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The magnitude of the COVID-19 pandemic underscores the ur-
gency for a safe and effective vaccine. Many vaccine candidates
focus on the Spike protein, as it is targeted by neutralizing anti-
bodies and plays a key role in viral entry. Here we investigate the
diversity seen in severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) sequences and compare it to the sequence on which
most vaccine candidates are based. Using 18,514 sequences, we per-
form phylogenetic, population genetics, and structural bioinformatics
analyses. We find limited diversity across SARS-CoV-2 genomes: Only
11 sites show polymorphisms in >5% of sequences; yet two muta-
tions, including the D614G mutation in Spike, have already become
consensus. Because SARS-CoV-2 is being transmitted more rapidly
than it evolves, the viral population is becoming more homogeneous,
with a median of seven nucleotide substitutions between genomes.
There is evidence of purifying selection but little evidence of diversi-
fying selection, with substitution rates comparable across structural
versus nonstructural genes. Finally, the Wuhan-Hu-1 reference se-
quence for the Spike protein, which is the basis for different vaccine
candidates, matches optimized vaccine inserts, being identical to an
ancestral sequence and one mutation away from the consensus.
While the rapid spread of the D614G mutation warrants further
study, our results indicate that drift and bottleneck events can explain
the minimal diversity found among SARS-CoV-2 sequences. These
findings suggest that a single vaccine candidate should be efficacious
against currently circulating lineages.
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Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2), the virus that causes COVID-19, is a member of the

Coronaviridae family, a diverse group of virus species, seven of
which are known to infect humans. Four are considered endemic
and typically cause mild upper respiratory illnesses; two of these,
NL63 and 229E, are within the alphacoronavirus genus, and two,
HKU1 and OC43, are betacoronaviruses. The latter genus
comprises the three highly pathogenic human coronaviruses,
including SARS-CoV-2, as well as Middle Eastern respiratory
syndrome (MERS) CoV and severe acute respiratory syndrome
(SARS) CoV. SARS-CoV is the most closely related human vi-
rus to SARS-CoV-2, which is a single-stranded positive-sense
RNA virus, with an ∼30,000-base pair genome. The genome is
split into 10 open reading frames (ORFs) that include 16 non-
structural proteins and four structural proteins. The latter cate-
gory includes Spike (S), Membrane (M), Envelope (E), and
Nucleocapsid (N). S is the basis for most candidate vaccines, as it
mediates virus attachment and entry to host cells and is the
target of neutralizing antibody responses (1–4). S is cleaved into
two subunits, S1 and S2: The former contains the receptor
binding domain (RBD), which enables the virus to attach to the
angiotensin-converting enzyme 2 (ACE2) receptor on host cells.
In the span of 7 months, the COVID-19 pandemic has caused

a devastating global health crisis with significant mortality and

socioeconomic implications. As of July 23, 2020, more than 15
million cases and 622,000 attributable deaths have been reported
worldwide (5–8) (https://coronavirus.jhu.edu/map.html). Phylo-
genetic analyses suggest that SARS-CoV-2 is likely derived from
a clade of viruses found in horseshoe bats (9). In S, the bat ge-
nome RaTG13 has more than 97% amino acid identity with
SARS-CoV-2 (6). Interestingly, the RmYN02 sequence, which is
the closest to SARS-CoV-2 in the long ORF1ab but more distant
than RaTG13 in S, showed the insertion of multiple amino acids at
the cleavage site between the S1 and S2 subunits of the S protein
(this S1/S2 insertion is a characteristic feature of SARS-CoV-2)
(10). Highly similar sequences, especially in the RBD, were also
identified in Malayan pangolins (11, 12), emphasizing the plasticity
of coronavirus genomes and their propensity to switch hosts. Al-
though the closest currently available bat sequences are fairly di-
vergent from SARS-CoV-2, their characteristics (insertion at S1/S2
cleavage site, high diversity, and similarity between specific gene
fragments and particular strains) together with their known adaptive
properties (high recombination and host-switching rates and evi-
dence of positive selection) support that these bat viruses constitute
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a generalist lineage where a specific virus is likely the natural origin
of SARS-CoV-2. We did not study the transmission of the virus
from its animal reservoir and focused our analysis on the evolution
of SARS-CoV-2 since its introduction in humans. While the scale of
the pandemic attests to the high transmissibility of SARS-CoV-2
between humans, with a basic reproduction number R0 estimated to
be 2.2 (95% CI, 1.4 to 3.9) in Wuhan, China (13), we wanted to
investigate evidence of further adaptation of SARS-CoV-2 to its
host, as adaptive processes could interfere with vaccine efficacy.
Developing a vaccine against SARS-CoV-2 is a high priority

for preventing and mitigating future waves of the pandemic (14).
Vaccine candidates typically include an insert that corresponds
to one or more virus antigens, either derived computationally or
from one or multiple sequence(s) sampled from infected indi-
viduals. The first viral sequence derived during the COVID-19
outbreak, Wuhan-Hu-1 (available from the Global initiative on
sharing all influenza data, GISAID, accession EPI_ISL_402125),
was published on January 9, 2020. As many vaccine programs
were initiated at that time, it is likely that this SARS-CoV-2
sequence, sampled in December 2019 in Wuhan, China, is the
foundation for many vaccine candidates currently in develop-
ment. Compared to other RNA viruses, coronaviruses have a
more complex molecular machinery resulting in higher replica-
tion fidelity. Early evolutionary rate estimates for SARS-CoV-2
were ∼1 × 10−3 substitutions per nucleotide per year (15), a rate
comparable to that observed during the SARS-CoV-1 outbreak
(16) and in the range for other RNA viruses (1 × 10−3 to 1 × 10−5

substitutions per nucleotide per year) (17). While the evolu-
tionary rate is likely to decrease over time (18), it is important to
monitor the introduction of any mutation that may compromise
the potential efficacy of vaccine candidates derived from the first
available SARS-CoV-2 sequences.
New mutations will be observed as the virus spreads in hu-

mans. The viral evolutionary dynamics can be characterized by
analyzing viral sequences sampled from individuals who became
infected. The accumulation of mutations can be a marker of viral
fitness: An increase in viral fitness as the virus adapts to its host
will be associated with pervasive mutations at specific sites,
whereas a neutral evolution context will be associated with a
minimal number of fixed mutations distributed stochastically
across the genome. Indicators of viral evolution have been shown
to be robust predictors of transmission dynamics for several
pathogens, such as influenza (19), Lassa (20), and Ebola (21)
viruses. Typically, the evolution of a virus is driven by genotypic
and phenotypic changes in its surface protein. In the case of
SARS-CoV-2, mutations in S are most likely to confer fitness to the
virus as it adapts to humans. However, adaptive changes can occur
in structural and nonstructural proteins, and these changes, as well
as different patterns across structural and nonstructural proteins,
may provide insights into the near- and long-term evolutionary
dynamics of SARS-CoV-2, as it spreads in humans. Here we ana-
lyzed SARS-CoV-2 sequences sampled since the beginning of the
pandemic and found that mutations were rare, indicating that po-
tential vaccine candidates should cover all circulating variants.

Results
Limited Diversity across 18,514 SARS-CoV-2 Genomes. To charac-
terize SARS-CoV-2 diversification since the beginning of the
epidemic, we aligned 27,977 SARS-CoV-2 genome sequences
isolated from infected individuals in 84 countries. The alignment
was curated to retain independent sequences that covered over
95% of the ORFs. In addition, because sequences from the
United Kingdom constituted 47% of the dataset (n = 12,157), we
sampled a representative set of 5,000 UK sequences, yielding a
final dataset of 18,514 SARS-CoV-2 genomes (SI Appendix, Fig.
S1 and Fig. 1A).
There were 7,559 polymorphic sites (that is, sites where at

least one sequence has a change relative to the reference

sequence) across the genome (total length: 29,409 nucleotides).
Most substitutions were found in a single sequence; only 8.41%
(n = 2,474) of the polymorphic sites showed substitutions in two
or more sequences (Fig. 1B). Only 11 mutations were found
in >5% of sequences, and only 7 were found in >10% of se-
quences (3 of which were adjacent). The mean pairwise diversity
across genomes was 0.025%, ranging between 0.01% for E to
0.11% for N. A phylogenetic tree reconstructed based on all
genome sequences reflected the global spread of the virus:
Samples from the first 6 wk of the outbreak were collected
predominantly from China (Fig. 1C). As the epidemic has pro-
gressed, samples have been increasingly obtained across Europe
and from the United States (Fig. 1 A and C). The tree shows
numerous introductions of different variants across the globe,
with introductions from distant locations seeding local epi-
demics, where infections sometimes went unrecognized for sev-
eral weeks and allowed wider spread (23). Prior to the severe
travel restrictions that were seen in March 2020, intense travel
patterns between China, Europe, and the United States allowed
transmission of a myriad of variants, which is currently reflected
by different lineages in the tree. Yet, the tree topology shows
minimal structure, even at the genome level, indicating that
SARS-CoV-2 viruses have not diverged significantly since the
beginning of the pandemic. To compare how genomes differed
from one another, we calculated Hamming distances (which
correspond to the number of differences between two genomes)
across all pairs of sequences. These Hamming distances showed
a narrow distribution, with a median of seven substitutions be-
tween two independent genomes, while linked sequences sam-
pled in cruise ships had a median of two substitutions (SI
Appendix, Fig. S2). Surprisingly, Hamming distances across ge-
nomes sampled in the United States did not show a similar quasi-
normal distribution but instead a bimodal distribution, observed
despite the large number of sequences compared (n = 5,398).
We identified that this bimodal distribution was driven by se-
quences from Washington State, possibly reflecting separate in-
troductions in that state. Nonetheless, such a bimodal
distribution could also indicate a bias in the sampling of se-
quences (SI Appendix, Fig. S2).

One S Mutation (D614G) Has Become Dominant. Since the beginning
of the pandemic, two mutations across the genome have become
consensus: P4715L in ORF1ab (nucleotide 14,143, C to T) and
D614G in S (nucleotide 23,403, A to G) (Fig. 1B) (a third con-
sensus mutation, at nucleotide 3,037, is not reported as the site
was masked during our sequence-filtering procedure). These
mutations were found in 69.3% and 69.4% of sequences, re-
spectively, and are in linkage (Fig. 2B). Given the importance of
S for virus entry and as a target of the host neutralizing response,
the biologic implications of the D614G mutation are under in-
tense scrutiny (24–28). This mutation was first observed in a
sequence from China dated January 24, with seven more se-
quences sampled until February 8. Then, the D614G mutation
was not observed in China until March 13. In contrast, the
D614G mutation was introduced in Europe at the end of January
(first sequence identified in Germany, dated January 28), and it
rapidly became dominant on that continent and at every location
where the virus subsequently spread (Fig. 2A). The phylogenetic
tree (Fig. 2B) and the distribution of sequences (Fig. 2C) are
suggestive of a founder effect. The rapid spread of sequences
carrying the D614G mutation implies that the growing viral pop-
ulation should become more homogeneous, that is, the frequency
of sequences with shared polymorphisms will increase. We found a
median of seven substitutions (based on a comparison of 18,514
sequences) between two independent SARS-CoV-2 genomes (SI
Appendix, Fig. S2). Yet, genomes with the D614G mutation
showed a median of five substitutions, whereas those with D at
position 614 differed by eight substitutions (Fig. 2D).
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To test whether this site was under selection, we used
likelihood-based, phylogenetically informed models that assume
branch-specific substitution rates (29) and implemented a

sampling strategy to circumvent computational limitations im-
posed by the large number of sequences. Subsampled alignments
(100 times at a 10% sampling fraction) had diversity estimates
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statistically similar to the complete alignment for each gene
(Mann−Whitney U test, P > 0.09; SI Appendix, Fig. S3). In S,
only site 614 was estimated to be under diversifying selection in a
majority of subsampled alignments (58%); evidence of diversi-
fying selection indicates that genetic diversity increases in the
viral population (i.e., there was a higher proportion of mutations
causing an amino acid change than not at site 614, or, the non-
synonymous/synonymous substitution rates ratio, dN/dS, was
over 1, P < 0.1) (SI Appendix, Fig. S4). Because diversifying se-
lection is often associated with the host adaptive response, we
considered whether the D614G mutation coincided with targets
of antibody and T cell responses. Site 614 is at the interface
between the S1 and S2 subunits and is thus not highly accessible
to antibodies (SI Appendix, Fig. S5). Therefore, we predict that
antibodies to the native S protein would cross-react with S
containing the D614G mutation, in agreement with recent re-
ports (24, 25, 27, 28). Many known neutralizing antibodies target
the RBD, yet we found little evidence that mutations could affect
binding to the ACE2 receptor, as only five shared mutations
were identified at contact sites with the ACE2 receptor, and all
were found in 10 or fewer sequences. Of these, one mutation, at
position 489, was synonymous and found in three sequences
(0.02%). The others were nonsynonymous: G476S (n = 10 se-
quences, 0.05%), Y453F (n = 5, 0.02%), G446V (n = 3, 0.02%),
and A475V (n = 2, 0.01%). To predict the potential immune
pressure linked to T cell responses, we developed a T cell im-
munogenicity index which takes into account the CD8 and CD4
epitope repertoires in the structural proteins of SARS-CoV-2 (S,
N, M, E) and the frequency of human leukocyte antigen (HLA)
alleles or haplotypes in a given population. We found that sites
with mutations, including 614 in S, were not colocalized with
T cell epitopes frequently identified in different populations (SI
Appendix, Figs. S6 and S7), and there was no significant rela-
tionship between the number of mutations and the immunoge-
nicity index (SI Appendix, Fig. S8).

Most Sites in the SARS-CoV-2 Genome Were under Purifying
Selection. Using phylogenetically informed models (as described
above), we identified two sites, residue 614 in S and 13 in N, that
were under diversifying selection in a majority of subsampled
alignments. For each protein, subsampled alignments tended to
have more sites under purifying selection (median = 7.34 ±
4.06% [±SD]) than under diversifying selection (3.10 ± 1.92%)
(Mann−Whitney U test, P = 0.057; SI Appendix, Fig. S4) (puri-
fying selection is indicative of a decrease in genetic diversity in
the population). Likewise, for each codon separately, the pro-
portion of each phylogeny (i.e., the percentage of total branch
length) with dN/dS > 1 was small, indicating diversifying selec-
tion was episodic and limited (Fig. 3A). Global measures of dN/
dS varied across genes, ranging from 0.35 ± 0.02 (M) to 1.43 ±
0.24 (ORF10), and were significantly lower for structural genes
compared to nonstructural genes (Mann−Whitney U test, P =
0.042) (Fig. 3B). Per-lineage nonsynonymous substitution rates
were comparable (Student’s t test, P = 0.218) in structural
(0.0011 ± 0.021) and nonstructural (0.0012 ± 0.028) genes, al-
though some subsampled alignments showed rates that could be
a hundred times higher than the median over all alignments
(Fig. 3C). Across structural proteins, mutations were dispro-
portionately neutral: >70.3% of branch length evolved under
neutral (or negative) selection for all sites, and over half of all
branch length evolved under neutral (or negative) selection
for >82.8% of sites (Fig. 3D) (29).

No Evidence of Differentiation of the Viral Population. While there
was only limited evidence of diversification at selected sites, we
also assessed whether subpopulations among the globally circu-
lating viral population had become genetically differentiated
over time. To do so, we used two measures of population

differentiation, the GST and D statistics, which characterize
changes in allele frequency across populations and can show
fitness differences between subpopulations (30–32). Genetic
distances between two subpopulations can range between 0 and
1, indicating no and complete differentiation, respectively. We
initially compared 30 genomes sampled from the initial outbreak
in Wuhan, China, with subsampled alignments of the 18,484
genomes sampled subsequently across the globe. Although dis-
tances varied across genes, the median genetic distance between
these subpopulations was small for both GST (0.0049 ± 0.0047)
and D (0.0053 ± 0.0272), indicating little differentiation between
the initial outbreak and its global derivatives in the pandemic
(Fig. 4A). We then compared subpopulations sampled before
and after each consecutive week. Similarly, genetic distances
between subpopulations were small for both GST (0.0058 ±
0.0096) and D (0.0098 ± 0.0650) and tended to narrow over time
rather than diverge (Fig. 4 B and C). Signatures of host adap-
tation can also be seen in the branching patterns of viral phy-
logenies. Bursts in transmissibility are emblematic of increases in
relative viral fitness and are reflected in imbalances in the phy-
logeny, which can be estimated at each internal node (SI Ap-
pendix, Figs. S9 and S10) (33–35). We estimated phylogenetic η
(36, 37) at each internal node of the SARS-CoV-2 phylogeny
reconstructed from subsampled (10%) alignments and compared
the distribution of estimates through time to phylogenies simu-
lated under models of neutral and positive time-dependent rates
(b(t) = beα(t)). Simulation analyses demonstrated that this metric
was robust against sampling fraction (SI Appendix, Fig. S10). The
distribution of η in the SARS-CoV-2 phylogenies adhered to
expectations of the neutral model and deviated significantly
(Student’s t test, P < 0.001) from those of positive time-
dependent rates for selection coefficients α ≥ 0.2 (Fig. 4 D and
E). Together, the SARS-CoV-2 population and phylogenetic
dynamics showed little evidence that the global spread of
SARS-CoV-2 was related to viral fitness effects.

Sequence Identity with Potential Vaccine Candidates. Typical vac-
cine design strategies rely on either 1) selecting sequences
sampled from infected individuals or 2) computationally deriving
sequences that cover the diversity seen across circulating se-
quences and are, in theory, optimal compared to an individual
isolate (38). Computationally derived sequences include con-
sensus and ancestral sequences, such as the most recent common
ancestor (MRCA) of a set of sequences. We inferred the MRCA
corresponding to 1) SARS-CoV-2 S sequences sampled from
Wuhan within the first month of the epidemic, 2) all currently
circulating SARS-CoV-2 sequences, and 3) all SARS-CoV-2
sequences together with closely related sequences sampled from
pangolins (n = 6) and a bat. There were 17 mutations between
the human MRCA and the human−bat MRCA and 44 mutations
between the human MRCA and human−pangolin MRCA.
Overall, three segments in S reflected significant variability
across species (AA 439 to 445, 482 to 501, and 676 to 690)
(Fig. 5 A and C and SI Appendix, Fig. S11) (39). In contrast,
when considering only human sequences, SARS-CoV-2 diversity
was limited: Both MRCAs (derived from early sequences from
Wuhan or from all circulating sequences) were identical to the
initial reference sequence Wuhan-Hu-1. Comparing these se-
quences to the consensus sequence derived from all of the se-
quences sampled to date, there was only one mutation: D614G
(Fig. 5B). Fig. 5D illustrates that mutations found across circu-
lating S sequences were rare: Besides D614G (found in 69.4% of
sequences), the next most frequent substitution is found in
1.96% of sequences (synonymous), with sequences sampled from
infected individuals, on average, 0.55 mutations away from the
consensus sequence (consisting of 0.12 synonymous and 0.43
nonsynonymous mutations). Across the genome, there were, on
average, 4.05 nucleotide mutations per individual genome when
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compared to the consensus, with only P4715L and D614G found
in >50% of sequences.

Discussion
There remains an urgent need for a SARS-CoV-2 vaccine as a
primary countermeasure to mitigate and eventually contain the
spread of COVID-19. The virus’s S glycoprotein makes an attractive
vaccine target because it plays a key role in mediating virus entry
and is known to be immunogenic (40). Neutralizing antibody re-
sponses against S have been identified in SARS-CoV-2−infected
individuals (2), and several clinical trials for a SARS-CoV-2 vaccine
will test S as an immunogen. While we focused on S, our com-
parative analyses of other proteins yielded similar conclusions: A
randomly selected SARS-CoV-2 sequence could be used as a vac-
cine candidate, given the similarity of any sequence to the compu-
tationally derived optimum vaccine candidate (as defined by the
MRCAs or consensus sequence based on all circulating sequences).
Vaccines developed using any of these sequences should, theoreti-
cally, be effective against all circulating viruses. Vaccine developers
could consider designing a vaccine insert with the D614G mutation
in S, as this mutation has become dominant worldwide. While
mutations that become fixed are often linked to the host immune
pressure, this seems unlikely for the SARS-CoV-2 mutation

D614G. Because this residue lies at the interface between two
subunits, it would not be expected to be part of a critical epitope for
vaccine-mediated protection (Fig. 4). As such, pseudoviruses with
D614G were as susceptible to neutralization as those with the initial
residue D614 (25). A mutation, S612L, that emerged in MERS-
CoV after passaging the virus in the presence of two antibodies (in
5/15 clones after 20 passages) (41) warrants the evaluation of the
analogous D614G mutation in SARS-CoV-2 for its ability to in-
terfere with the recognition of a distal epitope. A more direct path
to viral escape from antibody recognition would be mutations in the
RBD, as described for influenza (42, 43). Importantly, we found no
mutation in the RBD that was present in more than 1% of
SARS-CoV-2 sequences (highest frequency was 0.2% N439K); such
rare variants are unlikely to interfere with vaccine efficacy.
In the context of rare SARS-CoV-2 mutations, the rapid

spread of the D614G mutation is singular and has led authors to
hypothesize that viruses with D614G may have enhanced fitness
(24). The strongest evidence of a biological effect for this mu-
tation comes from recent reports of an increase in in vitro in-
fectivity or cell entry for pseudoviruses with D614G (25–28).
Additional work is needed to evaluate whether the increase in
infectivity in vitro translates to increased transmissibility (spread)
of SARS-CoV-2 across humans, as there is not necessarily a

A B

C D

Fig. 3. Evolution across the SARS-CoV-2 genome. (A) Bar plot of the average percentage of branch length under diversifying selection (dN/dS > 1) for each
site. (B) Bar plot of dN/dS per gene (dN = dS is shown as dashed line). Error bars indicate SD across subsampled alignments. (C) Box plot of nonsynonymous
substitutions per lineage per site across structural and nonstructural genes. Values across subsampled alignments for each gene are plotted. (D) Average
percentage (over subsampled alignments) of branch lengths evolving under neutral (or negative) selection per site for each structural gene. Median values
are shown by dashed lines.
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Fig. 4. Limited evidence of adaptation of the viral population. (A–C) Bootstrapped global estimates of Nei’s GST and Jost’s D for population differentiation
for each structural gene. (A) Estimates of Nei’s GST (closed circles) and Jost’s D (open circles) comparing sequences sampled from the Hubei province to se-
quences subsequently sampled globally. Estimates of (B) Nei’s GST and (C) Jost’s D comparing sequences sampled before or after a specific date. Lines connect
the median estimates across datasets for each gene. (D) Ln-transformed phylogenetic η, indicative of the number of iterative events in the sampled subtree,
for subtrees from each internal node (after the root) of a down-sampled SARS-CoV-2 whole-genome phylogeny (dark gray), of a phylogeny simulated under
neutral parameters (gold), and of a phylogeny simulated under positive time-dependent rates (b(t) = 0.01e0.4t, green). (E) Box plot of ln-transformed phy-
logenetic η estimates across all down-sampled SARS-CoV-2 whole-genome phylogenies, phylogenies simulated under neutral parameters, and phylogenies
simulated under different positive time dependencies, α. Asterisks indicate significant differences in mean values (Student’s t test, P < 0.05) between the
SARS-CoV-2 and positive time-dependent phylogenies at each α.
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linear relationship between the two. For example, SARS-CoV
mediates cell entry more efficiently than SARS-CoV-2 (with or
without the D614G S mutation) (26). Hence, it would be important
to understand whether, controlling for epidemiological factors,
there are higher reproduction numbers associated with viruses
carrying the D614G mutation. While a preliminary comparison of
the lineages with either D or G inWashington State did not indicate
an obvious advantage for D614G mutants, as they found similar
maximal values for the effective reproduction number (https://
github.com/blab/ncov-wa-phylodynamics), additional comparisons
in different geographic locations should be informative.
Correlating in vitro findings with clinical phenotypes can be

complicated. During the Ebola outbreak of 2013–2016, some
fixed mutations were suspected to confer an advantage to the
virus. Specifically, an A82V mutation in the glycoprotein, which,
like S for SARS-CoV-2, is critical for the virus entry into host
cells, was associated with an increase in infectivity (44–46). Yet,
effects varied across cell types (47), and no phenotypic differ-
ences were associated with the mutations when viruses were

evaluated in vivo in mouse and nonhuman primate models (48),
highlighting the difficulty in linking biological mechanisms to
outcomes at the population level. So far, no causal association
has been identified between the presence of D614G and disease
severity (24).
These findings, together with our results, illustrate that mu-

tations can spread through the population without necessarily
having a selective advantage, especially at the beginning of an
epidemic when most individuals are susceptible. Mutations occur
more frequently after a host switch, and even slightly deleterious
mutations may have an opportunity to spread. Hence, the main
signal in our study was one of purifying selection that can ulti-
mately eliminate mildly deleterious mutations. Our analyses
showed limited evidence of diversifying selection, with compa-
rable substitution rates in structural proteins versus nonstruc-
tural proteins (under a selection paradigm, structural proteins
which are essential for viral entry and the target of the host
immune response would have higher rates than the nonessential
proteins), low estimates of genetic differentiation following the

Fig. 5. Mutations across SARS-CoV-2 S sequences. (A) Structure of SARS-CoV (5 × 58) (shown instead of SARS-CoV-2 for completeness of the Receptor Binding
Motif [RBM]). (B–D) The three protomers in the closed SARS-CoV-2 S glycoprotein (Protein Data Bank ID code 6VXX) are colored in yellow, cyan, and white.
Sites with mutations are shown as spheres. (B) Near-identity of potential vaccine candidates. The MRCA and Wuhan-Hu-1 reference sequences were identical,
while the consensus derived from all circulating sequences showed a mutation (D614G). Site 614 is located at the interface between two subunits. (C) Se-
quence segments that differed between human and pangolin or bat hosts. Amino acid segments 439 to 455 and 482 to 501 impact receptor binding, while the
574 to 690 segment corresponds to the S2 cleavage site. (D) Sites with shared mutations across SARS-CoV-2 circulating sequences. The colors of the spheres
correspond to the proportion of SARS-CoV-2 sequences that differed from the Wuhan-Hu-1 sequence (GISAID: EPI_ISL_402125, GenBank: NC_045512).
Mutations that were found only in one or two sequences were not represented.
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initial outbreak, and phylogenetic patterns adhering to a neutral
process of evolution.
These data indicate that epidemiologic factors could be suf-

ficient to explain the global spread of mutations such as D614G.
A founder effect means that these mutations were likely expor-
ted to SARS-CoV-2 naive areas early in the outbreak and
therefore given the opportunity to spread widely. As such, on
January 28, 2020, a virus carrying the D614G mutation, which
was rare among sequences from China, was identified in Ger-
many. Host and environmental factors permitted the establish-
ment of a sustained cluster of infections that propagated this
mutation until it became dominant among European sequences
and then globally (Fig. 2). We found no evidence that the fre-
quent identification of this mutation was caused by convergent
selection events that would have occurred in multiple individ-
uals. Further analyses are needed to characterize the biologic
mechanisms behind the spread of the D614G mutation.
In summary, our results indicate that, so far, SARS-CoV-2 has

evolved through a nondeterministic, noisy process and that
random genetic drift has played a dominant role in disseminating
unique mutations throughout the world. Yet, it is important to
note that founder effects do not exclude that the D614G can
confer distinguishing properties in terms of protein stability, in-
fectivity, or transmissibility. SARS-CoV-2 was only recently
identified in the human population—a short time frame relative
to adaptive processes that can take years to occur. Although we
cannot predict whether adaptive selection will be seen in
SARS-CoV-2 in the future, the key finding is that SARS-CoV-2
viruses that are currently circulating constitute a homogeneous
viral population. Viral diversity has challenged vaccine devel-
opment efforts for other viruses such as HIV-1, influenza, or
Dengue, but these viruses each constitute a more diverse pop-
ulation than SARS-CoV-2 viruses (SI Appendix, Fig. S12). We
can therefore be cautiously optimistic that viral diversity should
not be an obstacle for the development of a broadly protective
SARS-CoV-2 vaccine, and that vaccines in current development
should elicit responses that are reactive against currently circu-
lating variants of SARS-CoV-2.

Materials and Methods
Sequence Data. Sequences were downloaded from GISAID (https://www.
gisaid.org/). A full list, along with the originating and submitting laborato-
ries (GISAID_acknowledgment_table_20200518.xls), is available at https://
www.hivresearch.org/publication-supplements.

Sequence Processing and Filtering. All SARS-CoV-2 sequences available on
GISAID as of May 18, 2020 (n = 27,989) were downloaded and deduplicated
where possible, and those missing accurate dates (that is, only recording
the month and/or year) were removed. Sequences were processed using the
Biostrings package (version 2.48.0) in R (49). Sequences known to be linked
through direct transmission were removed, and only the sample with the
earliest date (chosen at random when multiple samples were taken on the
same day) was retained. Sequences were then aligned with Mafft v7.467
using the -addfragments option to align to the reference sequence
(Wuhan-Hu1, GISAID accession EPI_ISL_402125) (50). Insertions relative to
Wuhan-Hu-1 were removed, and the 5′ and 3′ ends of sequences (where
coverage was low) were excised, resulting in an alignment consisting of the
10 ORFs. Any sequences with less than 95% coverage of the ORFs (i.e., >5%
gaps) were removed, and 30 homoplasic sites likely due to sequencing ar-
tifacts identified by de Maio et al. were masked (https://github.com/W-L/
ProblematicSites_SARS-CoV2/blob/master/archived_vcf/problematic_sites_
sarsCov2.2020-05-27.vcf).

To identify individual sequences that were much more divergent than
expected, given their sampling date, which likely reflected sequencing ar-
tifacts rather than evolution, we obtained a tree using FastTree v2.10.1
compiled with double precision under the general time reversible (GTR)
model with gamma heterogeneity (51). This tree was rooted at the reference
sequence, and root-to-tip regression was performed following TempEst us-
ing the ape package in R (52, 53). Outliers were defined as sequences that
had studentized residuals greater than 3, and were removed.

Sequences from the United Kingdom corresponded to nearly half of the
sequences (n = 12,157/25,671, 47%) of this filtered dataset. To avoid over-
representation of the UK sequences and bias in subsequent analyses, we
investigated the effect of downsampling sequences on the mean Hamming
distance and identified the minimum number of sequences required to re-
cover the mean corresponding to the full distribution (SI Appendix, Fig. S1).
A subsample of 5,000 sequences satisfied these criteria, and also ensured
that there were fewer sequences from the United Kingdom than from the
United States (n = 5,398), reflecting the epidemiology. These 5,000 se-
quences were sampled randomly, with weight proportional to the number
of UK sequences collected on that day.

After these filtering steps, the alignment used for subsequent analyses
included 18,514 sequences.

Global Phylogeny and Evolution. The global phylogeny was reconstructed in
FastTree v2.10.1 compiled with double precision under the GTR model with
gamma heterogeneity (51), and rooted at the reference sequence. The tree
was visualized using ggtree in R (54). Lineages were defined using PAN-
GOLIN (Phylogenetic Assignment of Named Global Outbreak LINeages), with
lineages with >200 taxa as of the May 19 summary being highlighted in the
tree (22) (https://github.com/cov-lineages/lineages). The number of poly-
morphic sites was calculated as the number of sites which had at least one
mutation relative to the reference sequence, Wuhan-Hu-1, ignoring gaps
and ambiguities.

Pairwise Distance Comparisons. For each pair of sequences, we calculated the
Hamming distance as the number of sites that are different after removing
sites with ambiguities and/or gaps. For computational efficiency, given the
size of the alignment, this was implemented in parallel in C++, using Bazel
(https://bazel.build/) to build on a Linux system. This implementation is
available to download at https://www.hivresearch.org/publication-
supplements.

Subsampling Gene Alignments. Alignments for each gene were subsampled
for sequence and phylogenetic analyses. Each gene alignment was randomly
subsampled 100 times per collection date at 5%, 10%, 20%, 30%, and 40%.
When fewer than 10 sequences were available for a collection date, all se-
quences were taken. Median Hamming distances were computed for each set
of subsampled alignments. These were bootstrapped 100,000 times, and 95%
CIs were estimated and compared to the median Hamming distance for the
fully sampled alignment.

Global and Site-Specific Nonsynonymous and Synonymous Substitution Rates.
Alignments subsampled at 10% 100 times were used to estimate substitution
rates. For the set of subsampled alignments for each gene, a mixed-effect
likelihood method was used to estimate nonsynonymous (dN) and synony-
mous (dS) substitution rates globally and at each codon (29). Maximum-
likelihood phylogenies were constructed for each alignment using the
software IQ-TREE (55) under a best-fit model determined with ModelFinder
(56) to prime the dN and dS estimates before branch length optimization.
This step serves to expedite the optimization process. Branch length opti-
mization was done with a MG94 model [which is the only model available
for this analysis (29)]. The proportion of each phylogeny evolving under
neutral (or negative) selection was determined from the mixture density
across lineages for each site, assuming different dN and dS along each
branch (57). On the same set of subsampled alignments and phylogenies, a
fixed-effects likelihood method was used on internal branches to identify
sites under pervasive diversifying selection and to estimate global dN/dS
(58). Known biases associated with calculating dN/dS on exponentially
growing populations (59) were counterbalanced by subsampling phyloge-
nies, as the typical approach to address this bias, which is to ignore terminal
branches, would considerably diminish the power of the analysis to detect
any significant result. As P values from the fixed-effect likelihood method
are uncorrected, results were not averaged over P values; rather, given that
P value calculations are conservative for this analysis (58), sites were con-
sidered to be under pervasive diversifying selection if their P value was <0.1
in ≥50% of alignments, which would account for a typical 5% false discovery
rate (58).

Global and Gene-Specific Population Differentiation. Alignments subsampled
at 10% 100 times were used to estimate population differentiation. The
genetic differentiation of subpopulations within sampled sequences was
calculated on each gene separately using Nei’s (30) GST. Because comparisons
between subpopulations of different sizes can bias genetic differentiation
estimates (60), genetic differentiation was also calculated using Jost’s (31) D,
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which accounts for differences in genetic heterogeneity between subpop-
ulations and is intended to correct for biases in the size of the subpopula-
tions. Both statistics were computed with the mmod package (32) in R
(v3.6.1). For each gene, statistics were calculated over 100 bootstrapped
samples for each subsampled alignment. Subpopulations were defined in
two ways. First, sequences originating from the initial outbreak in the Hubei
province (30 sequences) were compared to all other sequences within a
subsampled alignment. Second, a 1-wk sliding window was designed to
compare all sequences sampled prior to a collection date (subpopulation 1)
to all sequences sampled after the same collection date (subpopulation 2).
The first collection date for subpopulation 1 was February 14, 2020, the
week after the last sequence from the Hubei province was sampled (Feb-
ruary 8, 2020), The window was designed to terminate when <30 sequences
were available in subpopulation 2.

Time-Dependent Estimates of Phylogenetic Diversification. Time-dependent
estimates of phylogenetic diversification were measured by extracting the
branches descending from each internal node (above the root) of each
phylogeny and calculating the peak height (η) of the spectral density profile
of the graph Laplacian of each subtree, which is a measure of the density of
branching events (36, 37). The code to perform the analysis is available for
download at https://www.hivresearch.org/publication-supplements.
Simulation analyses. Phylogenies were simulated using a time-forward
branching process under constant birth rates (b(t) = b) and time-
dependent birth rates (b(t) = beαt) for b = 0.01, 0.03, 0.05, 0.07, and 0.09
and α = ±0.01, ±0.11, ±0.21, ±0.31, and ±0.41, for 20, 220, 420, 620, and 820
tips, and for 1, 11, 21, 31, and 41 time units. Simulated phylogenies were
downsampled at 0%, 10%, 30%, 50%, and 70%. For each scenario, 100
phylogenies were simulated. Time-dependent diversification (i.e., η across
subtrees) was calculated for each phylogeny simulated under each scenario.
Simulations were conducted using the R packages RPANDA (R Phylogenetic
ANalyses of DiversificAtion) (61) and ape (53).
Comparisons to SARS-CoV-2 phylogeny. Phylogenies downsampled at 10% from
the full (18,514 tips) SARS-CoV-2 genome phylogeny (following the sub-
sampling strategy described above) were used to calculate the phylogenetic
η for each subtree (above the root) for each downsampled phylogeny.
Neutral phylogenies were simulated under stochastic branching by randomly
sampling from the distribution of branch lengths from one downsampled
SARS-CoV-2 phylogeny. This was iterated across all downsampled
SARS-CoV-2 phylogenies. Positive time-dependent phylogenies were simu-
lated using a time-dependent process (b(t) = 0.01eαt) for α = 0.001, 0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 1, with branch lengths restricted to the dis-
tribution of branch lengths from one downsampled SARS-CoV-2 phylogeny.
This was iterated across all downsampled SARS-CoV-2 phylogenies for each
α. Neutral and positive time-dependent phylogenies were simulated with a
10% sampling fraction. Polytomies were randomly resolved. Simulations
were conducted using the R packages RPANDA (61) and ape (53).

Ancestral S Protein Sequence Reconstruction. Ancestral S protein sequences
were reconstructed from an amino acid alignment of 30 SARS-CoV-2 se-
quences sampled from the Hubei province, a coronavirus sampled from bat
(Yunnan RaTG13), and six SARS-CoV-2-like coronaviruses sampled from
pangolins using maximum posterior probability and returning a unique
residue at each site assuming a Jones-Taylor-Thornton (JTT) model with
gamma heterogeneity (62). The JTT model was the most appropriate model
available in the software (62). The bat sequence was retrieved from Gen-
Bank, and the pangolin sequences were retrieved from GISAID (63). A sliding
window of 10 amino acids (and a step of 1 amino acid) was used to compare
the cumulative number of mutations in the human−bat and human−
bat−pangolin ancestors with respect to the human ancestral sequence.

Median values for each window were compared to a null window (com-
puted as a normal distribution of 10 values with a mean equal to the mean
value across the entire S protein, 0.046 mutations) using a one-tailed t test.
An alignment including the reconstructed sequences is available at https://
www.hivresearch.org/publication-supplements.

Prediction of CD4+ and CD8+ T Cell Epitopes. CD4+ and CD8+ T cell epitopes
were predicted for four SARS-CoV-2 structural proteins: S (accession
YP_009724390), N (accession YP_009724397), M (accession YP_009724393),
and E (accession YP_009724392). CD4+ T cell epitopes were predicted using a
server that predicts binding of peptides to any MHC molecule of known
sequence using artificial neural networks, NetMHCIIPan 4.0 (64) with a
peptide length of 15. MHC class II HLA alleles of HLA-DQB1, plus the hap-
lotypes of HLA-DPA1-DPB1 and HLA-DQA1-DPB, were selected for predic-
tions if they had frequencies of >1/1,000 in known allele/haplotype
distributions (http://17ihiw.org/17th-ihiw-ngs-hla-data/). If multiple peptides
had the same core, the peptide with the strongest binding score was se-
lected for analysis. CD8+ T cell epitopes were predicted using NetMHCPan
4.1 (64) with a peptide length of 9. MHC class I HLA alleles of HLA-A, HLA-B,
and HLA-C were selected if they were classified as common (frequency ≥ 1/
10,000) in any of the populations in the database CIWD 3.0 (Common, In-
termediate and Well-Documented HLA Alleles in World Populations) (65).
Epitopes predicted as strong binders (with predicted binding affinities below
50 nM) were selected for analyses.

T Cell Immunogenicity Index. For each site in a predicted epitope, the im-
munogenicity index was defined as the sum of the frequency of the HLA
alleles or haplotypes restricting the corresponding epitope (multiple epitopes
can be predicted at a given site in a protein). Total frequencies from CIWD 3.0
were used as the frequencies of the corresponding MHC class I HLA alleles
(HLA-A, HLA-B, and HLA-C), and the global frequencies from http://17ihiw.
org/17th-ihiw-ngs-hla-data/ were used as the frequencies of the corre-
sponding MHC class II HLA alleles or haplotypes (HLA-DQB1, HLA-DPA1-
DPB1, and HLA-DQA1-DPB). This procedure was repeated using the fre-
quencies of MHC alleles or haplotypes in different subpopulations listed in
the above HLA frequency dataset.

Statistical Analyses. For comparisons of mean values in normally distributed
data, Student’s t test was used. When data were not normal, the Man-
n−Whitney U test was used. Shapiro−Wilk tests were used to determine
normality. Differences in data distributions were estimated using the
Kolmogorov−Smirnov test.

Data Availability.Data and code are available at https://www.hivresearch.org/
publication-supplements. All study data are included in the article and
SI Appendix.
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