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RESEARCH NOTE

Role of imitation and limited rehabilitation 
capacity on the spread of drug abuse
Josiah Mushanyu*

Abstract 

Objectives:  We formulate a mathematical model for the spread of drug abuse using non linear ordinary differential 
equations. The model seeks to investigate both peer influence and limited rehabilitation effects on the dynamics of 
drug abuse. Peer-influence is modelled through the mechanism of imitation and limited rehabilitation is described 
using a special treatment function. Center manifold theory is used to show that the model exhibits the phenomenon 
of backward bifurcation. Matlab has been used to carry out numerical simulations to support theoretical findings.

Results:  The model analysis shows that the model has multiple equilibria. It has been shown that the classical Ra

—threshold is not the key to control drug abuse within a population. In fact drug abuse problems may persist in the 
population even with subthreshold values of Ra . This was shown to result, in particular when, ω , η1 and η2 are high 
enough such that ω > ω

∗ , η1 > η
∗

1
 and η2 > η

∗

2
 . The results suggest the need for comprehensive and accessible sub-

stance abuse treatment services to curtail drug abuse.
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Introduction
Drug abuse has increased in recent years and is now 
an epidemic globally. The magnitude of the world drug 
problem becomes more apparent when considering that 
more than 1 out of 10 drug users is a problem drug user 
and the vast majority of these individuals continue to 
have no access to treatment [1]. There continues to be a 
large “treatment gap” for substance abuse problems as 
many countries have a large shortfall in the provision 
of services. According to the United Nations Office on 
Drugs and Crime [1], only one out of every six problem 
drug users in the world has access to treatment. Gen-
erally, the number of patients in need of rehabilitation 
often exceeds the carrying capacities of drug treatment 
facilities, especially those funded by the state.

Several mathematical models describing the spread of 
psycho-social ills in a community have been proposed, 
see for example, drug epidemics [2–9], alcoholism [10–
16], smoking [17–19]. The basic assumption in most 
drug abuse models is that there is a direct proportional 

relationship between the number of drug users in need 
of treatment and the available health care resources pre-
sent. In this paper, we develop a mathematical model that 
takes into account the possibility of the number of drug 
abusers in need of rehabilitation exceeding the capacity 
of rehabilitation centers. Recruitment into rehabilitation 
(inpatient or outpatient) is denoted by H(U) and defined 
as follows:

where U represents the proportion of individuals abusing 
drugs, α is the maximum rehabilitation uptake per unit of 
time and ω measures the extent of the effect of the prob-
lem of demand for treatment. Firstly, observe that for 
small U, H(U) ≈ αU  , that is, when the number of drug 
users is not too large, then the rate of entering treatment 
is proportional to the number of drug users present. Sec-
ondly, observe that for large U, H(U) ≈ α/ω , this means 
that the rate of entering rehabilitation takes a maximum 
value α/ω . Finally, when ω = 0 , we again obtain the 
result as in the first case, H(U) = αU  , that is, the func-
tion returns to a linear function mostly used in previous 

(1)H(U) =
αU

1+ ωU
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drug abuse models. Amongst drug abusers who are seek-
ing help through rehabilitation, we have that a proportion 
p of these individuals are recruited into inpatient reha-
bilitation and the complementary proportion (1− p) are 
recruited into outpatient rehabilitation. It is also impor-
tant to note that epidemic models including treatment 
functions of the form (1) are found in [20–23].

We also include peer influence effects on the spread 
of drug abuse by assuming that the recruitment process 
happens through the mechanism of imitation. In this 
paper, we use the recruitment function given in [11]. 
Compared to previous drug epidemic models [2–9], a key 
novelty of our model is the inclusion of both imitation 
and limited rehabilitation on the dynamics of drug abuse.

The paper is arranged as follows; in “Model formula-
tion” section, we formulate and establish the basic prop-
erties of the model. The model is analysed for stability in 
“Model analysis” section. In “Numerical simulations” sec-
tion, we carry out some numerical simulations. Parame-
ter estimation is also presented in this section. The paper 
is concluded in the “Conclusions” section.

Main text
Model formulation
The model divides the population into four classes, S(t), 
U(t), Rop(t) and Rip(t) . The class S(t) represents the popu-
lation at risk of being initiated into drug abuse. The class 
U(t) denotes those abusing drugs, Rop(t) denotes those in 
rehabilitation as out-patients and Rip(t) denotes those in 
rehabilitation as in-patients. The total local population is 
thus given by

The general population enter the susceptible population 
at a rate � , that is, the demographic process of individu-
als reaching age 15 in the modelling time period. Suscep-
tible individuals become drug users upon contact with 
individuals in compartments U or Rop . This results from 
the assumption that those in inpatient rehabilitation do 
not have contact with the population at risk. The per 
capita contact rate β1 is a product of the effective number 
of contacts c1 , between drug users not in rehabilitation 
and the susceptible population, and the probability β̂1 , 
that a contact results into initiation into drug use, that is, 
β1 = c1β̂1 . The per capita contact rate β2 is a product of 
the effective number of contacts c2 , between drug users 
in outpatient rehabilitation and the susceptible popula-
tion, and the probability β̂2 , that a contact results into 
initiation into drug use, that is, β2 = c2β̂2 . Individuals 
under outpatient rehabilitation quit drug abuse perma-
nently at a rate δ1 and individuals under inpatient reha-
bilitation quit drug abuse permanently at a rate δ2 . The 
general population experience natural death at a rate µ . 

N (t) = S(t)+ U(t)+ Rop(t)+ Rip(t).

Drug users undergoing outpatient rehabilitation relapse 
into drug use at a rate ρ1 whereas those undergoing inpa-
tient rehabilitation relapse at a rate ρ2 . The relapse is thus 
assumed to be a voluntary process, that is not influenced 
by interaction with users. We allow the transfer from out-
patient to inpatient rehabilitation, this happens at a rate 
γ1 . We also allow the transfer from inpatient to outpatient 
rehabilitation, this rate is represented by γ2 . We assume 
that individuals in each compartment are indistinguish-
able and there is homogeneous mixing. We have the 
following general set of nonlinear ordinary differential 
equations:

with the initial conditions:

where

Here β2 = θβ1 , with θ = 1 signifying that the chance of 
initiating drug abuse habit upon contact with an individ-
ual in U or Rop is the same, θ ∈ (0, 1) signifying a reduced 
chance of initiating drug abuse habit upon contact with 
an individual in Rop as compared to an individual in U, 
θ > 1 signifies an increased rate of initiating drug abuse 
habit upon contact with an individual in Rop as compared 
to an individual in U.

Model analysis
Model properties
Invariant region  It follows from system (2) that

Then, lim sup
t→∞

N ≤

�

µ
 . Thus, the feasible region for sys-

tem (2) is

(2)




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
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dS

dt
= �− f (S,U ,Rop)− µS,

dU

dt
= f (S,U ,Rop)+ ρ1Rop + ρ2Rip − µU −

αU

1+ ωU
,

dRop

dt
= γ2Rip − (µ+ γ1 + ρ1 + δ1)Rop +

(1− p)αU

1+ ωU
,

dRip

dt
= γ1Rop − (µ+ γ2 + ρ2 + δ2)Rip +

pαU

1+ ωU
,

S(0) = S0 > 0, U(0) = U0 ≥ 0, Rop(0)

= Rop0 ≥ 0, Rip(0) = Rip0 ≥ 0,

f (S,U ,Rop) = β1SU(1+ η1U)+ β2SRop(1+ η2Rop)

= β1

(

SU(1+ η1U)+ θSRop(1+ η2Rop)
)

.

(3)
dN

dt
≤ �− µ(S + U + Rop + Rip).

(4)� =

{

(S,U ,Rop,Rip) ∈ R
4
+
| N ≤

�

µ

}

.
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It is easy to verify that the region � is positively invariant 
with respect to system (2), see for instance [3–5].

The drug‑free equilibrium and the abuse reproduction 
number
Model system (2) always has a drug-free equilibrium 

D0 =

(

�

µ
, 0, 0, 0

)

 . Denote the abuse reproduction 

number of model system (2) by

with

We can clearly note that γ1γ2 ≤ h1h2 and so 
(1− Ŵ1) ≥ 0 . Also, γ1γ2 + γ2ρ1 + ρ2h1 ≤ h1h2 and 
γ1γ2 + γ1ρ2 + ρ1h2 ≤ h1h2 . Therefore, Ra is non-nega-
tive. The abuse reproduction number Ra of the model, is 
the average number of secondary cases generated by one 
drug user during his/her duration of drug use in a popu-
lation of completely potential drug users.

Local stability of the drug‑free steady state

Theorem  1  The drug-free equilibrium D0 is locally 
asymptotically stable when Ra < 1 and is unstable when 
Ra > 1.

Proof  The Jacobian matrix of model system Eq. (2) at D0 
is given by

Ra = RU +RRop where

RU =

(

�

µ

)[

β1(1−�1)

µ(1−�1)+ αp(1−�2)+ α(1− p)(1−�3)

]

and

RRop =

(

�

µh1h2

)[

β2((1− p)αh2 + pαγ2)

µ(1−�1)+ αp(1−�2)+ α(1− p)(1−�3)

]

�1 =
γ1γ2

h1h2
, �2 =

γ1γ2 + γ2ρ1 + ρ2h1

h1h2
,

�3 =
γ1γ2 + γ1ρ2 + ρ1h2

h1h2
,

h1 = µ+ γ1 + ρ1 + δ1 and h2 = µ+ γ2 + ρ2 + δ2.

J (D0) =









−µ −
�

µ
β1

�

µ
β2 0

0 g1 g2 ρ2

0 (1− p)α −h1 γ2

0 pα γ1 −h2









where h1 and h2 are defined as before and 
g1 =

�

µ
β1 − (µ+ α) , g2 = �

µ
β2 + ρ1 . The local stability 

of the drug-free equilibrium is determined by the follow-
ing submatrix of J (D0),

Since all off-diagonal elements are positive, we now con-
sider matrix −J̄(D0) . We claim that −J̄(D0) is an M—
matrix. Multiplying matrix −J̄(D0) by the positive 3× 1 
matrix

we have

where W2 is a positive 3× 1 matrix given by

Then, it follows from M—matrix theory that all eigenval-
ues of J̄(D0) have negative real parts, which implies the 
local asymptotic stability of the drug-free equilibrium 
if Ra < 1 . On the other hand, it can be shown that the 
determinant of J̄(D0) is given by

Thus, if Ra < 1 , then matrix J̄(D0) has eigenvalues with 
negative real parts, which implies the stability of the 
drug-free equilibrium. This completes the proof.� �

J̄(D0) =





g1 g2 ρ2

(1− p)α −h1 γ2

pα γ1 −h2



 .

W1 =





h1h2(1−�1)

pαγ2 + (1− p)αh2
(1− p)αγ1 + pαh1



 ,

−J̄ (D0) ·W1 = (1−Ra) ·W2

W2 =





h1h2[µ(1−�1)+ αp(1−�2)+ α(1− p)(1−�3)]

0

0



 .

det J̄ (D0) = h1h2[µ(1−�1)+ αp(1−�2)

+ α(1− p)(1−�3)](Ra − 1).
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The drug‑persistent equilibrium point
The drug-persistent equilibrium D∗

=

(

S∗,U∗,R∗

op, R
∗

ip

)

 

always satisfies

From the last two equations of (5) we have that

where

Substituting expressions (6) into the first equation of (5), 
we get

Substituting expressions (6) and (7) into the second equa-
tion of (5) leads to the following sixth order polynomial 
equation

Solving (8) gives U∗
= 0 which corresponds to the drug-

free equilibrium or

where the coefficients χi, 1 ≤ i ≤ 5 are in Addi-
tional file  1: Appendix S1. We can clearly note that, 
χ0 > 0 ⇔ Ra < 1 and χ0 < 0 ⇔ Ra > 1 . The number of 
possible positive real roots of the polynomial (9) can be 
determined using the Descartes Rule of Signs. The num-
ber of positive roots are at most five.

(5)
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�− f
�

S∗,U∗,R∗

op

�

− µS∗ = 0,

f
�

S∗,U∗,R∗

op

�

+ ρ1R
∗

op + ρ2R
∗

ip − µU∗
−

αU∗

1+ ωU∗
= 0,

γ2R
∗

ip − (µ+ γ1 + ρ1 + δ1)R
∗

op +
(1− p)αU∗

1+ ωU∗
= 0,

γ1R
∗

op − (µ+ γ2 + ρ2 + δ2)R
∗

ip +
pαU∗

1+ ωU∗
= 0.

(6)R∗

op =

�1U
∗

1+ ωU∗
and R∗

ip =

�2U
∗

1+ ωU∗

�1 =
αpγ2 + α(1− p)h2

h1h2(1−�1)
and �2 =

αph1 + α(1− p)γ1

h1h2(1−�1)
.

(7)S∗ =

�(1+ ωU∗
)
2

(µ+ β1U∗(1+ η1U∗))(1+ ωU∗)2 + β2�1U∗(1+ ωU∗
+ η2�1U∗)

.

(8)
U∗

(

χ5U
∗5

+ χ4U
∗4

+ χ3U
∗3

+ χ2U
∗2

+ χ1U
∗
+ χ0

)

= 0.

(9)
χ5U

∗5
+ χ4U

∗4
+ χ3U

∗3
+ χ2U

∗2
+ χ1U

∗
+ χ0 = 0,

Backward bifurcation
Conditions for the existence of backward bifurcation fol-
low from Theorem  4.1 proven in [24]. Let us make the 
following change of variables:

S = x1, U = x2 Rop = x3, Rip = x4 , so that N =

4
∑

n=1

xn . 

We now use the vector notation X = (x1, x2, x3, x4)
T . 

System (2) can be written in the form 
dX

dt
= F(t, x(t)) = (f1, f2, f3, f4)

T , where

with

Let β1 be the bifurcation parameter, Ra = 1 corresponds 
to

(10)


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
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


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
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

x
′

1
(t) = p�− h(x1, x2, x3)− µx1 = f1,

x
′

2
(t) = h(x1, x2, x3)+ ρ1x3 + ρ2x4 − µx2 −

αx2

1+ ωx2
= f2,

x
′

3
(t) = γ2x4 − h1x3 +

α(1− p)x2

1+ ωx2
= f3,

x
′

4
(t) = γ1x3 − h2x4 +

αpx2

1+ ωx2
= f4,

h(x1, x2, x3) = β1(x1x2(1+ η1x2)+ θx1x3(1+ η2x3)).

The Jacobian matrix of system (2) at D0 when β1 = β
∗

1 is 
given by

where h1 and h2 are defined as before and 
g∗1 =

�

µ
β
∗

1 − (µ+ α) , g∗2 =
�

µ
θβ

∗

1 + ρ1.
System (10), with β1 = β

∗

1 has a simple eigenvalue, 
hence the center manifold theory can be used to ana-
lyse the dynamics of system (2) near β1 = β

∗

1 . It can be 
shown that J∗(D0) , has a right eigenvector given by 
w = (w1,w2,w3,w4)

T , where

(11)

β1 = β
∗

1 =

(

µ

�

)

[

h1h2(µ(1−�1)+ αp(1−�2)+ α(1− p)(1−�3))

h1h2(1−�1)+ αpθγ2 + α(1− p)θh2

]

.

J∗(D0) =











−µ −
�

µ
β
∗

1
�

µ
θβ

∗

1 0

0 g∗1 g∗2 ρ2

0 (1− p)α −h1 γ2

0 pα γ1 −h2










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Further, the left eigenvector of J∗(D0) , associated with the 
zero eigenvalue at β1 = β

∗

1 is given by v = (v1, v2, v3, v4)
T , 

where

The computations of a and b are necessary in order to 
apply Theorem 4.1 in Castillo-Chavez and Song [24]. For 
system (10), the associated non-zero partial derivatives 
of F at the drug-free equilibrium are in Additional file 1: 
Appendix S2. It thus follows that

where

with

w1 = −h1h2(µ(1−�1)+ αp(1−�2)

+ α(1− p)(1−�3)),

w2 = µh1h2(1−�1), w3 = αµ((1− p)h2 + pγ2),

w4 = αµ(ph1 + (1− p)γ1).

v1 = 0, v2 = h1h2(1−�1)+ α(1− p)θh2 + αpθγ2,

v3 = h2(θ(α + µ)+ ρ1)+ ρ2(γ1 − αθp),

v4 = ρ2(h1 + αθ(1− p))+ γ2(θ(α + µ)+ ρ1).

a = v1w1w2
∂
2f1

∂x1∂x2
+ v1w1w3

∂
2f1

∂x1∂x3
+ v1w

2
2

∂
2f1

∂x22
+ v1w

2
3

∂
2f1

∂x23
+ v2w1w2

∂
2f2

∂x1∂x2

+ v2w1w3
∂
2f2

∂x1∂x3
+ v2w

2
2

∂
2f2

∂x22
+ v2w

2
3

∂
2f2

∂x23
+ v3w

2
2

∂
2f3

∂x22
+ v4w

2
2

∂
2f4

∂x22

= 2αωv2w
2
2 − 2(1− p)αωv3w

2
2 − 2αpωv4w

2
2 + β

∗

1 v2w1w2 + θβ
∗

1 v2w1w3

+

2�β∗

1η1v2w
2
2

µ
+

2θ�β∗

1η2v2w
2
3

µ

=

[

Aω − µ
2h1h2(1−�1)v

2
2β

∗

1

]

+

[

Bη1 − µαph1h2(1−�2)v
2
2β

∗

1

]

+

[

Cη2 − µα(1− p)h1h2(1−�3)v
2
2β

∗

1

]

=A
(

ω − ω
∗
)

+ B
(

η1 − η
∗

1

)

+ C
(

η2 − η
∗

2

)

,

(12)

ω
∗
=

µ
2h1h2(1−�1)v

2
2
β
∗

1

A
,

η
∗

1 =

µαph1h2(1−�2)v
2
2
β
∗

1

B
,

η
∗

2 =

µα(1− p)h1h2(1−�3)v
2
2
β
∗

1

C
,

A = 2αµ
2h21h

2
2(1−�1)

2
× [((1− θ)µ+ δ1)((1− p)ρ2 + γ2)

+ (µ+ δ2)((1− θ)µ+ µθp+ γ1 + δ1 + pρ1)],

B = 2�µh21h
2
2(1−�1)

2v2β
∗

1 and

C = 2�µθα
2
((1− p)h2 + pγ2)

2v2β
∗

1 .

Note that ω∗
> 0 , η∗1 > 0 and η∗2 > 0 . Also note that if 

ω > ω
∗ , η1 > η

∗

1 and η2 > η
∗

2 then a > 0 and a < 0 if 
ω < ω

∗ , η1 < η
∗

1 and η2 < η
∗

2 . Lastly,

We thus have the following result

Theorem 2  If ω > ω
∗ , η1 > η

∗

1 and η2 > η
∗

2 , then model 
system (2) has a backward bifurcation at Ra = 1.

Results and discussion
Numerical simulations
Parameter estimation  Since we can rarely enumerate 
the incidence of drug users, data from treatment centers 
can be used as proxy for estimating parameters for drug 
related issues. We use data obtained from previous math-
ematical models with inpatient and outpatient rehabilita-

b = �(h2(αθ(p− 1)− h1)+ γ2(γ1 − αθp))2 > 0.

tion [4, 5]. Some of the parameter values will be obtained 
from literature.

Parameter values used for numerical simulations are 
given in Table 1.

Numerical results  We carry out detailed numerical sim-
ulations using matlab to support our theoretical findings. 
The initial conditions used are: S(0) = 0.95 , U(0) = 0.05 , 
Rop(0) = 0 , Rip(0) = 0.

Figures  1 and 2 illustrate the effect of varying param-
eters ω and η1 on the prevalence of drug abuse. Figures 1 
and 2 demonstrate that increasing ω and η1 results in an 
increase in the prevalence of drug abuse. This is a reflec-
tion that limited rehabilitation and imitation are of major 
concern in the fight against drug abuse.
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Conclusions
A mathematical model that incorporates imitation and 
limited rehabilitation has been formulated using non-
linear ordinary differential equations. It has been shown 
that the classical Ra—threshold is not the key to con-
trol drug abuse within a population. In fact drug abuse 
problems may persist in the population even with sub-
threshold values of Ra . This was shown to result, in 
particular when ω , η1 and η2 are high enough such that 
ω > ω

∗ , η1 > η
∗

1 and η2 > η
∗

2 . Considerable effort should 
be directed towards reducing ω , η1 and η2 , this done by 
increasing the value of ω∗ , η∗1 and η∗2 so as to avoid back-
ward bifurcation. Also, results from the model applica-
tion show that increasing ω and η1 lead to an increase in 
the prevalence of drug abuse. Thus, communities should 
have suitable capacity for the treatment of drug abusers 
and specific health and/or education programs may be 
employed to reduce the imitation coefficient η1.

Limitations
Like in any model development, the model is not without 
limitations.

• • The model did not take into account contextual 
dynamics, such as drug supply chains or changes in 
interdiction.

• • Also, the study presented here ignored detailed social 
and economic characteristics.

• • Other initiation processes, not included in this work, 
for instance, initiation by self-conversion, drug sup-
ply chains etc. may form part of the author’s future 
research considerations.
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Table 1  Parameter values used in numerical simulations

Parameter Range Value Source

β1 0.10–0.21 0.105 [7]

β2 0–0.10 0.063 [6]

ω 0–1 0.62 [5]

α 0–0.05024 0.02827 [4]

p 0–1 0.352 [4]

η1 0–1 0.24 Assumed

η2 0–1 0.13 Assumed

δ1 0.001–1 0.01 [4]

δ2 0.01–1 0.3142 [4]

ρ1 0–0.054 0.0382 [4]

ρ2 0–0.0235 0.0020 [4]

γ1 0–0.06012 0.02961 [4]

γ2 0–0.008 0.003 [4]

� 0.028–0.080 0.04 [7]

µ 0.019–0.021 0.020 [25]
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Fig. 1  Effects of varying ω on the prevalence of drug abuse, starting 
from 0 up to 1.0 with a step size of 0.5
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Fig. 2  Effects of varying η1 on the prevalence of drug abuse, starting 
from 0 up to 1.0 with a step size of 0.5
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