evolve to resist host plant defenses (e.g., Zhen, Aardema, 
Medina, Schumer, & Andolfatto, 2012). Thus, insofar as insecticides 
and plant defensive chemicals share binding sites, the pre-adaptation 
hypothesis could also be used to predict insecticide resistance via tar-
get site insensitivity. But the specific predictions may differ from those 
we made for metabolic resistance; for example, target site insensitivity 
to plant defensive chemicals appears to be more common in herbi-
vores with more specialized diets (Zhen et al., 2012).

Though our study presents a novel integration of diverse 
data to address a fundamental question in evolutionary biology, 
we acknowledge several shortcomings. First, our estimates of 

insecticide-phytochemical similarity were challenged by the difficulty 
of modeling the structure of many of the phytochemicals and deter-
mining biologically relevant shared features (Maggiora, Vogt, Stumpfe, 
& Bajorath, 2014), as well as the uneven intensity at which host plant 
secondary chemistries have been characterized. This may have con-
tributed to the relatively low importance of phytochemical similarity 
in the random forests survival analysis (Figure 4). Second, survival 
models are seldom used in evolutionary ecology research, and current 
implementations offer limited means of incorporating phylogenetic 
coancestries as random effects. Lastly, as in almost any ecological 
study, we have explicitly incorporated only few of the potential vari-
ables that could in some way affect resistance evolution. Our model 
construction was guided mainly by expediency. Thus, the significant 
effects that we identified might not be directly causal. In fact, they 
are almost definitely not. For example, when we predict that a broad 
diet will increase the risk of resistance evolution, diet breadth itself 
encompasses several latent genetic, physiological, and population ge-
netic variables that are more directly related to the evolution of insec-
ticide resistance. Examples of such latent variables are the diversity 
and substrate specificity of detoxification enzymes, the modularity of 
gene expression networks, and the standing genetic diversity in pop-
ulations (Hardy, Kaczvinsky, Bird, & Normark, 2020). Hence, the high 
rates of resistance evolution among diet generalists should be inter-
preted as denoting the ultimate importance of yet-to-be characterized 
differences in the biology between generalists and specialists.

In this study, we used survival models primarily to explain 
variation in the time it took for herbivorous insect populations 
to evolve resistance to insecticides. The same models can also 
be used to predict future cases of resistance. For example, ac-
cording to our models, the highest risks are for a few major pests 
(Heliothis virescens, Leptinotarsa decemlineata, Myzus persicae, 
Plutella xylostella) evolving resistance to mostly pyrethroid insec-
ticides (Tables S5 and S6). Perhaps it comes as no surprise that the 
highest risks are for some of the most notorious pest species, and 
to one of the most often-resisted insecticide classes. But it is our 
hope that these predictions will help direct management strat-
egies to forestall resistance evolution. Indeed, our predictions 
cover likely cases of future resistance for each of the 103 pest 
species considered. Thus, the potential for shaping resistance 
management strategies is broad.

5  | CODE AVAIL ABILIT Y STATEMENT

R code used to curate and analyze data is available in Appendix S3.
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