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More and more studies have shown that many complex diseases are contributed jointly by alterations of numerous genes. Genes
often coordinate together as a functional biological pathway or network and are highly correlated.Differential coexpression analysis,
as a more comprehensive technique to the differential expression analysis, was raised to research gene regulatory networks and
biological pathways of phenotypic changes through measuring gene correlation changes between disease and normal conditions.
In this paper, we propose a gene differential coexpression analysis algorithm in the level of gene sets and apply the algorithm to a
publicly available type 2 diabetes (T2D) expression dataset. Firstly, we calculate coexpression biweight midcorrelation coefficients
between all gene pairs.Then, we select informative correlation pairs using the “differential coexpression threshold” strategy. Finally,
we identify the differential coexpression gene modules using maximum clique concept and k-clique algorithm. We apply the
proposed differential coexpression analysis method on simulated data and T2D data. Two differential coexpression gene modules
about T2D were detected, which should be useful for exploring the biological function of the related genes.

1. Introduction

DNA microarray has been widely used as measurement
tools in gene expression data analysis [1–4]. Gene expres-
sion profiling data from DNA microarray can detect the
expression levels of thousands of genes simultaneously, pro-
viding an effective way for mining disease-related genes
and revealing information of the regulatory networks and
biological pathways of genes. Currently, the analysis of gene
expression data can be divided into three levels: first, analysis
of the expression level of individual genes, determining its
function based on gene expression level changes under dif-
ferent experimental conditions: for example, the tumor type
specific genes are identified according to the significance of
difference in gene expression using the statistical hypothesis
testing analysis method; second, study of gene interaction
and coregulation through the combination of genes and
grouping; and, third, an attempt to deduce the potential gene

regulatory networks mechanism and explain the observed
gene expression data.

Among the microarray data analysis methods, gene
differential expression analysis is one of the most widely
used types of analysis for disease research. Gene differential
expression analysis method selects differentially expressed
genes according to expression change value of a single
gene. In fact, gene expression value change between normal
samples and disease samples can be used to present the
possibility of the relation between gene and disease. However,
the traditional pathogenicity genes selection methods based
on gene expression data treat each gene individually and
interaction between them is not considered. Actually, genes
and their protein products do not perform their functions
in isolation [5, 6], but in cooperation. Functional changes
such as alteration in tumor cell growth process, energy
metabolism, and immune activity were accompanied with
coexpression changes.Differentially expressed genes selection
methods often focus only on the size of the single genes and
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the relationship of individual genes and disease, ignoring a
plurality of pathogenic genes of the complex disease as a gene
module with disease related, as well as within the module
gene [7].

Differential coexpression analysis, as a more comprehen-
sive technique to the differential expression analysis, was
raised to research gene regulatory networks and biological
pathways of phenotypic changes through measure gene
correlation changes between disease and normal conditions.
Differential coexpression genes are defined as genes whose
correlated expression pattern differs between classes [8].
The gene coexpression changes between different conditions
indicate gene regulatory pathways and networks associated
with disease. In gene differential coexpression analysis, a
pair of gene expression datasets under disease and normal
conditions is transformed to a pair of coexpression matrix in
which links represent transcriptionally correlated gene pairs
[5]. Until now, methods for differential coexpression analysis
of gene expression data have been extensively researched, and
multiple algorithms have been developed and tested [9–12].
In those gene differential coexpression analysis methods, the
most common choice of similarity measurement is Pearson’s
correlation coefficients. However, Pearson’s correlation is
sensitive to outliers. So biweight midcorrelation (bicor) is
considered to be a good alternative to Pearson’s correlation
since it is more robust to outliers [13].

In biomedical research, many complex diseases are con-
tributed jointly by alterations of numerous genes; they often
coordinate together as a functional biological pathway or
network and are highly correlated. With recent interest of
gene differential coexpression analysis in the gene network
or module, gene module analysis has emerged as a novel
holistic approach for microarray analysis. Somewhat large
units, made up of genes, are more densely connected to each
other than to the rest of the network, are often referred to
as modules, and have been considered to be the essential
structural units of real gene networks. There exists overlap
among gene modules in large real networks.

Until now, there are manymethods to find gene modules.
For example, Butte and Kohane [14] proposed a systems-
based approach called Entropy Minimization and Boolean
Parsimony (EMBP) that identifies, directly from gene expres-
sion data, modules of genes that are jointly associated with
disease. Kostka and Spang [15] used additive model to
find differential coexpression gene modules. Prieto et al.
[16] used altered expression based on improved additive
model, optimal residual ratio, and minimum F-distribution
to find differential coexpression gene modules. However, the
microarray data contains a large number of genes; those
methods need to search all gene expression data resulting
in a large amount of computation; the process is very time-
consuming even using optimized search algorithm.

Themaximumclique analysis can avoid exhaustive search
and quickly find maximum gene module with biological
significance. The maximum clique problem (MCP) is a clas-
sical combinatorial optimization problem in graph theory. In
1957, Ross and Harary [17] first proposed the deterministic
algorithm to solve the maximum clique problem. Since then
some researchers had presented a variety of algorithms to

solve this problem. The maximum clique problem is widely
used in different areas, such as signal transmission, computer
vision, and biological research. In this study, a gene coexpres-
sion network can be treated as a graph; gene is represented
by vertex and coexpression relationship is represented by
edge. We will use k-clique algorithm [18], which is an
effective and deterministic method for uniquely identifying
overlapping modules in large real networks. We first show
some basic definitions. k-cliques, the central objects of k-
clique algorithm investigation, are defined as complete (fully
connected) subgraphs of 𝑘 vertices. k-clique adjacency is
as follows: two k-cliques are adjacent if they share some
vertices. k-clique chain is as follows: a subgraph, which is the
union of a sequence of adjacent k-cliques. We use k-clique
algorithm to find gene cliques, and maximum clique concept
is used to quickly find large gene modules which are made
of k-clique chain. For the sake of convenience, we use the
terms graph and community or network interchangeably, the
former stressing the mathematical concept and the latter the
application.

In this paper, we proposed a new approach for gene
differential coexpression analysis in genemodules level based
on combining biweight midcorrelation, differential coex-
pression threshold strategy, and maximum clique concept
and k-clique analysis. Biweight midcorrelation measures the
coexpression relationship between genes and the k-clique
analysis with maximum clique concept quickly finds maxi-
mumdisease-relatedmodule with biological significance.We
use the approach to further investigate the gene module in
order to gain insight into coexpression relationship between
genes. The algorithm can find differential coexpression dis-
ease genes modules and global coexpression patterns are
determined for type 2 diabetes expression dataset. As far as
we know, no one has done this experiment.

The rest of the paper is organized as follows. Section 2
describes the methods proposed in this study. The biweight
midcorrelation coefficients, “gene differential coexpression
threshold” strategy, and threshold selection strategy are first
presented, and the algorithm of k-clique is consequently
given. Section 3 presents the experiment on simulated data
and type 2 diabetes (T2D) in rats dataset. Section 4 concludes
the paper and outlines directions of future work.

2. Methods
2.1. Biweight Midcorrelation for Differential Coexpression.
Differential coexpression analysis usually requires the defini-
tion of “distance” or “similarity” between measured datasets,
the most common choice being Pearson’s correlation coeffi-
cients. However, Pearson’s correlation coefficient is sensitive
to outliers [13]. Biweight midcorrelation is considered to be
a good alternative to Pearson’s correlation since it is more
robust to outliers. Example of a gene expression matrix is as
follows:
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For each sample𝑍
𝑖
, wemeasure expression levels for a set

of genes, so𝑋
𝑖𝑗
is the measurement of the expression level of

the 𝑗th gene for the 𝑖th sample, where 𝑗 = 1, . . . , 𝑝. The 𝑥th
column vector of matrix represents gene expression profile
of gene 𝑋. In order to define the biweight midcorrelation
(bicor) [13] of two numeric vectors 𝑥 = (𝑥

1
, . . . , 𝑥

𝑚
) and

𝑦 = (𝑦
1
, . . . , 𝑦

𝑚
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(2)

wheremed(𝑥) is themedian of vector𝑥,mad(𝑥) is themedian
absolute deviation of vector 𝑥, mad(𝑥) is the median of new
numeric vector in which each number is absolute difference
between original vector value andmed(𝑥); this leads us to the
definition of mad(𝑥) and weight 𝑤

𝑖
for 𝑥
𝑖
, which are
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(3)

where the indicator 𝐼(1 − |𝑢
𝑖
|) takes 1 if 1 − |𝑢

𝑖
| > 0

and 0 otherwise. Thus, the weight 𝑤(𝑥)
𝑖

is close to 1 if 𝑥
𝑖
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𝑖
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It should be noted that the equations of biweight midcor-
relation do not involve an explicit identification of outliers,
and all elements whose weight 𝑤

𝑖
= 0 can be considered

outliers. The user can also set up the maximum allowed pro-
portion of outliers using the argument “maxPOutliers”; the
“maxPOutliers” is interpreted as the maximum proportion
of low and high outliers separately. For the value of bicor
from −1 to 1, −1 represents the maximum negative correlation
and 1 represents the maximum positive correlation. Zero
represents irrelevant correlation.

2.2. The “Differential Coexpression Threshold” Strategy. We
used biweight midcorrelation to measure every pair of genes
in the gene expression dataset and get a gene coexpression

matrix. The gene coexpression matrix is a square and sym-
metric matrix 𝑃 whose rows and columns correspond to
the genes and whose element 𝑃

𝑖𝑗
denotes the coexpression

relationship between genes 𝑖 and 𝑗. In this paper, we use𝐴
𝐺𝑁

which represents gene coexpression adjacency matrix in nor-
mal conditions and𝐴

𝐺𝐷
which represents gene coexpression

adjacency matrix in disease condition. To find differential
coexpression gene modules which are coexpressed in normal
condition and not related to disease condition, we set two
thresholds 𝑇

1
for adjacency matrix 𝐴

𝐺𝑁
in normal condition

and 𝑇
2
for adjacency matrix 𝐴

𝐺𝐷
in disease condition.
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2
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1
, and

coexpression value of genes 𝑖 and 𝑗 in𝐴
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2
. 𝐴
𝐺𝑁
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. The method is shown in (5).

With the above mentioned strategy, we also set𝐴
𝐺
(𝑖, 𝑗) =

1 if the absolute value of 𝐴
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simultaneously. This is a special type of coexpression change.
In reality, coexpression reversal probably has biological sig-
nificance. The coexpression reversal between normal con-
dition and disease condition has advantage in disease. For
example, the coexpression of p53 and Klf4 recently reported
that the positive or negative correlation between these two
genes determines the outcome of DNA damage, DNA repair,
or apoptosis [19]. We believe that our attention to this special
coexpression change will help to explore subtle mechanisms
involved in genes transcriptional regulation. We excavated
maximum cliques which have biological significance from
𝐴
𝐺
adjacency matrix to further investigate gene regulatory

networks. Consider the following:
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2.3. The Threshold Selection Strategy. The two real value
adjacency matrixes are transformed into a binary matrix
which contains two elements 0 and 1 only. Choosing different
thresholds will lead to different results; too large 𝑇

1
threshold

or too small 𝑇
2
threshold will lead to small link number,

low density clique, and lost biological significance cliques.
On the other hand, too small 𝑇

1
or too large 𝑇

2
will lead to

many overlapping cliques. They are not helpful for finding
biological significance differential coexpression gene disease-
relatedmodules. In fact, how to choose a reasonable threshold
in conversion process is a problem which needs to be further
studied. Generally, the selection of the threshold can be based
on the proportion of outliers in the figure or the density of
graph. The outlier is the point which is not connected to any
edges. The density is defined as the ratio of number of edges
to the maximum possible number of edges in the graph. The
density of clique is 1.

For gene expression data analysis, closely linked func-
tional module is not the strict sense of maximum clique due
to the lack of certain section. In this paper, we use density
to measure approximation degree of functional module with
gene differential coexpression clique, which may be having
more biological significance.

2.4. The Maximum Clique Concept and 𝑘-Clique Algorithm.
Graph theoretical concepts are useful for the description
and analysis of interactions and relationships in biological
systems. In gene coexpression graph, gene is represented by
vertex and coexpression relationship by edge. 𝐺 = (𝑉, 𝐸) is
an arbitrary undirected and weighted graph unless otherwise
specified in graph theoretical concepts. 𝑉 = {1, 2, . . . , 𝑛} is
the vertex set of 𝐺, and 𝐸 is the edge set of 𝐺. For each vertex
𝑖 ∈ 𝑉, a positive weight𝑤

𝑖
is associated with 𝑖.𝐴

𝐺
= (𝑎
𝑖𝑗
)
𝑛×𝑛

is
the adjacencymatrix of𝐺, where 𝑎

𝑖𝑗
= 1 if (𝑖, 𝑗) ∈ 𝐸 is an edge

of 𝐺, and 𝑎
𝑖𝑗
= 0 if (𝑖, 𝑗) ∉ 𝐸. Genes and relationship between

genes are represented by vertex and edge, respectively.
A graph 𝐺 = (𝑉, 𝐸) is complete if all its vertices are

pairwise adjacent; that is, for all 𝑖, 𝑗 ∈ 𝑉, (𝑖, 𝑗) ∈ 𝐸. A clique 𝐶
is a subset of 𝑉 such that 𝐺(𝐶) is complete. The maximum
clique problem asks for a clique of maximum weight. An
independent set (stable set and vertex packing) is a subset of
𝑉, whose elements are pairwise nonadjacent. The maximum
independent set problem asks for an independent set of max-
imum cardinality. The size of a maximum independent set is
the stability number of 𝐺 (denoted by 𝛼(𝐺)). The maximum
weight independent set problem asks for an independent
set of maximum weight. A maximum clique means a clique
which is a subset of the nodes in 𝑉 in which every pair of
nodes in the subset is joined by an edge and is not a proper
subset of any other cliques [20].

In application, the identification of maximal cliques is
often of limited interest since the requirement of complete
connectivity is so restrictive. When dealing with imperfect
systems or with experimental data, we may need to consider
more general notions of cohesive subgroups. In this paper,
we consider different notions of cohesive subgroups that
include 𝑛-cliques, 𝑘-plexes, and 𝜆-sets [18]. It is well known
that the nodes of large real networks have a power law
degree distribution [21]. Most real networks typically contain

parts in which the nodes (units) are more highly connected
to each other compared to the rest of the network. The
sets of such nodes are usually called clusters, communi-
ties, cohesive groups, or modules [22–26], which have no
widely accepted unique definition. The basic observation on
which our modules definition relies is that a typical gene
differential coexpression module consists of several complete
(fully connected) subcliques that tend to share many of
their nodes. To find meaningful communities, several basic
requirements should be satisfied: it cannot be too restrictive,
should be based on the density of links, is required to be local,
should not yield any cut-node or cut link (whose removal
would disjoin the community), and, of course, should allow
overlaps. We employ the community definition specified
above because none of the others in the literature satisfy all
these requirements simultaneously [27–29].

k-clique algorithm for detecting gene differential coex-
pression modules in a network has been published in the
paper [26]. k-clique algorithm is also named clique per-
colation method. The existing divisive and agglomerative
methods recently used for large real networks have some
disadvantages. Divisivemethods cut the network into smaller
and smaller pieces; each node is forced to remain in only
one community and be separated from its other communities,
most of which then necessarily fall apart and disappear [27,
30]. The agglomerative [31] method has the same problem.
The k-clique algorithm has demonstrated the advantages
over the divisive method and agglomerative method. In
the algorithm, although the numerical determination of the
full set of k-clique communities is a polynomial problem,
the algorithm is exponential and significantly more efficient
for the graphs corresponding to actual data. The k-clique
algorithm first locates all cliques (maximal complete sub-
graphs) of the network and then identifies the communities
by carrying out a standard component analysis of the clique-
clique overlap matrix [28]. The k-clique algorithm uses
the threshold probability 𝑑(𝑘) (critical point) of k-clique
percolation to find all maximal complete subgraphs. The
critical point is shown in (6), where𝑁 is the number of genes
or vertex of graph:

𝑑 (𝑘) =
1

[(𝑘 − 1)𝑁]
1/(𝑘−1)

. (6)

The k-clique algorithm gives two plausible choices to
measure the size of the largest k-clique percolation cluster in
(7) and (8). The most natural one, which we denote by𝑁∗, is
the number of vertices belonging to this cluster. 𝜙 is an order
parameter associated with this choice as the relative size of
that cluster:

𝜙 =
𝑁
∗

𝑁
. (7)

The other choice is the number 𝐿∗ of k-cliques of the
largest k-clique percolation cluster. The associated order
parameter is again the relative size of this cluster:

𝜑 =
𝐿
∗

𝐿
, (8)
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where 𝐿 denotes the total number of k-cliques in the graph. 𝐿
can be estimated as

𝐿 ≈ (
𝑁

𝑘
)𝑑
𝑘(𝑘−1)/2

≈
𝑁
𝑘

𝑘!
𝑑
𝑘(𝑘−1)/2

. (9)

In this paper, we use the biweight midcorrelation for
constructing binary networks. Two-condition coexpression
adjacency networks can always be transformed into a binary
one by ignoring any directionality in the links and keeping
only those stronger than a threshold weight. Then, the
concept ofmaximumclique and k-clique algorithmwere used
to find gene differential coexpression modules. We named
the proposedmethod “BMKC” (biweight midcorrelation and
k-clique algorithm) method. Changing the threshold is like
changing the resolution with which the community structure
is investigated: by increasing, the communities start to shrink
and fall apart. A very similar effect can be observed by
changing the value of 𝑘 as well: increasing 𝑘 makes the
communities smaller and more disintegrated but, at the
same time, also more cohesive. More details about k-clique
algorithm can be found in [28, 32].

3. Results

3.1. Experiment Result on Simulated Datasets. We first eval-
uate the algorithm in a supervised setting. We generate a
control group of 30 samples and a disease group of another 30
samples, both consisting of 120 genes. For the control group,
20 coexpressed genes are sampled directly from the biweight
midcorrelation. We focus on whether k-clique algorithm can
find coexpression gene modules from the background of
noise. We first draw a vector with 20 rows and a vector with
30 columns from a standard normal distribution. The actual
expression levels are obtained by adding independent errors
sampled from a normal distribution with mean zero and
standard deviation (SD) 𝜎. These 20 genes form the target
pattern. We then hide them in 100 additional noise genes,
which are sampled independent and identically distributed
(i.i.d.) from a standard normal distribution. The disease
group is simulated by 120 independent noise genes drawn
from a standard normal only.

In the above setting, we use SD 𝜎 to tune the strength
of the signal resulting from the 20 coexpressed genes. To
observe its effect in detail, we use three different values: for
a clear signal, 𝜎 = 1/10, for medium noise, 𝜎 = 1/4, and,
for high noise, 𝜎 = 1. To guard for sampling effects, we
repeat each procedure 50 times and average the results, which
are displayed in Figure 1. One can see that, for the clear and
medium signal, the algorithm can recover the differentially
coexpressed genes modules reliably. Also, depending on the
prominence of the signal, the influence of 𝜎 is more or less
pronounced. In an exploratory analysis setting with several
hidden patterns, we could use 𝑇

1
, 𝑇
2
, and 𝑇

3
to control the

size of target patterns.

3.2. Analyzing a Type 2 Diabetes (T2D) in Rats. As a real-
world application, we apply the BMKC method to a pair of
type 2 diabetes (T2D) rats datasets (dataset pair𝑇), which has
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Figure 1: The column bar graph shows the effect of the noise
parameter 𝜎 on the size of the gene group found by our algorithm.

been published in study [33]. Dataset pair 𝑇 is from dataset
GSE3068 of Gene Expression Omnibus (GEO) database. Yu
et al. preprocessed dataset GSE3068. Dataset pair 𝑇 includes
4765 genes in 10 disease samples and 10 normal samples. We
use our algorithm to find differential coexpression modules
in the type 2 diabetes.

For computational efficiency, we calculate the sum of
each row or column of adjacency matrix; the sum means
the number of genes related to the gene. The gene is outlier
if the sum is zero. First, we calculate the sum of each row
or column of the adjacency matrix and delete the outlier.
Second, we calculate the sum of each row or column of the
adjacency matrix and discard the lower 50% of them. We set
𝑇
3
= 1.3 and the minimum number of each clique to four.

Finally, we apply our algorithm to the remainder genes and
excavate two differential coexpression modules. Tables 1 and
2 list each gene symbol in the clique.The adjacency graphs of
each differential coexpression module are shown in Figures 2
and 3. From these two figures, we can see that the cliques in
each of the differential coexpressionmodules are overlapping,
forming a closely related module. In normal condition, the
absolute bicor value of total of 24 genes inmodules distributes
from 0.78 to 0.97. Yet, in disease condition, the absolute bicor
value of genes distributes from 0.21 to 0.09. In the results
of our study, the gene differential coexpression modules
included quite a number of previously reported T2D-related
genes: Hifla and Sirt2 [34], Smarca4 [35], Sh2b2 [36], Madd
[37], and Rxrb [38]. Despite not being previously reported
to be related with T2D, other genes in the modules should
receive adequate attention for their distinct traits from the
perspective of differential coexpression. Further studies on
the transcriptionalmechanisms and functional consequences
could pay more attention to these genes.
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Table 1: Genes in each clique.

Clique number Gene symbol
1 Hifla∗ Ifngr1 RGD1305094 Tenc1 Sirt2
2 Clcn1 Smarca4 Zkscan17 Rpl27a Sirt2
3 Hifla Ifngr1 Pfkfb3 Tenc1 Sirt2
4 Sh2b2 Pcsk5 Lamc1 Rpl27a Sirt2
5 Lamc1 Smarca4 Zkscan17 Sirt2 Rpl27a
6 Hifla RGD130504 Mxd4 Sirt2
7 Tra1 Smarca4 Zkscan17 Sirt2
∗Bold genes refer to the previously reported T2D-related genes. The other genes are identified in the differential coexpression modules.

Rp127a

Sh2b2

Clcn1

Pcsk5 Tra1

Rpl27a

Smarca4

Sirt2
Zkscan17

Lamc1

Tenc1

Hifla
RGD1305094

Mxd4

Lfngr1

Pfkfb3

Figure 2: The adjacency graph of first gene differential coexpression module.
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Pctk2
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Ppil3
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Figure 3: The adjacency graph of second gene differential coexpression module.
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Table 2: Genes in each clique.

Clique number Gene symbol
1 Vars2 Apba3 Madd Zkscan17 Ppil3 Rxrb
2 Snd1 Madd Pctk2 Rxrb

3.3. Significance Analysis of the BMKCMethod. Naturally, the
question of whether our findings are artifacts of the high
dimensionality of the data arises. To assess this question, we
apply a permutation procedure. Under the null hypothesis,
we assume that all genes are mutually independent in both
conditions groups. We heuristically sample from the null
hypothesis by (group-wise) shuffling the expression values
for each gene independently. Thus, random expression data
are generated where all covariance structures are removed.
Applying our algorithm to the randomized data yields one
random score.We repeat the procedure 1000 times. Using the
empirical distribution of the simulated scores, the simulated
score means the global total sum of differential coexpression
change of each gene in modules. We calculate 𝑃 values
for the observed scores in the nonpermuted data. For each
of the patterns in the type 2 diabetes example, we only
observe one random score smaller than the biological one.
This corresponds to an empirical 𝑃 value of 0.001. Hence,
it is unlikely that the observed differential coexpression is a
chance artifact.

4. Conclusions

In this paper, we proposed a new approach in gene sets
level for differential coexpression analysis, which combine
biweight midcorrelation and threshold selection strategy
and also applied maximum clique concept with k-clique
algorithm to the specific gene set to further investigate gene
regulatory networks. Biweight midcorrelation is more robust
for outliers and threshold selection strategy is an effec-
tive preprocess step of the proposed method. Experimental
results on simulated datasets show that our method had
good performance. We apply the proposed BMHT method
to real dataset designed for T2D study, and two differential
coexpression gene modules were detected, which should be
a useful resource for T2D study and could be used for
exploring the biological function of the related genes. In
the future, we will focus on how to quickly excavate gene
differential coexpression module from gene coexpression
adjacency matrix.
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for Krüppel-like factor 4 in determining the outcome of p53
response to DNA damage,” Cancer Research, vol. 69, no. 21, pp.
8284–8292, 2009.

[20] I. M. Bomze, M. Budinich, P. M. Pardalos, and M. Pelillo,
“Themaximum clique problem,” inHandbook of Combinatorial
Optimization, pp. 1–74, 1999.
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