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Abstract

Dysferlinopathies are a form of muscular dystrophy caused by gene mutations resulting in

deficiency of the protein dysferlin. Symptoms manifest later in life in a muscle specific man-

ner, although the pathomechanism is not well understood. This study compared the impact

of dysferlin-deficiency on in vivo and ex vivo muscle function, and myofibre type composition

in slow (soleus) and fast type (extensor digitorum longus; EDL) muscles using male dysfer-

lin-deficient (dysf-/-) BLAJ mice aged 10 months, compared with wild type (WT) C57Bl/6J

mice. There was a striking increase in muscle mass of BLAJ soleus (+25%) (p<0.001), with

no strain differences in EDL mass, compared with WT. In vivo measures of forelimb grip

strength and wheel running capacity showed no strain differences. Ex vivo measures

showed the BLAJ soleus had faster twitch contraction (-21%) and relaxation (-20%) times,

and delayed post fatigue recovery (ps<0.05); whereas the BLAJ EDL had a slower relaxa-

tion time (+11%) and higher maximum rate of force production (+25%) (ps<0.05). Similar

proportions of MHC isoforms were evident in the soleus muscles of both strains (ps>0.05);

however, for the BLAJ EDL, there was an increased proportion of type IIx MHC isoform

(+5.5%) and decreased type IIb isoform (-5.5%) (ps<0.01). This identification of novel differ-

ences in the impact of dysferlin-deficiency on slow and fast twitch muscles emphasises the

importance of evaluating myofibre type specific effects to provide crucial insight into the

mechanisms responsible for loss of function in dysferlinopathies; this is critical for the devel-

opment of targeted future clinical therapies.

Introduction

Dysferlinopathies are a clinically heterogeneous group of muscle disorders that arise from

mutations in the dysferlin gene (DYSF) that reduce expression of functional dysferlin protein

[1]. Clinically, dysferlinopathies are described as limb-girdle muscular dystrophy type 2B or

Miyoshi myopathy, with initial weakness in the proximal limb girdle or distal limb muscles
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respectively [2], although gradations across phenotypes are now more widely recognised [3].

Most patients with dysferlinopathy become wheelchair bound within 10–20 years after diagno-

sis, and currently there is no treatment.

Dysferlin is a member of the ferlin family of transmembrane proteins, which have roles in

protein vesicle fusion and trafficking [4]. Dysferlin is present in many cell types including mac-

rophages, adipocytes, smooth muscle and vascular endothelial cells [5], but it is highly

expressed in skeletal muscle. The localisation of dysferlin to the sarcolemma and transverse-

tubules (T-tubules) in skeletal muscle [6, 7], suggests a possible role in Ca2+ handling associ-

ated with excitation-contraction (EC) coupling [8]. Dysferlin is associated with normal devel-

oping T-tubules, and abnormally configured T-tubules are found in dysf-/- skeletal muscle [8].

Dysferlin also interacts with Ca2+ handling proteins, including calsequestrin-1, ryanodine

receptor and the dihydropyridine receptor [6, 9]. However, the extent to which dysferlin-defi-

ciency causes dysfunctional Ca2+ handling is not clear, nor are the mechanisms for how this

might translate to the specific functional clinical deficits characteristic of human dysferlin-

deficient (dysf-/-) muscles.

Disease onset in dysferlinopathy typically occurs post growth, in early adulthood. Dysferli-

nopathy is characterised by progressive skeletal muscle weakness, increased fatigability [10],

accumulation of lipid droplets in slow twitch myofibres [5, 11], complement activation [11],

muscle wasting characterised by atrophy, autolysis/proteolysis and autophagy [12, 13], inflam-

mation, increased oxidative stress, [14, 15] and, in later stages of the disease, replacement of

muscles by fat [1, 5, 11, 16]. Histopathological differences between dysf-/- slow and fast myofi-

bres have been reported, with dysf-/- slow oxidative myofibres containing many lipid droplets,

especially in humans [5], whereas, tubular aggregates are present in fast glycolytic myofibres

[17](Grounds MD, unpublished observations). The precise molecular mechanisms underlying

the dystropathology and how these histopathological features may contribute to the loss of

muscle function are not clear [11, 18].

Studies of dysferlin-deficiency typically use dysf-/- mice as they have similar muscle struc-

ture to humans and more accurately represent the disease pathology in human dysferlinopa-

thies, compared with dysf-/- zebrafish, roundworm and fruit fly [19, 20]. In general, dysf-/-

mice mimic human dysferlinopathies, showing a similar disease progression with late onset of

histopathological features [5, 21, 22]. The main dysf-/-mouse models, A/Jdysf-/- (A/J), SJL/Jdysf-/-

(SJL/J) and BLA/Jdysf-/- (BLAJ; B6.A-Dysfprmd/GeneJ), have similar disease manifestation [20]

with few changes apparent in young adults aged 3 months, but marked histopathology with

replacement of myofibres by adipocytes conspicuous by about 10 months, especially in the

psoas and quadriceps muscles [5, 14].

About a dozen published studies have examined muscle function in dysf-/- mice, however

these have yielded inconsistent and contrasting results, and often do not replicate the charac-

teristic muscle weakness of human patients with dysferlinopathy (see Table 1). Such inconsis-

tencies between pre-clinical studies may be due partly to the subtle difference in disease

severity of the specific dysf-/- mouse strains used [20], and/or the absence of appropriate WT

control strains for their comparisons. The age of the mice examined is another important vari-

able; the dystropathology is typically mild in mice aged less than 6 months old, and dysf-/-

mice begin to exhibit more marked pathology in some muscles from around 8 months of age

[14, 20]. Therefore, it is important to evaluate the functional impact of dysf-/- in older animals,

which are more likely to manifest the progressive functional impairment that is expected to

result over time from dysferlin-deficiency.

While some differences in features of dysf-/- slow and fast myofibres have been reported

(mentioned above), we identified only two studies that directly compared muscle function for

predominantly slow (soleus) and fast twitch (EDL) muscles [25, 30] with conflicting results.

Dysferlin-deficiency and skeletal muscle function
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While lower specific force (~92% of WT force) was reported in dysf-/- EDL muscles of A/J

male mice aged 2 months, no differences were found at 8 months, nor for the dysf-/- soleus at

either age [25]. A similar reduction in maximum force produced ex vivo by both dysf-/- EDL

and soleus muscles (~85% of control force) was reported in dysf-/- SJL/J male mice aged 6

months [30]; however, this result is complicated by the fact that C57Bl/6J mice were used as

the control normal strain for comparison with the dysf-/- SJL/J mice (see Discussion).

These conflicting observations warrant further investigation, due to the important role of

impaired muscle function in dysferlinopathies. Therefore, the present study thoroughly inves-

tigated the effects of dysferlin-deficiency on a wide range of parameters related to muscle func-

tion ex vivo for the predominantly slow (soleus) and fast (EDL) twitch skeletal muscles, as well

as some measures of whole body function in vivo, using mature 10 month old male BLAJ mice

where pronounced histopathology is manifested in limb girdle muscles (compared with WT

controls).

Table 1. Summary of prior studies of muscle function in dysferlin-deficient mice.

Dysf-/- strain Controls Age

(mths)

Sex Muscles In vivo measures Ex vivo measures Reference

A/J A/WySnJ,

C57Bl/6J

3 M Dorsiflexorsb Torque at ankle larger in dysf-/- [23]

A/J A/WySnJ 3–4 M Dorsiflexorsb Torque at ankle no different [24]

A/J A/WySnJ,

C57Bl/6J

2, 8 M Soleus

EDL

Maximum specific force lower in

dysf-/- EDL (2 months)

[25]

A/J A/JOlaHsd,

C57Bl/6J

9 F Forelimb, Hindlimb,

EDL

i. Open field behaviour lower in

dysf-/-

ii. Forelimb/hindlimb grip strength

no different

Maximum specific force no

different

[26]

i. A/J

ii. BLAJ

iii. SJL/J

iv. B10.SJL

i. A/WySnJ

ii. C57Bl/6J

iii. SWR/J

iv. C57BL/10J

3–4 M Dorsiflexorsb Torque at ankle lower in dysf-/-

(SJL/J, B10.SJLJ)

[21]

A/J, Bl.AJ C57Bl/6J 3–9 NSa N/A Open field behaviour lower in

dysf-/- (A/J, BLAJ >6 months))

[27]

BLAJ C57Bl/6J >20 NSa Forelimb, Hindlimb i. Open field behaviour lower in

dysf-/-

ii. Hindlimb grip strength lower in

dysf-/-

[28]

BLAJ C57Bl/6J 2–3, 13–

15

M/

F

N/A i. Open field behaviour lower in

dysf-/- (>3 months)

ii. Grip strength (hang test) lower

in dysf-/- (>13 months)

[29]

SJL/J C57BL/6J 2–6 M Forelimb, Hindlimb,

Soleus, EDL

i. Open field behaviour lower in

dysf-/-

ii. Grip strength higher in dysf-/-

Maximum specific force lower in

dysf-/- (6 months)

[30]

BL10.SJL-Dysfjm/

AwaJ

C57Bl/10 3 M TA (in situ) Maximum specific force no

different

[31]

B6.129-Dysftm1Kcam/J C57Bl/6J 2, 8 NSa EDL Open field behaviour no different Maximum specific force no

different

[32]

B6.129-Dysftm1Kcam/J C57Bl/6J 11 NSa Soleus Gait no different Fatigue and post fatigue recovery

no different

[33]

Dysf-/- 129/SVemst/J 129/SVemst/J 14 NSa N/A Voluntary wheel running lower in

dysf-/-
[17]

aNS: not specified
b Dorsiflexors muscle group; TA (tibialis anterior), extensor hallucis longus, EDL, and peroneus tertius

https://doi.org/10.1371/journal.pone.0214908.t001
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Methods

Ethical approval

All experiments were approved by the Animal Ethics and Experimentation Committee of the

University of Western Australia (RA/3/100/1436), in accordance with guidelines of the

National Health and Medical Research Council of Australia.

Animals

This study used 10 month old male C57Bl/6J (the WT parental control strain) and dysf-/- BLAJ

mice. Mice were maintained at the Preclinical Animal Facility at the University of Western

Australia, housed individually in cages with food and water, maintained in a 12 hour light/

dark regime at 20–22˚C.

There were two separate experimental groups in this study. Group 1 involved mice sub-

jected to wheel running (Ex), and consisted of WT + Ex and BLAJ + Ex groups (n = 5, 4 respec-

tively) and Group 2 consisted of WT and BLAJ mice (n = 8, 9 respectively) where muscles

were sampled, when they reach 10 months old, for ex vivo measurements.

Grip strength measurements

Measures of grip strength and body mass were made on the morning of sampling day for all

experimental groups. Forelimb grip strength was measured using a Chatillon Digital Force

Gauge (Model DFE-002; AMETEK, FL, USA) following the TREAT-NMD standard protocol

“Use of grip strength meter to assess limb strength of mdx mice–DMD_M.2.2.001”. The

average of four consecutive grip strength tests was recorded and normalised to body mass

(g gBM-1).

In vivo wheel running measurements (Group 1)

Mice were obtained at approximately 8.5 months of age and housed individually in Lafayette

Mouse Activity Wheel Chambers (Model 80820; Lafayette Instrument, IN, USA). The appara-

tus for this experiment in our lab is described previously [34]. The low resistance wheel run-

ning capacity of each mouse was measured continuously, and their running patterns were

assessed for two weeks. Total distance run (km) and maximum average speed per 15-minute

interval (km hr-1) for each week was calculated from the raw data. At the end of the experi-

ment, mice (aged 10 months) were euthanised (via intraperitoneal overdose of sodium pento-

barbitone) and additional tissues, including soleus, EDL, quadriceps, liver and adipose tissue,

were sampled and snap frozen for later analyses in future studies.

Ex vivo assessment of contractile function for soleus and EDL muscles

(Group 2)

Mice were anesthetised using sodium pentobarbitone (40 mg kgBM-1) and placed on a heated

plate at 37˚C to maintain core body temperature. The soleus and EDL muscles were dissected

and used as representatives of slow and fast twitch muscles respectively. Mice were then eutha-

nized (by overdose of pentobarbitone) and additional tissues were snap frozen for later analy-

ses. Immediately following dissection, muscles were mounted in an in vitro force transducer

system (1205A, Aurora Scientific Inc., Aurora, Canada) in an organ bath containing mamma-

lian ringer solution which comprised (in mM): 121 NaCl, 5.4 KCl, 1.2 MgSO4.7H2O, 25

NaHCO3, 5 HEPES, 11.5 glucose and 2.5 CaCl2, bubbled with Carbogen (95% O2, 5% CO2)

and maintained at 25˚C. The muscles were stimulated by supramaximal 0.2 ms square wave

Dysferlin-deficiency and skeletal muscle function
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pulses (701B High Power Bi-phase Current Stimulator, Aurora Scientific Inc., Aurora, Can-

ada). Recording of force and the control of the lever arm was achieved using Dynamic Muscle

Control (DMC) software and the data were analysed using Dynamic Muscle Analysis (DMA)

software (Aurora Scientific Inc., Aurora, Canada).

At the start of each experiment, the optimal muscle length (Lo) was identified as the length

at which maximal isometric twitch response was produced; the muscles remained at Lo for all

subsequent measurements. Assessment of contractile function included the twitch characteris-

tics: peak isometric twitch force (Pt), time to peak twitch force (TTP), half-relaxation time

(½RT) and maximum rate of force production (dF/dt), and the force-frequency relationship

including maximum tetanic force (Po).

Muscle fatigability was assessed using an isometric fatigue protocol. Soleus muscles were

stimulated 100 times at 60 Hz for 800 ms once every two seconds (approximately 3.5 minutes);

EDL muscles were stimulated 100 times at 70 Hz for 500 ms once every two seconds (approxi-

mately 3.5 minutes). Fatigue was measured as the force produced at the end of the stimulation

protocol as a percentage of initial force (%Pi), and post-fatigue recovery was monitored by

recording tetanic force (same as fatigue protocol stimulation) at 5 minute intervals for 40

minutes.

Specific force (N cm-2) was calculated as force (N) normalised to physiological cross sec-

tional area (CSA, cm2). CSA was approximated by the formula: CSA = W/(Lo×FLR×D×100),

where W is the wet muscle mass (mg), Lo is optimal muscle length (mm), FLR is myofibre/

muscle length ratio (EDL = 0.44, Soleus = 0.69)[35], and D is density of muscle (1.06 g mL-1)

[36].

Myofibre typing: Myosin heavy chain (MHC) gels

Myofibre myosin heavy chain (MHC) composition was determined by distinguishing four

MHC isoforms, MHCIIa, MHCIIx, MHCIIb and MHCI in soleus and EDL muscles from

Group 1. Muscles were homogenised 20 μg wet weight muscle/μl buffer, which comprised (in

mM): 126 K+, 36 Na+, 1 free Mg2+ (10.3 total Mg2+), 90 HEPES, 50 EGTA, 8 ATP, 10 creatine

phosphate, pH 7.10, pCa (= − log10[Ca2+])>9, 295±10 mosmol/kg H2O. After the homogenisa-

tion, muscle samples were denatured by the addition of a 2x denaturing buffer, comprised of

125 mM Tris-HCl, 25% glycerol, 4.6% SDS, 10% mercaptoethanol, 25% sucrose, and 0.001%

bromophenol blue. Total protein in samples was separated using SDS-PAGE, adapted for opti-

mal separation of the four MHC isoforms, as previously described [37]. A small amount of

each sample was taken and pooled together to create a ‘mixed muscle sample’ (Mixed), which

was then loaded onto each gel to generate a calibration curve that demonstrated the relation-

ship between band density and amount of given protein (in arbitrary units). This was used to

assign values for each MHC isoform band present in the individual muscle samples. Immedi-

ately after running the gels, they were stained with Coomassie brilliant blue G250 (Bio-Rad,

Gladesville, NSW, Australia) to visualize the MHC bands. Images were collected, and densi-

tometry of each band performed using Chemidoc MP system and Image Lab version 6.0 (Bio-

Rad).

Analyses

Statistical analyses were performed using IBM SPSS Statistics 24 (IBM Corp., 2012). Data are

presented as individual values with horizontal lines indicating mean values ± standard devia-

tion (SD), or single points representing mean ± SD where appropriate. Normality and variance

equality were tested using Shapiro-Wilk tests and Levene’s Test for Equality of Variances

respectively. Data were examined using separate one-way Analyses of Variance (ANOVAs),

Dysferlin-deficiency and skeletal muscle function
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two-way ANOVAs, or t-tests where appropriate. Post hoc comparisons with Holm-Bonferroni

corrections were conducted for each statistical test where appropriate, with statistical signifi-

cance taken as p< 0.05.

Results

Body and muscle mass

Body mass at the time of sampling did not differ between the male WT and BLAJ mice aged 10

months (Fig 1A). The soleus and EDL weights were normalised to body mass. The BLAJ soleus

was significantly heavier (~125%) compared with the WT soleus (p< 0.001), with no strain

difference for the EDL weights (ps> 0.05).

In vivo function measures

Forelimb grip strength recorded on the day of sampling (Fig 2A) was not significantly different

between strains (p> 0.05). Voluntary wheel running measures of daily total distance run and

maximum speed (calculated over a 15-min interval) (Fig 2B and 2C) did not differ between

WT and BLAJ mice (p> 0.05). However, the maximum speed in the BLAJ group tended to be

lower than WT over the wheel running regimen (p = 0.055, partial η2 = 0.43, n = 5, 4

respectively).

Ex vivo muscle function

Ex vivo muscle function showed no effect of dysferlin-deficiency on the maximum tetanic

force of the soleus or EDL (ps > 0.05) (Fig 3). Analysis of the twitch characteristics (Fig 4) of

the soleus revealed no differences in peak twitch force between WT and BLAJ (p> 0.05).

However, TTP and 1/2RT were significantly shorter in the BLAJ soleus compared with WT

(p< 0.01 and p< 0.05 respectively); these differences are also reflected in the higher dF/dt in

the BLAJ soleus (p< 0.001). In the EDL, peak twitch force and TTP were unaffected by dysfer-

lin-deficiency (ps> 0.05), however, 1/2RT and dF/dt was significantly greater in the BLAJ

EDL compared with WT (ps< 0.05).

The mean of the normalised force frequency curve of the BLAJ soleus was lower than the

WT (p< 0.05) (Fig 5A), whereas, the force frequency relationship of the BLAJ EDL was higher

than WT at 10, 20, 100, and 120Hz (ps < 0.05) (Fig 5B).

Dysferlin-deficiency did not impact the susceptibility to fatigue in the soleus and EDL mus-

cles (ps > 0.05). The WT and BLAJ soleus muscles fatigued to 32.7% and 28.8% of initial force

respectively, whereas the WT and BLAJ EDL muscles fatigued to 14.8% and 18.3% of initial

force (Fig 6). After 40 minutes of recovery, soleus force had reached 94.7% and 92.9% of initial

force levels for WT and BLAJ mice respectively. However, soleus post fatigue recovery showed

a significant interaction effect of time and strain (p< 0.001). Pairwise comparisons at each

time point did not reach statistical significance, but 5, 10 and 15 minutes post fatigue recovery

showed the largest differences (BLAJ lower relative force than WT), suggesting this was likely

the source of the overall interaction effect. The post fatigue recovery of the dysf-/- EDL was not

significantly different to the WT EDL (p> 0.05) reaching 46.5% and 55.1% of initial force lev-

els after 40 minutes.

Myofibre typing

Analyses of the proportions of MHC isoforms in the soleus showed no significant differences

in composition between the strains (ps> 0.05) (Fig 7). Dysferlin-deficiency significantly

impacted the myofibre type composition of the EDL muscle, whereby the BLAJ EDL had a

Dysferlin-deficiency and skeletal muscle function
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significantly larger proportion (+5.5%) of the type IIx MHC isoform and a smaller proportion

(-5.5%) of the type IIb isoform (ps< 0.01), compared with WT.

Discussion

The main findings of this study are that dysferlin-deficiency for male BLAJ mice aged 10

months (i) had a limited impact on our measures of in vivo muscle function, (ii) greatly

increased the mass of BLAJ soleus muscles, and (iii) had myofibre type specific alterations of

ex vivo muscle function for BLAJ soleus and EDL muscles. These findings are discussed in

detail below.

Limited impact of dysferlin-deficiency on in vivo measures of function in

BLAJ mice

Normalised forelimb grip strength was unaffected in the 10 month old BLAJ (compared with

WT) mice, a finding consistent with those in 9 month old A/J mice [26]. While increased fore-

limb grip strength (+63%) was reported in 2–6 month old dysf-/- SJL/J mice [30], this differ-

ence may be due to the choice of C57Bl/6J mice as a control strain for the SJL/J mice (since

dysferlin positive control SJL/J mice were not available at the time of their experiments).

Nonetheless, other studies have reported significantly lower grip strength in BLAJ mice

(compared with WT) at ages older than 13 months [28, 29]. The absence of significant differ-

ences in our measures of BLAJ forelimb grip strength at 10 months of age may be due to the

fact that forelimb muscles are less affected than hindlimb muscles in early stages of the disease

[20] and greater disease progression may be required to show an effect on this parameter of in
vivo muscle strength in older BLAJ mice.

Normalised grip strength is used to control for differences in body mass, under the assump-

tion that most mice have a similar proportion of muscle mass, although in dysf-/- mice, this

relationship between body mass and muscle mass may not hold, especially in older dysf-/- mice

where fat replacement of myofibres is an increasing feature after about 8 months of age [5, 17].

Consequently, we examined the Pearson bivariate correlations between raw grip strength

(average of 4 tests) and body mass for each group of mice (WT, BLAJ) and found no correla-

tion. Since forelimb grip strength is dependent on many factors other than muscle strength,

including behavioural and experimental variation [38], the usefulness and relevance of grip

strength as a measure of muscle function in dysf-/- mice should be carefully considered.

To further measure overall muscle function of BLAJ mice in vivo, we tested their capacity

for voluntary low resistance wheel running over 2 weeks using mice sampled at 10 months of

age; while running patterns were similar for both strains, average speed tended to be lower in

the BLAJ, compared with WT (p = 0.055, partial η2 = 0.43, n = 5, 4 respectively). Our wheel

running results are limited by the low sample sizes, due to limited availability of these old

BLAJ mice, however these data were included since the trend of reduced speed in the BLAJ

mice is suggestive of functional deficits and reflects similar findings of others. For example,

swimming speeds of BLAJ mice were significantly slower than controls from 8 months of age

[29]. Other studies have also shown significant reductions in voluntary wheel running distance

[17] and open field behaviour [26, 27, 30] for dysf-/- mice, aged 14, 2–6, 3–4 and 9 months

respectively, indicative of functional impairments even in the mild pathology of dysf-/- mice.

Fig 1. Body and muscle masses of WT and BLAJ mice aged 10 months. (A) Body mass measured at sampling (n = 9,

9; WT and BLAJ). (B) Soleus mass normalised to body mass (n = 9, 9). (C) EDL mass normalised to body mass (n = 8,

9). ��� BLAJ significantly different to WT (p< 0.0001). Data are presented as individual values with horizontal lines

indicating mean ± SD.

https://doi.org/10.1371/journal.pone.0214908.g001
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The function of individual BLAJ muscles with the most severe dystropathology, such as the

limb girdle muscles psoas and quadriceps, is not easily assessed. Nevertheless, the quadriceps

and psoas muscles are heavily involved in ambulation and thus open field behaviour and vol-

untary wheel running are useful measures of muscle function in BLAJ mice. It is important to

consider the impact that many factors, including circadian rhythm and stress, can have on

these measures [39], especially since mice are normally most active nocturnally and rest during

the day (in contrast with most humans). Yet, the standard protocol of open field behaviour

consists of placing a mouse in a test chamber for one hour during the morning hours for 4

Fig 2. In vivo functional measures for WT and BLAJ mice aged 10 months. (A) Grip strength recorded on the day

of sampling for WT and BLAJ (n = 8, 9). Voluntary wheel running daily total distance run (B) and daily maximum

average speed over 15-min interval (C) for WT + Ex and BLAJ + Ex mice aged 10 months (n = 5, 4). Data are presented

as (A) individual values with horizontal lines indicating mean ± SD or (B, C) mean ± SD.

https://doi.org/10.1371/journal.pone.0214908.g002

Fig 3. Maximum tetanic force from WT and BLAJ mice aged 10 months. (A) Soleus (n = 9, 9) and (B) EDL (n = 8,

9). Data are presented as individual values with horizontal lines indicating mean ± SD.

https://doi.org/10.1371/journal.pone.0214908.g003
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successive days (see TREAT-NMD standard protocol “Behavioural and Locomotor Measure-

ments Using Open Field Animal Activity Monitoring System–DMD_M.2.1.002”). This

method does not take into account the important effects of circadian rhythm (on gene expres-

sion, metabolism and possible function and motivation) nor longer term activity of mice, and

is stressful since it is normally performed during the daytime ‘rest period’. In contrast, the

voluntary wheel running method keeps mice in the testing cage for the duration of the

Fig 4. Twitch characteristics from WT and BLAJ mice aged 10 months. Twitch characteristics of the soleus (n = 9, 9) and EDL (n = 8, 9)

consist of peak twitch force (A, B), time to peak twitch force (C, D), 1/2 relaxation time (E, F), and maximum rate of force production (G,

H). � BLAJ significantly different to WT (ps < 0.05). Data are presented as individual values with horizontal lines indicating mean ± SD.

https://doi.org/10.1371/journal.pone.0214908.g004

Fig 5. Normalised force-frequency relationship from WT and BLAJ mice aged 10 months. (A) soleus (n = 9, 9) and

(B) EDL (n = 8, 9) muscles. � BLAJ significantly different to WT (ps< 0.05). Data are presented as mean ± SD.

https://doi.org/10.1371/journal.pone.0214908.g005
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experiments, enabling continuous measurements of activity at night (when mice are naturally

active) and over longer periods of time, with minimal handling of the mice (see TREAT-NMD

standard protocol “Use of treadmill and wheel exercise for impact on mdx mice phenotype–

DMD_M.2.1.001”). Thus, voluntary wheel running may be a more accurate measure of in vivo
muscle function in mice, compared with classic open field behaviour tests (although beha-

vioural testing during the nocturnal phase might be additionally informative).

Increased mass of the BLAJ soleus

Dysferlin-deficiency had no impact on body mass of the 10 month old male mice, which is

consistent with findings in A/J mice aged 9 months [26]. For muscle mass, the BLAJ soleus

Fig 6. Fatigue and post fatigue recovery from WT and BLAJ mice aged 10 months. (A) soleus (n = 9, 9) and (B)

EDL (n = 7, 9) muscles. The fatigue protocol was approximately 3 minutes, and post fatigue recovery was recorded at 5

minute intervals for 40 minutes after the fatigue protocol. �� significant interaction effect of time and strain post

fatigue (p< 0.001). Data are presented as mean ± SD.

https://doi.org/10.1371/journal.pone.0214908.g006
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was significantly heavier than normal WT soleus. However, previous studies have reported

variable results; no significant difference was reported in the mass of soleus muscles in WT

and BLAJ mice aged 12 months [29], whereas soleus muscles from 2–6 month old SJL/J mice

were reported to be significantly lighter compared to C57Bl/6J, though this finding may also

be influenced by a strain difference [30]. It is of interest to consider the mechanisms that

might contribute to the increased soleus mass in the old BLAJ mice.

From the perspective of histopathology, no conspicuous changes in histology were apparent

for dysf-/- soleus muscles aged 7 and 11 months, compared with WT muscles [33]. We also

looked at the histology of a few frozen and fixed muscles for both strains (data not shown) and

observed for the 10 months and older mice ‘apparently normal’ histology for all EDL and

soleus muscles, with no marked differences between the BLAJ and WT muscles examined.

However, a detailed formal analysis by light and electron microscopy is warranted to identify

and quantify any (subtle) histopathological changes in the soleus muscle of older dysf-/- mice.

The increased soleus mass in our old BLAJ mice may potentially be explained by oedema,

with increased osmolarity arising from disturbed membrane dynamics and altered ion channel

function or altered metabolite concentrations in slow myofibres, driving fluid accumulation

within the muscle tissue. Oedema can also result from immune disturbances related to com-

plement activation and deposition of the membrane attack complex (MAC) [40], and the

immune response is complex in dysferlinopathies [41]. The MAC is a transmembrane pore

that can alter membrane permeability resulting in swelling and lysis of the target cells. Dysf-/-

muscles of humans and mice have been shown to have disturbed complement activation, and

surface deposition of complement and MAC (which is implicated in myofibre damage) even

Fig 7. Myofibre myosin heavy chain (MHC) composition of soleus and EDL muscle from WT and BLAJ mice aged 10 months (n = 6). Representative MHC gels

(A, B) for soleus and EDL muscles, loaded with a pooled sample (Mixed) used to generate the Calibration curve (see Methods), with (C, D) showing percentage of

different MHC in soleus and EDL muscles. �� BLAJ significantly different to WT (ps < 0.01). Data are presented as individual values with horizontal lines indicating

mean ± SD.

https://doi.org/10.1371/journal.pone.0214908.g007
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on ‘apparently undamaged muscles’ [32, 42, 43]. The MAC also drives atherosclerosis in apoli-

poprotein E knockout (ApoE null) mice on a high fat diet [44] and ApoE null mice crossed

with dysferlin null mice show striking histopathology in many muscles with myofibres

replaced by fat [33]: exacerbation of these histological features in double knock-out mice may

reflect combined elevated levels of MAC in both null genotypes. Early studies reported high

serum complement C3 levels of a different C3 allotype present in male SJL/J mice only, and

altered degradation kinetics only in female SJL/J mice, compared with both genders of normal

BALB/c mice and other inbred strains [45]. This impact of gender is important to consider for

the complement system, since dysf-/- female SJL/J mice were used in the study that reported

downregulation of decay accelerating factor /CD55 [43], and fatty replacement of many mus-

cles is more severe in female patients with dysferlinopathy [16].

Other MRI analyses in humans report muscle oedema (detected as hyper-intensity on STIR

sequences) as an early consequence of dysferlinopathy; initially in the distal lower legs or in

the proximal thigh muscles, followed by fatty degeneration [11]. It also seems pertinent that

dysf-/- skeletal muscle (compared with WT) is more susceptible to osmotic shock injury [46]

with slower recovery to glycerol-induced osmotic shock [17]; such altered properties may also

contribute to oedema in dysf-/- muscles. The mechanisms and functional implications of the

unusual increase in size of the slow soleus BLAJ muscle (comprised predominantly of type I

and IIa myofibres) we observed warrants further investigation.

Differential functional effects of dysferlin-deficiency on the soleus and EDL

muscles

This study was particularly interested in the effect of dysferlin-deficiency on a wide range of

measures of ex vivo muscle function. There were no differences in maximum tetanic force

between WT and BLAJ soleus and EDL muscles, which is consistent with previous literature

[25, 26, 32]. These findings indicate that higher stimulus frequencies do not produce observ-

able differences in the force producing capacity of control and dysf-/- muscle. If dysferlin-defi-

ciency does disrupt normal Ca2+ handling [47], these effects were not evident at maximal

stimulation frequencies, which is likely due to Ca2+ saturation of the myofilaments at these

high frequencies [48]. Furthermore, the stimulus frequencies where maximum tetanic force is

recorded do not reflect normal physiological activation [49]. We therefore also investigated

muscle function across a range of stimulus frequencies.

Single twitch contractions showed significant differences between normal and dysf-/- muscle

function. Additionally, the results show novel differences in the impact of dysferlin-deficiency

on slow and fast twitch muscle function. The BLAJ soleus had a significantly faster twitch con-

traction and relaxation, compared with WT muscle; whereas, the BLAJ EDL showed a slower

relaxation and an increased maximum rate of force production. Similarly, both the BLAJ soleus

and EDL had abnormal force-frequency relationships, whereby the mean force frequency

curves were significantly shifted to the right (soleus) and left (EDL) compared to WT, particu-

larly at the lower, more physiologically relevant stimulus frequencies. These force-frequency

results reflect the differences found in TTP and 1/2RT of the BLAJ muscles. Compared with

WT, the contraction times for the BLAJ soleus are shorter, so force summation would be

reduced for a given stimulation frequency, whereas, the BLAJ EDL had a longer relaxation,

likely contributing to higher force summation. Myofibre type specific differences were also

shown in terms of delayed post fatigue recovery in the BLAJ soleus in the first 15 minutes. No

significant effect of dysferlin-deficiency was observed in EDL fatigue or post fatigue recovery.

MHC myofibre typing showed that the differences in BLAJ soleus muscle contractions

were not due to a change in myofibre type composition (as measured by MHC isoforms). As
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such, our results are indicative of disrupted EC coupling in the dysf-/- soleus. This is consistent

with past studies showing that dysferlin-deficiency is associated with ultrastructural changes to

the T-tubules, and impairment of DHPR and RyR1 function in dysf-/- skeletal muscle [6, 8, 9,

46, 50]. The variations in dysf-/- soleus muscle function may be explained by myofibre type

specific isoform variations in Ca2+ handling proteins, such as SERCA and calsequestrin, pres-

ent in slow and fast twitch myofibres [51, 52].

In the BLAJ EDL, the relative increase in the proportions of MHC isoform ‘intermediate’

type IIx myofibres compared with ‘fast’ type IIb myofibres, may account for some of the differ-

ences in our ex vivo function measures, namely longer relaxation time and leftward shift of the

force frequency curve. This shift in MHC isoform composition reflects findings in humans

with advanced stage dysferlinopathy, where muscle biopsies from quadriceps, gastrocnemius,

biceps, triceps, and deltoid muscles, displayed a type I myofibre predominance of up to 80%,

suggesting a selective loss of type II myofibres [53]. In addition to an impact of dysferlin-defi-

ciency on EC coupling that will affect muscle function, molecular disturbances that could pref-

erentially impact the cellular and metabolic activities of slow or fast twitch myofibres need to

be considered. In this context, studies in normal soleus and EDL muscles of adult male rats

aging from 3 to 12 months, show substantial changes in many physiological and biochemical

characteristics during early to mid-adulthood [37]; such post-growth changes in different mus-

cles may affect the onset and progression of muscle diseases such as dysferlinopathy.

Previous experimental studies using dysf-/- mice have focussed more on limb girdle muscles

with pronounced histopathology, rather than distal limb muscles such as the soleus (without

marked histopathology). However, we have shown that the soleus is in fact impacted by dysfer-

lin-deficiency in terms of mass and contractile function. The soleus muscle from mice is

reported to be similar to human skeletal muscle, due to the higher proportion of slow twitch

myofibres [54], thus our murine results may have strong implications for understanding the

dysferlinopathy pathology. Indeed, in the human disease, the soleus is one of the first muscles

affected [55], with recent detailed MRI analyses of many muscles in human dysferlinopathy

patients showing pathological changes in the soleus, due to adipocyte replacement, early in the

disease progression [16]. The differences in severity of dystropathology progression in the

soleus between the human disease and the mouse model may be due (in part) to the very dif-

ferent loading patterns present between large bipedal humans and very small quadrupedal

mice, combined with impact of the far longer growth phase (~16–20 years depending on gen-

der) and longevity of humans compared with mice.

Clearly further investigation into the nature of the impact of dysferlin-deficiency on the

soleus and slow twitch myofibres in both species is of much interest. It would also be beneficial

to investigate these functional characteristics of BLAJ skeletal muscle at other ages to better

understand the progression of the disease. This new research focus on the nature of disease

manifestation in different types of dysf-/- myofibres, is likely to provide novel insights into the

molecular basis for the disease that will influence the selection of specific muscles for design of

future pre-clinical studies and, of much importance clinically may identify new drug targets

for future therapies for dysferlinopathies.
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