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Although individual subjects can be identified with high accuracy
using correlation matrices computed from resting-state functional
MRI (rsfMRI) data, the performance significantly degrades as the
scan duration is decreased. Recurrent neural networks can achieve
high accuracy with short-duration (72 s) data segments but are
designed to use temporal features not present in the correla-
tion matrices. Here we show that shallow feedforward neural
networks that rely solely on the information in rsfMRI correla-
tion matrices can achieve state-of-the-art identification accuracies
(> 99.5%) with data segments as short as 20 s and across a range
of input data size combinations when the total number of data
points (number of regions X number of time points) is on the
order of 10,000.
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Functional connectome fingerprinting based on the similarity
of correlation coefficient matrices computed from resting-
state functional MRI (rsfMRI) data can identify individuals with
high accuracy (>98%) using long-duration (> 12 min) scans,
but considerably lower accuracy (~68%) is obtained when the
data duration is decreased to 72 s (1). Recurrent neural net-
works (RNN) can achieve high accuracy (98.5%) with short
duration (72 s) data, presumably reflecting their ability to capture
both spatial and temporal features (2, 3). However, it has been
shown that high RNN performance can be achieved even when
the temporal order of the fMRI data is permuted (4), suggest-
ing that the temporal features are not critical for identification.
Here we introduce two shallow feedforward neural networks
that can achieve high identification accuracy without the need
for recurrent connections. Furthermore, we use these networks
to estimate the minimum size of the data needed to robustly
identify subjects with high mean accuracy (> 99.5%) from short
segments of rsfMRI data. Since identification accuracy reflects
the ability to effectively extract information from functional con-
nectomes, additional insight into the methods and minimum data
sizes that achieve high performance can guide the development
of extended approaches to detect other differences in functional
connectivity, such as disease-related changes.

The two networks considered are shown in Fig. 1. 4 and B. The
input to the correlation neural network (corrNN) consists of the
upper triangular elements of the correlation coefficient matrix C
estimated from a data matrix X consisting of z-normalized time
series (of length V) from M regions of interest (ROIs). For iden-
tification of L subjects, the network structure consists of a fully
connected classification layer with L units, a batch normaliza-
tion layer, and a softmax layer. The norm-based neural network
(normNN) uses the z-normalized data X as the input. The first
stage is a fully connected layer that projects the data onto K
hidden units using the M x K weight matrix W to form the
N x K intermediate matrix ¥ = XWW. In the second stage, the
L, norm across the time dimension (i.e., across each column of
Y') is computed for each hidden unit to form a summary measure
of similarity over the collection of N time points. The result-

ing vector F' = /diag(YTY) = \/diag(WT CW) comprises K
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features extracted from the correlation matrix C. The kth fea-
ture is proportional to the variance in the direction of the kth
column vector of W. If these vectors are randomly oriented
and constrained to be unit norm, then the features represent
a random sampling of the “peanut”-shaped surface of direc-
tional variances (5). The subsequent stages in the network are
a batch normalization layer, a fully connected classification layer
with L hidden units, a second batch normalization layer, and a
softmax layer.

Results

We assessed the performance of the two networks using data
from the Human Connectome Project (HCP) (6). Two rsfMRI
scans acquired on day 1 were used for training, while the two
scans from day 2 were used for validation and testing.

For M =379 ROIs, N =100 time points (72-s duration) per
segment, and K = 256 hidden units, the mean classification accu-
racies of the corrNN and normNN models were 99.8% and
99.6%, respectively, for an initial set of 100 subjects, and 100.0%
and 99.7% for a second independent set of 100 subjects. These
accuracies are higher than those reported (94.3 to 98.5%) for
RNN models (2, 3). For comparison, the mean classification
accuracy using the similarity of the correlation coefficients was
79.4% for 100 time points per segment, which is higher than the
68% mean accuracy reported in ref. 1 using data from a different
dataset.

We used a greedy search algorithm to assess the relative
importance of the ROIs with respect to model accuracy. Impor-
tance maps are shown in the top rows of Fig. 1 C and D for
corrNN and normNN, respectively, with the subsequent rows
thresholded to highlight the top 15 to 60 ROIs. When consid-
ering the top 60 ROIs, the highest numbers of ROIs are found in
region 22 (dorsolateral prefrontal cortex) followed by regions 17
(inferior parietal cortex), 14 (lateral temporal cortex), 16 (supe-
rior parietal cortex; for CorrNN), 21 (inferior frontal cortex),
and 3 (dorsal stream visual cortex), where brain regions are as
defined in ref. 7.

We used the top ROIs to evaluate CorrNN and NormNN per-
formance with 15 to 60 ROIs and 5 to 1,000 time points, as
shown in Fig. 1 E and F, respectively. As the number of ROIs
decreases, the number of time points needed to achieve higher
accuracy increases. Defining 99.5% as the threshold for high
mean accuracy, we observed that this threshold is surpassed with
as few as M =60 ROIs and N =100 time points for CorrNN
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Fig. 1. (A and B) CorrNN and NormNN model structures. (C and D) Top rows are maps showing the relative importance of the ROIs for identification

accuracy, with maximum importance of 1.0 indicated in yellow. The remaining rows are thresholded to show the locations of the top 15 to 60 ROIs. (E and
F) Mean identification accuracies as a function of the number of time points and ROIs.

and 40 ROIs and 200 time points for NormNN, corresponding to
M x N = 6,000 or 8,000 total data points, respectively.

To further explore the dependence on the number of ROIs
and time points, we considered combinations (M, N) where the
total number of data points was constrained to be equal to or
close to either 6,000 or 10,000 (see Fig. 2 legend). For CorrNN,
high mean accuracies are obtained for two of the combinations
(dark red squares) with 6,000 data points and for all five of the
combinations (dark red diamonds) with 10,000 points.

For NormNN, the number of parameters exhibits a linear
dependence on the number of ROIs (M) as compared to the
quadratic dependence for CorrNN (see Fig. 2 legend). To bet-
ter compare the models, we increased K by powers of 2 up
to the value Ke; =0.5L(M?*—M)/(M + L+ 3) for which the
numbers of NormNN and CorrNN parameters were equivalent,
while also including K., as one of the possible options. In Fig.
2B, we show NormNN accuracies obtained for either 1) the min-
imum value of K > 256 that surpassed the 99.5% threshold or
2) the value K < K., that achieved the highest accuracy when
the threshold was not met. High mean accuracies were obtained
for two and four of the combinations with 6,000 and 10,000 data
points, respectively.

As shown by the histograms, the high mean CorrNN
and NormNN accuracies correspond to robust identification
performance, with the majority of the trials demonstrating
100% prediction accuracy. These accuracies were obtained
with global signal regression (GSR), and were significantly
greater than those obtained without GSR for both CorrNN
(A =0.60; t10 =5.00; p = 0.0005) and NormNN (A = 0.78; t10 =
3.93; p=0.0028) where A denotes the mean difference in accu-
racy. Without GSR, only two of the CorrNN combinations and
two of the NormNN combinations exhibited accuracies greater
than 99.5%.

Using the ROIs determined from the first 100 subjects, we
evaluated performance on the second set of 100 subjects for the
combinations denoted in Fig. 2. High mean CorrNN accuracies
(>99.5%) were maintained for both of the previously identified
high-performance combinations with 6,000 points and for four of
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the combinations with 10,000 points, with the remaining com-
bination (379,27) exhibiting slightly lower accuracy (99.28%)
for the second dataset. Thus, the same set of ROIs can offer
comparable and high levels of performance across independent
datasets.

For both sets of subjects, the mean number of CorrNN pre-
diction errors was not significantly correlated (across subjects)
with the mean framewise displacement (FD) measure of sub-
ject motion (|r| <.05; p >0.64). Correlations were higher but
did not reach significance when using a filtered version of the
FD measure (SI Appendix, Extended Methods), with values of
r=0.19 (p =0.06) and r =0.13 (p =0.19) for the first and sec-
ond subject groups, respectively. When viewed within the context
of the high CorrNN accuracies that can be achieved, these results
suggest that any effects of subject motion on performance are
fairly weak.

For NormNN, we find that the first layer trained weights are
randomly distributed so that the features after the L, norm
operation represent an approximately uniform sampling of the
directional variance surface of C'. Indeed, high performance can
also be achieved by replacing the first layer with a set of ran-
dom Gaussian weights. The generalizability of the features across
datasets exhibits a dependence on the number of units K. For
example, when using first layer weights trained using the first
set of subjects, performance for the combination (100, 100) with
K =256 drops from 99.82% for the first 100 subjects to 98.79%
for the second 100 subjects. Increasing to 1,024 units with weights
trained using the first set yields accuracies of 99.91% and 99.63%
for the first and second sets, respectively. Comparable accuracy
levels (99.81% and 99.65%) are obtained when using random
weights for the first layer. Thus, generalizability of the NormNN
features increases when there is a higher number of features to
characterize the directional variance.

Discussion

We have shown that shallow feedforward models can identify
subjects based solely on information in rsfMRI correlation matri-
ces, robustly achieving high accuracies (>99.5%) with 6,000 to
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(A) CorrNN and (B) NormNN identification accuracies for combinations (M, N) of numbers of ROIs (M) and span lengths (N) that are constrained

to have either 6,000 (blue curves) or 10,000 (black curves) data points, with the exception of the combinations (379, 16), (300, 34), and (379, 27), which
have 6,064, 10,200, and 10,233 data points, respectively. Mean accuracies are indicated by labels and color scale. The numbers of model parameters (in

thousands) for CorrNN (O.SL (MZ — M+6)) and NormNN (K (M + L + 3)+ 3L) are also listed (with L =100), as are the numbers of hidden units (K) for
NormNN combinations. For combinations where CorrNN mean accuracy is greater than 99%, autoscaled histograms show the distribution of identification

accuracies obtained over 250 test trials per combination.

10,000 data points. For comparison, the convolutional RNN pre-
sented in ref. 3 achieved 98.5% accuracy with 23, 600 data points.
In comparing the two feedforward models, NormNN can attain
high accuracy with fewer model parameters, while CorrNN may
serve as a better foundation for future work, as it uses correlation
coefficient features that are more directly interpretable than the
NormNN directional variance features.

Consistent with prior observations (1), high performance can
be achieved when using a subset of the ROIs, including those
located in frontoparietal and lateral temporal regions. The same
set of ROIs can be used to achieve high performance across inde-
pendent datasets, suggesting that the predictive value of inter-
subject variability in the functional boundaries and connectivity
of these regions generalizes across datasets.

While combinations with span lengths as short as 27 points
(19.5 s; CorrNN (379,27)) can offer high performance, they
require a large number of model parameters. In contrast, com-
binations with fewer ROIs but increased span lengths (e.g.,
(100,100)) achieve high performance with one to two orders
of magnitude fewer parameters. For NormNN, the number of
trainable parameters can be further decreased through the use
of random weights in the first layer.

As in prior studies (1-3), the current study utilized the HCP
dataset, in which the data were acquired on two consecutive
days (6). Although substantial variations in functional connec-
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tivity can occur on short time scales (i.e., minutes to hours)
due to factors such as temporal fluctuations in vigilance (8), our
results indicate that high performance can be obtained over a
1-d interval even in the presence of these factors. Future large-
scale studies will be needed to assess whether high identification
accuracy can be obtained over longer intervals (i.e., weeks to
years).

The effectiveness of the feedforward networks for distinguish-
ing individuals with relatively little data suggests that similar
future approaches may have the potential to more fully uti-
lize the information contained in rsfMRI data to better identify
disease-related differences.

Materials and Methods

HCP preprocessing of the data included motion correction, detrending,
denoising, and registration (7). The 379 ROIs were defined using 360 corti-
cal ROIs from ref. 7 and 19 subcortical ROIs from ref. 6. Data were averaged
within each ROI, and GSR was applied. Training, testing, and validation of
the models were performed with Keras and TensorFlow. Further details are
provided in S/ Appendix, Extended Methods.

Data Availability. Analysis code, summary data, and anonymized fMRI data
have been deposited at Bitbucket and Open Science Framework (9, 10).
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