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Acoustic hologram optimisation 
using automatic differentiation
Tatsuki Fushimi1,2,5*, Kenta Yamamoto1,3,5 & Yoichi Ochiai1,2,4

Acoustic holograms are the keystone of modern acoustics. They encode three-dimensional acoustic 
fields in two dimensions, and their quality determines the performance of acoustic systems. 
Optimisation methods that control only the phase of an acoustic wave are considered inferior to 
methods that control both the amplitude and phase of the wave. In this paper, we present Diff-PAT, 
an acoustic hologram optimisation platform with automatic differentiation. We show that in the most 
fundamental case of optimizing the output amplitude to match the target amplitude; our method 
with only phase modulation achieves better performance than conventional algorithm with both 
amplitude and phase modulation. The performance of Diff-PAT was evaluated by randomly generating 
1000 sets of up to 32 control points for single-sided arrays and single-axis arrays. This optimisation 
platform for acoustic hologram can be used in a wide range of applications of PATs without introducing 
any changes to existing systems that control the PATs. In addition, we applied Diff-PAT to a phase 
plate and achieved an increase of > 8 dB in the peak noise-to-signal ratio of the acoustic hologram.

Acoustic hologram is becoming an imperative part of a wide range of acoustics applications such as in the 
fields of medicine1–3, biology4–8, and engineering9–11. The reconstruction accuracy of the acoustic field from the 
hologram plays a significant role in determining the performance of the system. Thus, developing an acoustic 
hologram optimiser that can generate holograms with accurate field reconstruction is of significant interest of 
the field. Recent advancement of airborne phased array transducers (PATs) have enabled new applications such 
as airborne ultrasound tactile display (AUTD)12,13 and acoustic levitation14–17. Acoustic levitation in particular 
is used for digital fabrication18,19, display applications20–25 and sample holding in medicine26,27, physics28,29 and 
chemistry30. In all of these applications, acoustic holograms must generate a pressure control/focal point at a 
specified position. The control point is modulated at low frequencies to create haptic sensations that are sensible 
by human hands in an AUTD12,13. Marzo et al. demonstrated that the control points can be converted into levita-
tion points by adding a twin-trap hologram in acoustic levitation14,15.

Generating an acoustic hologram for a single control point in space using PATs is trivial; however, it has been a 
significant challenge to generate a hologram that can create more than one control point in space. Multiple control 
points are becoming a necessary part of PAT applications, and low-quality acoustic hologram can lead to poor 
performances during practical use in applications. To address this challenge, Long et al. proposed Eigensolver 
and Tikhonov based regularisation in 201413. Marzo & Drinkwater proposed the iterative back propagation (IBP) 
method in 201814, and Plasencia et al. proposed GS-PAT in 202031. GS-PAT and IBP are both modified versions 
of the Gerchberg-Saxton algorithm32. Most recently, Sakiyama et al.33 demonstrated acoustic hologram optimi-
sation with the Levenberg–Marquardt algorithm (LMA); they examined the accuracy of ultrasonic stimulation 
in real and simulated environment. It should be noted that, while there are a number of hologram optimisers 
available within the research community, the usage of acoustic holograms to generate multiple focal points is a 
recent trend in the PAT community, and this field is yet to be developed. The listed acoustic hologram optimis-
ers above are the most cited or considered state of the art in the field. LMA and IBP optimise only the phase of 
the transducer array, and GS-PAT and Eigensolver can optimise both the amplitude and phase of the acoustic 
hologram. Placensia et al.31 demonstrated that hologram optimisation methods with amplitude control (i.e. 
GS-PAT and Eigensolver) achieve higher-quality holograms than phase-only methods such as IBP, and that the 
Eigensolver method achieves the best optimised result because it seeks the global solution.

In this paper, we propose Diff-PAT, a phase-only, gradient-descent algorithm with automatic differentia-
tion as a new platform for optimizing acoustic holograms. We demonstrate that in the most fundamental case 
of matching the output pressure to the target value; Diff-PAT achieve higher accuracy than the conventional 
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Eigensolver and GS-PAT with both amplitude and phase control. Automatic differentiation is different from 
other differentiation operations (such as numerical differentiation and symbolic differentiation). This method 
calculates a derivative of a function at high accuracy by applying chain rules to each elementary operation of a 
given function. It is commonly used in machine learning. Our work was inspired by Peng et al.34, who demon-
strated this automatic differentiation based method for optical holograms. In comparison to acoustic holograms, 
optical holograms have been studied for a longer period, and a number of hologram optimisation methods have 
been developed. However, Peng et al. demonstrated that the method using automatic differentiation outper-
forms conventional methods such as the Gerchberg-Saxton method. The challenge in optimising an optical or 
acoustic holograms is based on the fact that the loss function converts a complex number to a real number (non-
holomorphic objective35). Whilst this function is challenging to differentiate analytically (the derivative of the 
function is not just a constant35), latest automatic differentiation packages36–38 can differentiate these functions 
with high precision39 and ease34. Diff-PAT does have multiple modes of implementation, and the gradient of the 
loss function does not necessarily need to be solved using automatic differentiation. Analytical and numerical 
differentiation can be just as effective for identifying the necessary information; however, it is cumbersome to 
analytically calculate the loss function (Wirtinger calculus is an advanced concept in methematics34,40), and the 
implementation with numerical differentiation is not as efficient as automatic differentiation (details in section 
on computational time). Considering the development cycle of the ultrasonic application, the implementation 
and execution time should be kept minimal to allow the user to test out different array configurations and loss 
functions to fit their purpose. Thus, we argue that automatic differentiation is the best mode of implementation 
for Diff-PAT considering its potential usage in early to late stages of development. Achieving a high-quality 
acoustic hologram without amplitude control in PATs represents a significant contribution to the literature, as 
it allows PAT controllers to retain a simple design. Furthermore, we demonstrated the versatility of Diff-PAT by 
employing it for the optimisation of a phase plate41–44. With regard to phase plates, the iterative angular spectrum 
approach (IASA) developed by Melde et al.41 is the standard method for optimizing acoustic holograms for 
arbitrary acoustic fields. We achieved enhanced performance by simply applying Diff-PAT to the optimisation 
process, without altering the fundamental design proposed by Melde et al41.

The system overview of Diff-PAT is as shown in Fig. 1. We used JAX (ver. 0.2.5) on Python 3.6.9 to perform 
automatic differentiation and optimisation38. To identify a suitable acoustic hologram ( φn ) for a given control 
point xc , target amplitude Ac , and transducer position xt , we adopted the Adam optimiser45, which enables effi-
cient stochastic optimisation with only first-order gradients. Before the optimisation of hologram φn , we defined 
the following optimisation problem and objective function :

where L(φn, xc ,Ac , xt) =
C∑
c=0

(Ac −
∣∣pt(φn, xc , xt)

∣∣)2 . C is the total number of the control points, and pt(φn, xc , xt) 

is the total acoustic pressure at xc (see “Methods” section for details on pt ). In order to evaluate the effectiveness 
of Diff-PAT in PATs applications, acoustic hologram was generated for three setups of arrays (see Fig. 2a for 

minimize
φn

L(φn, xc ,Ac , xt)

Figure 1.   System overview for Diff-PAT. Loss function is evaluated by comparing the target and current 
acoustic amplitude, and automatic differentiation is used to calculate the derivative of the loss function. Image 
created using Microsoft Office PowerPoint 2019 (https://​www.​micro​soft.​com/​en-​ww/​micro​soft-​365/​power​
point), Unity Version 2019.2.1f1 (https://​unity.​com/), and MATLAB 2020a Update 4 (https://​www.​mathw​orks.​
com/​downl​oads/).

https://www.microsoft.com/en-ww/microsoft-365/powerpoint
https://www.microsoft.com/en-ww/microsoft-365/powerpoint
https://unity.com/
https://www.mathworks.com/downloads/
https://www.mathworks.com/downloads/
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layout); (1) a single-sided square array of 14 × 14 transducers (M = 196), (2) two square arrays of 16 × 16 trans-
ducers (M = 512), which face each other with a separation distance of 0.2355 m (i.e. a single-axis configuration) 
and (3) a single-sided square array of 32 × 32 transducers (M = 1024). The single-sided array is a common 
arrangement for AUTDs, and the single-axis array is a popular configuration for acoustic levitation14,46–48. The 
single-sided square array with M = 1024 was included in the evaluation in order to allow for the increasing 
demand of 1000 + transducer PATs18,49–51. All results in this manuscript are based on numerical simulation; 
however, the utilised numerical models are well established in PATs, and the optimised results obtained from 
numerical simulation have been shown to translate well into physical experiments13–15,21,31. Some discrepancy 
between numerical and experimental results has been reported; however its effect is limited to specific applica-
tion requirements such as accurate positioning24,47,52 and is otherwise is rarely considered. The initial phase 
estimate was randomly generated for all transducers. The gradient is calculated by reverse-mode automatic 
differentiation according to the computational graph of the objective function L , and the phase is optimised by 
updating itself with the Adam optimiser on JAX. The Adam optimiser updates the current phase estimate accord-
ing to the following45:

where m̂t = mt

1−βt1
 and, v̂t = vt

1−βt2
 are bias-corrected first and second raw moment estimates. 

mt = β1 ·mt−1 + (1− β1) · ∂L
∂φ

 , and vt = β2 · vt−1 + (1− β2) ·
(
∂L
∂φ

)2
 , where t is the iteration number, and mt 

and vt are both initially zero vectors. The required hyperparameters for the Adam optimiser, α , β1 , β2 , and ε were 
set as; 0.1, 0.9, 0.999, and 1× 10−8 , respectively.

Results and discussions
Convergence rate of Diff‑PAT.  In the following section, the performance of Diff-PAT is evaluated. The 
best optimiser for PATs can be defined as the most versatile and accurate optimiser. In order to assess this, the 
performance of algorithms are evaluated using three array configurations and five levels of control point num-
bers. Control points are randomly generated using the process described in the “Methods” section, and this 
framework covers basic expectations of PATs in a wide range of applications and configurations available to date.

We show that the optimisation function converges quickly to the target value (evaluated by the ratio 
Rp = |pt (xc)|

Ac
 between the target and current acoustic pressure amplitude), as shown in Fig. 2b (see Data Avail-

ability for results at each iteration). Increasing the number of control points (N) has a negative effect on the 
convergence rate of the solution, and the length of the error bar (which shows the standard deviation of Rp ) 
increases. However, the increase in the number of transducers has a negligible effect on the convergence rate 

φn = φn−1 − α ·
m̂t(√
v̂t + ε

)

Figure 2.   Array configuration and the convergence plot. (a) Configuration of single-sided and single-axis PATs. 
(b) Convergence of optimisation function L by the iteration number, control point number (N), and transducer 
number (M). The convergence is evaluated by Rp . The data point and the error bar show the mean and standard 
deviation of Rp , respectively, for the population of randomised 1000 sets of control points. Image created using 
MATLAB 2020a Update 4 (https://​www.​mathw​orks.​com/​downl​oads/), Adobe Illustrator 24.2.1 (https://​www.​
adobe.​com/​produ​cts/​illus​trator.​html), and Autodesk Fusion 360 ver. 2.0.9313 (https://​www.​autod​esk.​com/​produ​
cts/​fusion-​360/​overv​iew?​term=1-​YEAR).

https://www.mathworks.com/downloads/
https://www.adobe.com/products/illustrator.html
https://www.adobe.com/products/illustrator.html
https://www.autodesk.com/products/fusion-360/overview?term=1-YEAR
https://www.autodesk.com/products/fusion-360/overview?term=1-YEAR
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(Fig. 2b). We confirm that our algorithm converges sufficiently between 100 and 150 iterations in Fig. 2b, and 
the number of iterations was set to 150 in all evaluations of Diff-PAT in this study. The convergence rate of the 
algorithm can be further improved by hyperparameter tuning; however, this is beyond the scope of the current 
study. Here, the sum of squared error was chosen as the loss function; however, it could be evaluated using a 
number of different loss functions (such as Huber loss and sum of absolute error). The choice of loss function 
has an impact on the final results, and the sum of squared error gave the best results in the preliminary analysis. 
Further improvement in the loss function may be possible; however, such investigation is beyond the scope of 
the current study.

Accuracy of Diff‑PAT and comparison to conventional solvers.  The performance of Diff-PAT was 
compared with that of conventional algorithms in PATs which were made available by the authors of GS-PAT 
in C ++ 31. Here, we compare Diff-PAT with the Eigensolver, corrected Eigensolver, and GS-PAT. The results are 
shown in the box-and-whisker plot in Fig. 3. Each algorithm was tasked to optimise the acoustic hologram for 
the same dataset, which included 1000 sets of randomised control points and amplitude (GS-PAT’s iteration 
number was set to 100, as in their study31). Raw data for Fig. 3 can be accessed as stated in the Data Availability 
section. For readers wishing to inspect the optimised acoustic pressure field in detail, the exemplary field from 
each optimiser is available in the supplementary material. The visual inspection of the acoustic pressure field 
shows that the target is achieved as specified in Diff-PAT. Furthermore, we performed a simple case study to 
demonstrate that the identified solutions by Diff-PAT are optimised solutions and that Diff-PAT strictly follows 
limits imposed by physical laws; details of which can be found in the supplementary material. The optimised 

Figure 3.   Box-and-whisker plot comparing ES (Eigensolver), CES (corrected Eigensolver), GS (GS-PAT), and 
DP (Diff-PAT) for different combinations of control points (N) and transducer numbers (M). The box shows 
the lower quartile, median, and upper quartile of the dataset (the total number of sample size or control points 
is 1000 × N) for each algorithm, and the maximum whisker length is set as 1.5 times the interquartile range. The 
black circles indicate outliers (i.e., values greater than the whisker length). Analysed using MATLAB R2020a 
Update 4 with Statistics and Machine Learning Toolbox Ver 11.7 (https://​www.​mathw​orks.​com/​downl​oads/). 
Image created using MATLAB R2020a Update 4 (https://​www.​mathw​orks.​com/​downl​oads/), subtightplot (ver. 
1.2.0.0)57 and Adobe Illustrator 24.2.1 (https://​www.​adobe.​com/​produ​cts/​illus​trator.​html).

https://www.mathworks.com/downloads/
https://www.mathworks.com/downloads/
https://www.adobe.com/products/illustrator.html
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phases from Diff-PAT were exported to a performance analyser developed by the author of GS-PAT, and the 
performance was analysed on it to independently verify our solution.

Interestingly, when the control number is small (N = 2), Eigensolver performs poorly (median values for 
M = 196, 512 and 1024 are 0.737, 0.728 and 0.721, respectively, in Fig. 3). This large deviation is considered to be 
caused by the tendency of the regularisation policy to “homogenise transducer’s output rather than reconstruc-
tion accuracy”31. This performance can be improved by using the corrected Eigensolver method, and the median 
value improves to unity for M = 196, 512 and 1024 when N = 2.

In addition, the performance of Eigensolver and the corrected Eigensolver improves when the control point 
number increases from N = 2 to N = 32 in all types of arrays. Specifically, the interquartile (IQ) range value for 
the corrected Eigensolver method when N = 2 and M = 196 is 0.058; however increasing N to 32 improves the IQ 
range value to 0.015. We attribute this to the variability of the target amplitude in a given control point geom-
etry. As the number of control points increases, the average difference between the minimum and maximum 
amplitude decreases. This is partially because of how the target amplitude is assigned when control points are 
randomly generated. The sum of the amplitudes assigned to the control points is always equal to a constant (see 
the “Methods” section), and the difference between the minimum and maximum amplitude for a given control 
point geometry decreases from 523, 283, and 70 Pa for N = 2, 8, and 32, respectively (M = 196 with corrected 
Eigensolver). This statement is supported by further analysis of the dataset of the corrected Eigensolver when 
N = 2 and M = 196. When the control point geometries lie between the IQ range, the average amplitude difference 
between the control points is 443 Pa. However, beyond the IQ range, the average amplitude difference between 
the control points increases to 603 Pa.

As shown in Fig. 3, the performance of GS-PAT decreases as the number of control points N increases. When 
N = 2 and M = 196, the IQ range is 0.012; however, when N is increased to 32, the IQ range increases to 0.238. 
By contrast, increasing the number of transducers to M = 512 improves the performance of GS-PAT, and the 
IQ range drops to 0.119 when N = 32 and M = 512. These results are consistent with the observations made by 
Placensia et al. who claimed that GS-PAT is comparable to Eigensolver up to N = 8 when M = 512. However, as 
the transducer number increases to M = 1024, the performance of GS-PAT drops again (IQ range increases to 
0.089 and 0.146 for N = 2 and 32 when M = 1024).

Conventional solvers (i.e. Eigensolver, corrected Eigensolver, and GS-PAT) show a trade-off between the 
numbers of transducers and control points. In contrast, Diff-PAT outperforms all solvers in all cases evaluated in 
Fig. 3. Diff-PAT is robust against amplitude variability within the control point geometries and can consistently 
achieve the target amplitude despite the reduction in transducer numbers. In addition, while the Eigensolver 
type method and GS-PAT use both amplitude and phase control, Diff-PAT outperforms both methods with only 
phase control. It should be noted that Diff-PAT does have an increased background noise in comparison to the 
other algorithms (see acoustic pressure distributions from each solver in supplementary material). However, the 
increased background noise as obtained in this case study does not invalidate the effectiveness of Diff-PAT, as 
this is the direct results of the clearly set objectives in the loss function (i.e. only acoustic pressure at the target 
point is considered). Whether the increased background noise become an issue is largely dependent on each 
application. For example, in ultrasonic tactile displays increased background noise could lead to blunt haptic 
sensation, whereas in acoustic levitation, high background noise away from the control point may not arise as 
significant problem. It is difficult to ascertain the effect of the increased background noise, sole from the numeri-
cal simulation. Thus, the purpose of the paper is to set to introduce the effectiveness of Diff-PAT as the platform 
for optimizing acoustic systems, and we hope researchers from each field will develop suitable loss function 
which meet their purpose in their system.

Comparing computational time of each solver.  The computational time of the solver is insignificant 
for non-active PATs; however, some applications of PATs require consideration of the computational efficiency. 
Figure 4 compares the computational time of each solver, and all of the solvers were executed on the same high-
end desktop computer (4.2 GHz Core i7-7700 K, 64 GB RAM). Eigensolver and corrected Eigensolver (Fig. 4a 
and b) both show similar trends in computational time, and an increase in control points (N) does not have a sig-
nificant effect on their computational time. However, doubling the number of transducers results in a magnitude 
increase in the computational time for both Eigensolver and corrected Eigensolver (e.g. when N = 2, the compu-
tational time for Eigensolver is 6.2, 110, and 830 ms for M = 196, 512, and 1024, respectively). GS-PAT achieves 
the lowest computational time of all solvers in all of the conditions (lowest computational time is 0.12 ms with 
N = 2 and M = 196, and the highest computational time is 21 ms with N = 32 and M = 1024). The authors of GS-
PAT have reported up to 17,000 geometries per second31, making it well suited for application requiring rapid 
calculations. However, as demonstrated in Figs. 3 and 4, GS-PAT is inaccurate in comparison to other solvers, 
and the regions in which GS-PAT can achieve both accuracy and speed is limited.

Diff-PAT does not have a computational efficiency that is as high as that of GS-PAT; however, its computa-
tional time is comparable to that of Eigensolver type optimiser with M = 512. When M = 512 and N ≤ 4 , Diff-PAT 
is faster than the Eigensolver type method and when M = 1024, Diff-PAT is faster than the Eigensolver method 
in all cases of N. In addition, Diff-PAT scales well with an increasing number of transducers as shown in Fig. 4d. 
Given that the demand for high transducer number PATs is increasing18,49–51,53: Diff-PAT is already more suited to 
optimise large transducer number PATs than an Eigensolver type method, both in terms of accuracy and compu-
tational efficiency. Furthermore, there are abundant applications of PATs where the accurate reconstruction of the 
acoustic field is prioritised over computational speed18,20–22,54. Diff-PAT can also be implemented using numerical 
differentiation as stated earlier. The accuracy of Diff-PAT with numerical differentiation is comparable to that of 
automatic differentiation; however, its computational efficiency is lower than that of automatic differentiation, 
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as shown in the supplementary material. This is due to the fact that numerical differentiation is an O(n) process, 
whereas automatic differentiation scales better with the increasing number of variables in the loss function39.

Application of Diff‑PAT for Phase Plate.  In this section, we further explore the versatility of Diff-PAT 
by employing Diff-PAT for the optimisation of a phase plate41–44 which is used underwater. It has a significantly 
higher number of elements than PATs43 and is well-suited for testing the capabilities of Diff-PAT. The IASA 
developed by Melde et al. is one of the most popular optimisation methods for phase plates. Similar to the GS-
PAT and IBP methods, IASA also applies the Gerchberg–Saxton algorithm32. To create a phase plate version of 
Diff-PAT, the acoustic pressure field was assumed to be a plane wave41, and the angular spectrum approach55 was 
used to calculate the propagating acoustic field in the loss function (see “Methods” section for details).

Figure 5 compares the holograms optimised using IASA and Diff-PAT (see Supplementary Information for 
the acoustic holograms of IASA and Diff-PAT). The reconstruction accuracy of Diff-PAT is clearly higher than 
that of IASA. A simple visual inspection verifies that the acoustic hologram optimised using IASA, shown in 
Fig. 5a–c, has many artefacts and does not resolve the test image well (Fig. 5c). In contrast, the acoustic hologram 
optimised using Diff-PAT has a significantly improved image with minimal artefacts, as shown in Fig. 5a–b, and 
the USAF 1951 resolution test chart is clearly resolved in Fig. 5c. Quantitatively, the peak signal-to-noise ratio 
(PSNR) values for Diff-PAT are 16.4, 20.7 and 16.4 dB (Fig. 5a–c, respectively), and they are at least 8 dB higher 
the respective PSNRs of IASA. In practical applications of phase plates, these optimised acoustic holograms are 
encoded and fabricated into a plate41 using a 3D printer. As shown in the supplementary material, Diff-PAT’s 
acoustic hologram has a spatially higher frequency component in comparison with IASA. This could potentially 
cause issues during manufacture of the phase plates. The effect of such manufacturing tolerances was evaluated, 
as presented in the supplementary material, and it was found that the PSNR drops by 3 dB when the standard 
deviation of normally distributed manufacturing tolerance drops to σ≈20%. If manufacturing tolerances become 
an issue, some weighted regularization term or a low pass filter can be added in the loss function to reduce the 
high frequency component of the acoustic hologram. The detailed view of acoustic pressure distribution demon-
strates that Diff-PAT achieves this high accuracy in the region of interest (ROI) by diffracting the acoustic wave 
outside the ROI as shown in the supplementary material. The improved accuracy of Diff-PAT with significantly 

Figure 4.   Comparing the average computational time for solving one geometry using each solver. The sample 
size is 1000 geometries, and solved the same dataset as in Fig. 3. The magnitude of IQ range from Fig. 3 is 
transposed to the marker size and darkness. Small, white marker indicates low IQ range; large dark marker 
indicates high IQ range. (a) Eigensolver (ES), (b) corrected Eigensolver (CES), (c) GS-PAT (GS) and (d) Diff-
PAT (DP). (a)–(c) were based on a C +  + code, where (d) was run on Python. The performance was evaluated 
on the same desktop computer. Image created using MATLAB 2020a Update 4 (https://​www.​mathw​orks.​com/​
downl​oads/) and Adobe Illustrator 24.2.1 (https://​www.​adobe.​com/​produ​cts/​illus​trator.​html).

https://www.mathworks.com/downloads/
https://www.mathworks.com/downloads/
https://www.adobe.com/products/illustrator.html
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reduced artefacts in the ROI can enhance performance of a wide range of acoustic systems used in medicine1–3, 
biology4–8, and engineering9–11 applications.

In conclusion, we presented Diff-PAT, which optimises only the phase of an acoustic hologram using auto-
matic differentiation. We demonstrated the effectiveness of Diff-PAT as a new platform for optimising acoustic 
holograms in PATs and phase plates. In addition, contrary to common belief, the phase-only optimiser can 
achieve better accuracy than an optimiser with both amplitude and phase control in the simplest test case 
for acoustic holograms. For PATs with high transducer numbers (M = 1024), Diff-PAT is more suitable than 

Figure 5.   Comparison of acoustic holograms optimised using Diff-PAT and IASA. The resolution of the 
original image is 256 × 256 pixels. An underwater 2 MHz transducer with a 35 mm diameter was assumed, and 
the pixel size was set to 150 µm . (a) Emblem of the University of Tsukuba (b) a bicycle (c) USAF 1951 resolution 
test chart. The scale bar shows 10 mm. The images above are of absolute acoustic pressure amplitude, and are 
not normalized. The colour axis is limited between 0 to 1 Pa since the original test image is defined as such. Due 
to this, the image of IASA is saturated. Red crosses in IASA show the point of maximum pressure amplitude 
deviation. For images (a)–(c) in IASA, the maximum pressure amplitude deviations are 1.65, 4.75, and 3.12 Pa, 
respectively. Image created using MATLAB R2020b Update 2 (https://​www.​mathw​orks.​com/​downl​oads/), 
k-Wave (ver. 1.3 http://​www.k-​wave.​org/​downl​oad.​php) 56and Adobe Illustrator 24.2.1 (https://​www.​adobe.​com/​
produ​cts/​illus​trator.​html).

https://www.mathworks.com/downloads/
http://www.k-wave.org/download.php)
https://www.adobe.com/products/illustrator.html
https://www.adobe.com/products/illustrator.html
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Eigensolver type methods, both in terms of accuracy and computational efficiency. In future, this improved 
acoustic hologram optimiser will improve the performance of many applications by providing higher quality 
acoustic holograms. In addition, this study, along with that of Peng et al.31, demonstrated the effectiveness of 
implementing automatic differentiation in the context of hologram optimization. We hope that these results will 
further facilitate the use of Diff-PAT platform in a wide range of fields and applications in acoustics.

Methods
Total acoustic pressure calculation.  The total pressure was evaluated by pt =

∑M
m=0

Pref
d(xc ,xt )

D(θ)ej(kd(xc ,xt )+φn,m) 

where M is the total number of transducers, Pref  is the reference pressure amplitude; d(xc , xt) is the Euclidean 

distance between xc and xt , and D(θ) = 2J1(krsin(θ))
krsin(θ)  is the far-field directivity function for the piston source based 

on the angle, θ . Moreover, θ is evaluated as the angle between the transducer normal and xc ; r = 5 mm is the 
transducer radius, and J1 is the Bessel function of the first kind of order 1. k = 2πf

c0
 is the wavenumber given the 

acoustic frequency, f = 40kHz and the speed of sound is c0 . Pref  and c0 are assumed to be 1.98 Pa at 1 m (12 V 
Pk-Pk25) and 346ms−1 , respectively. In the implementation of Diff-PAT, the acoustic pressure calculation is split 
into pre-calculated (A) and re-calculated (B) components: pt =

∑M
m=0 AB , where A = Pref

d(xc,xt)
D(θ)ej(kd(xc,xt)) , 

and B = ej(φn,m) . Given the transducer properties do not change, part A does not change at all, and it allows sig-
nificant increase in computational efficiency. In addition, neither TensorFlow 2.3.0 nor JAX 0.2.5 currently sup-
ports differentiation of Bessel functions of the first kind of order 1, and these terms cannot be included within 
the computational graph of automatic differentiation.

Random generation of control points and amplitude.  Control points, xc are randomly generated 
such that x , y , and z coordinates are within the region of interest (ROI), i.e. [−0.05, 0.05] m from the centre of 
the array. For single-sided arrays, the z-axis centre is set at z = 0.1 m. The physically achievable pressure ampli-
tude was predetermined by making a singular focal point ( φ = − 2πf

c0
[d(xr , xt)− d(0, xr)] ) at the vertex of ROI, 

xr (8 points in total). The average acoustic pressures around the vertices for single-sided (M = 196), single-axis 
(M = 512), and large single-sided (M = 1024) PATs are 1512, 3812, and 4121 Pa, respectively. Amplitude Ac for 
each control point is randomly assigned such that the minimum pressure amplitude is 10 Pa, and the amplitude 
at each control point sums up to the average acoustic pressure for the single focus of each transducer array. This 
target amplitude assignment method is technically inaccurate as it assumes the acoustic amplitude to be con-
served (i.e. acoustic power/energy should be conserved). However, the assignment of target via acoustic energy 
is impractical as it requires assignment of both target pressure and velocity field. Thus, this target assignment 
method is employed in this manuscript, and it is considered appropriate since the optimizer can follow the 
targets specified.

Application of Diff‑PAT to the phase plate.  For the optimisation of the phase plate, an underwater 
transducer with a resonance frequency of 2 MHz, diameter of 35 mm, and input amplitude of 1 Pa was assumed 
at the surface. The input pressure field was assumed to be a plane wave, and the initial estimate of the phase was 
set to zero for all elements. The speed of sound in water was assumed to be 1480 ms−1 , and the pixel size was 
assumed to be 150 µm . For simplicity, the acoustic transmission loss through the plate was considered negligi-
ble, and the angular spectrum was solved using methods described by Zeng & McGough55 (following the imple-
mentation of k-Wave56). Both IASA and Diff-PAT were programmed in Python 3.6.9, and the phase plate version 
of Diff-PAT used Tensorflow36 (ver. 2.3.0) to differentiate the loss function automatically. We also used the Adam 
optimiser in TensorFlow with the same hyperparameter setting as in the PAT version. IASA was calculated by 
following the steps described by Melde et  al.41, using the angular spectrum approach proposed by Zeng & 
McGough55. The propagation distance from the transducer to the image plane was 20 mm, and the iteration 

number for the optimiser (both IASA and Diff-PAT) was set to 200. The loss function was 
N∑
x

N∑
y

∣∣Ac

(
x, y

)
−

∣∣p
(
x, y

)∣∣∣∣ , 
where Ac

(
x, y

)
 represents the target image with a screen resolution (N) of 256 × 256 pixels. The optimised acous-

tic hologram was exported from Python and the resultant acoustic pressure fields shown in Fig. 5 were calculated 
using k-Wave (ver. 1.3 angularSpectrumCW)56 on MATLAB. Finally, the PSNR was calculated using the MAT-
LAB Image Processing Toolbox.

Data availability
The data that support the findings of this study are available within this article. The data for transducer arrange-
ments, control point geometries and amplitude, output phase by Diff-PAT, and the results from all solvers are 
available in Zenodo at https://​doi.​org/​10.​5281/​zenodo.​49063​51.

Code availability
The program code for optimisation and analysis is also made available at the link provided in Data Availability.
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