
OR I G I N A L R E S E A R C H

Construction of a Pyroptosis-Related Signature
for Prognostic Prediction and Characterization of
Immune Microenvironment in Acute Myelogenous
Leukemia
Songyang Liu1,*, Dongmei Luo2,*, Jie Luo2, Hanyin Liang2, Yunfei Zhi1, Dong Wang3, Na Xu2

1The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, People’s Republic of China; 2Department of
Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, People’s Republic of China; 3Department of
Bioinformatics, Basic Medical College of Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China

*These authors contributed equally to this work

Correspondence: Dong Wang, Department of Bioinformatics, Basic Medical College of Southern Medical University, 1838 Guangzhou Da Dao North,
Guangzhou, Guangdong, 510515, People’s Republic of China, Email wangdong79@smu.edu.cn; Na Xu, Department of Hematology, Nanfang Hospital,
Southern Medical University, 1838 Guangzhou Da Dao North, Guangzhou, 510515, Guangdong, People’s Republic of China, Email sprenaa@163.com

Background: Acute myelogenous leukemia (AML) is a common and fatal disease in hematology with frequent relapses and a poor
prognosis. Pyroptosis, a programmed cell death mediated by inflammasomes, has been shown to be associated with leukemia recently.
However, the role of pyroptosis for diagnosis and prognosis in AML remained less understood.
Methods: We downloaded three public datasets and constructed a signature of TCGA cohort using the least absolute shrinkage and
selection operator (LASSO) Cox regression model to predict the overall survival of AML patients. Samples from the GEO database
were treated as a validation cohort. Gone through LASSO-Cox regression analysis, an 8-PRG-related signature was developed. Used
the median score from the signature, we classified patients in two subgroups. Subsequently, we employed univariate COX, multivariate
Cox regression, ROC analysis and constructed a nomogram, Finally, differential analysis, GO and KEGG functional analysis,
ESTIMATE algorithm and CIBERSORT algorithm were used to explore the difference between two groups.
Results: The expression levels of 90.9% pyroptosis-related genes (PRGs) had significant difference compared AML with normal
tissues. The results of univariate COX regression analysis demonstrated 10 differentially expressed genes (DEGs) were associated with
patients’ OS (p < 0.05). Then, we found OS of patients in the low-risk group was more likely to be lengthened compared with their
high-risk counterparts (P < 0.05 both in the TCGA and GEO cohort). After controlling clinical factors, the risk score could still remain
an independent predictive element (HR > 1, P < 0.001) of OS in multivariate Cox regression analysis. Furthermore, a nomogram with
prognostic value for AML was thus established. Time-dependent ROC analysis proved the predictive power of the signature.
Functional analysis suggested that DEGs were mainly concentrated in immune-related pathways, such as humoral immune response
and T cell proliferation. TME scores and risk scores were strongly correlated and immune status differed between the risk subgroups.
Conclusion: A novel PRG-related signature was established to forecast the prognosis in AML, and pyroptosis may be a potential
therapeutic target for AML.
Keywords: acute myelogenous leukemia, pyroptosis, gene signature, tumor immune micro-environment, prognosis

Introduction
Acute myelogenous leukemia (AML), known as an aggressive hematological malignancy, is generated by abnormal
proliferous and differential aberrations of myeloid progenitor cells.1 It is AML that makes up the most of acute leukemia
in adults, expected to increase by 20,240 new cases (1.1% of all new cancer cases) in 2021 in the United States.2
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Most AML patients can achieve leukemia cell reduction through cytarabine and anthracycline chemotherapy as the
development of therapeutic approaches, however, there is still no remarkably long-term improvement for more than 30
years, for which the 5-year overall survival rates of patients under 60 years of age continued less than 40%.3 Targeted
molecules and combination therapies had brought new breakthroughs in the treatment of AML, but the outcomes remain
unsatisfactory due to off-target, drug resistance, and high relapse rates.4 Therefore, more efforts are needed to ferret out
some promising biomarkers, which can track prognosis of patients as well as provide more efficient treatment strategies.

Pyroptosis, defined as a pro-inflammatory programmed cell death that can lead to rapid lysis of affected cells, was
first described in myeloid cells infected by pathogens or bacteria in 1992.5 In previous studies, it was found that there are
two mainly activated mechanisms of pyroptosis, one through the classical caspase-1 inflammatory pathways, and the
other through the non-classical caspase-4/5/11 inflammatory pathways.6 In classical pathways, inflammasomes are
activated in response to stimulation by diverse danger signals during infections, tissue damage or metabolic imbalances,
such as viral infection.7,8 The inflammasomes facilitates caspase-1 dimerization and activation by forming a protein
complex with adapter protein apoptosis-associated speck like proteins (ASC).9 Activated Caspase-1 cleaves Gasdermin
D (GSDMD) into two parts: GSDMD-NT and GSDMD-CT. The former could trigger cell swelling, cell rupture, and
promote the inflammation.10,11 Besides, other important role of activated caspase-1 is to induce the ripeness and release
of IL-18 and IL-1β, which have ability to aggregate inflammatory response.12 Recently, pyroptosis has become a new
topic in cancer research, many studies found that pyroptosis plays an essential regulator in tumor invasion, proliferation
and metastasis.13

To further understand pyroptosis, we focused on the effect of pyroptosis on the survival prognosis of AML. In our
research, AML patients’ information collected from The Cancer Genome Atlas (TCGA) database and 33 pyroptosis-
related genes (PRGs) were involved to construct a robust multigene signature and build a nomogram to quantify their
predictive power for predicting patient prognosis in the TCGA cohort. A Gene Expression Omnibus (GEO) cohort
(GSE71014) was served as validation set of the signature. In addition, to explore potential mechanisms between high-
and low-risk groups, we performed differential expression analysis, functional enrichment analysis, and explored the
relationships between risk groups and the proportion of 22 immune cell types. Our study provides new evidence of the
potentially prognostic significance of PRGs in AML patients.

Materials and Methods
Data Collection
The training cohort included 151 AML samples was downloaded from the TCGA database (https://portal.gdc.cancer.gov/)
up to July 29, 2021. Microarray datasets of GSE7101414 were downloaded from the GEO website (https://www.ncbi.nlm.
nih.gov/geo/) and treated as the validation cohort. Additionally, the normal control datasets (GTEx,Whole Blood (n = 337))
were obtained from UCSC Xena website (https://xenabrowser.net/datapages/). The counts of three databases were
displayed as Table 1.

Identification of Differentially Expressed PRGs
First of all, a total of 33 PRGs were collected from previous reviews8 and research,15 which are displayed in
Supplementary Table S2. Before comparison, TCGA datasets and GTEx datasets were normalized by
“normalizeBetweenArrays” function via limma package and converted to FPKM values. The “limma” package was
also employed to identify differentially expressed genes (DEGs) with a adjust P value <0.05.16 The correlation coefficient
of the DEGs was calculated by Pearson analysis. Furthermore, a protein-protein interaction (PPI) network was

Table 1 | RNA-Seq Datasets of AML Group and Control Group

Cancer Types Tumor Count Normal Count Amount

AML TCGA_AML (151) +GSE71014 (104) =236 GTEx_Whole Blood 337 573

Abbreviation: AML, acute myeloid leukemia; The number of samples in TCGA_AML with survival time≠0 is 132.
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formulated using the Search Tool for the Retrieval of Interacting Genes (STRING)17 to reveal the potential interaction of
differentially expressed PRGs, and the hub gene was further identified by the MCC method in Cytoscape software.18

Construction and Confirmation of PRG-Related Prognostic Model
Aiming for establish a prognosis-related PRGs model of the training dataset, we firstly employed Univariate Cox
proportional hazards regression analysis to identify the pyroptosis-related genes with prognostic significance and
“forestplot” package was applied to show the results. Then, the PRGs with P<0.05 entered LASSO-penalized Cox
regression analysis (“glmnet” R package) to screen the hub prognostic genes. The risk score signature was calculated as
follows:

Risk score ¼ ∑
n

i¼1
Coefi � Expi

(“n”: the number of PRGs in the signature, “i”: the PRG that comprised of the signature, “Coef”: the regression
coefficient, “Exp”: the expression value of the each PRG in the signature.)

Subsequently, We used the time-dependent receiver operating characteristic (ROC) curve to access the predictive
performance of the PRG-related signature.19 Based on the median value of risk scores calculated by lasso-cox model as
the boundary, the AML patients were stratified into low- and high-risk groups. Kaplan–Meier method with Log rank test
was employed to perform survival analysis and “survminer” package was used to display the difference between the two
subgroups. Furthermore, we developed a nomogram depended on risk score and clinical variables to forecast the survival
rate of 1-, 3-, and 5-year for AML patients (“rms” packages). Its predictive power was evaluated by the consistency index
(C Index). To estimate the consistency between actual and predicted survival, calibration plots were also drawn.

Further, to validate the predictive performance of the PRG-related model, another AML cohort (GSE71014) was
downloaded. The risk score of each AML patient was obtained from signature of training set, and AML patients was
divided into two groups by the median risk score. The Kaplan–Meier curve was employed to reflect the survival
performance of two groups.

Identification of Differentially Expressed Genes (DEGs) and Functional Enrichment
Between the Low- and High-Risk Groups
To identify differential expressed genes (HTSeq-Counts) within two subgroups, the edgeR package20 was conducted
with thresholds |log2FoldChange| >1 as well as false discovery rate (FDR)<0.05. To annotate the functional pathways
the DEGs involved, we employed the “clusterProfiler” R package21 to perform Gene Ontology (GO) analysis and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analysis, in which the pathways with adjust p value<0.05 were
remained.

TME Immune Cell Infiltration Analysis
ESTIMATE scores, immune scores, and stromal scores for each AML patient were calculated by ESTIMATE
algorithm.22 CIBERSORT algorithm23 was employed to analyze the gene expression data (FPKM) to identify the
fraction of the different types of immune cells (Table S5) infiltrated in AML patients. The analysis was performed
with 500 permutations (parameters: perm=500) to improve the accuracy of the results. AML patients with P < 0.05 were
considered to be applicable for further analysis. The relationships between 22 immune cells were defined using the
Pearson correlation analysis (“corrplot” package). According to the median of the fraction of specific immune cell, the
survival analysis of immune cell subtype was established.

Statistical Analysis
All statistical analyses are accomplished with R language 4.0.4 version and attached packages. Kaplan–Meier method
with a Log rank test was employed to compare the OS of AML patients between subgroups. Kruskal–Wallis or Wilcoxon
test were applied to test associations between categorical and continuous variables with p < 0.05 for statistically
significant.
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Results
Identification of DEGs Between Normal and AML Samples
Compared 337 normal with 151 AML tissues in the unifying data as described in the methods section, 90.9% (30/33) of
the pyroptosis-related genes showed different expression levels (all adjust P< 0.05), among which, 16 genes (PRKACA,
CASP4, NLRP6, CASP5, GSDMD, PLCG1, CASP1, PYCARD, NLRC4, AIM2, NLRP1, NOD2, GSDMB, CASP9, IL6,
and NLRP2) were down-regulated while 14 other genes (CASP3, CASP6, SCAF11, PJVK, IL18, NOD1, TIRAP, GSDMC,
GSDME, ELANE, IL1B, TNF, NLRP7, and GPX4) were up-regulated in the AML patients (Table S1, Figure 1A). The
correlation network containing 30 pyroptosis-related DEGs is presented in Figure 1C. It was found that the correlation of
differentially expressed PRGs was from weak to strong. CASP3 was positively correlated with CASP6 with correlation
coefficient 0.87, and PRKACA was negatively correlated with CASP6 (correlation coefficient = −0.82). Moreover, to
illustrate the relationship between each DEGs, we mapped a protein-protein interaction (PPI) network (Figure 1B), which
consisted of 30 nodes and 46 edges. More, IL1B, IL18, PYCARD, CASP1, AIM2, NLRC4, TNF, CASP4, and NLRP1 were
determined as hub genes by Cytoscape software via MCC method.

Construction and Evaluation of Prognostic Risk Model Based on TCGA-AML
To further illustrate what were PRGs act as in AML prognosis, we performed univariate Cox regression analysis on all
AML patients based on the expression levels of 33 common PRGs in the training set——TCGA dataset (Figure 2A). The 10
PRGs (PYCARD, GPX4, CASP1, ELANE, CASP9, AIM2, CASP6, GSDMB, CASP3, and PRKACA) had strong relevance to
overall survival (OS) of AML patients (P< 0.05) and selected for further analysis. Among these ten genes, the hazard ratios
(HRs) of 6 genes (PYCARD, GPX4, CASP1, CASP9, AIM2, and PRKACA) were higher than 1, which indicated they were
harmful genes, conversely, the other four genes (ELANE, CASP6, GSDMB, and CASP3) with HRs <1 were protective
genes, and all of ten genes were DEGs between normal and AML samples (Figure 2D). Then, the least absolute shrinkage

Figure 1 Distribution of 33 PRGS in normal and acute myelocytic leukemia (AML) tissues. (A) The heatmap of expression of 33 PRGs in normal and AML samples (*P <
0.05; **P < 0.01; ***P < 0.001; adjust p value of limma). (B) The PPI network showing the interactions among 30 pyroptosis DEGs. (C) The “corrplot” showing the
correlation of the 30 DEGs’ expression in AML.
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and selection operator (LASSO) Cox regression analysis based on the remained 10 PRGs was performed, eight optimal
PRGs were determined based on the optimum lambda value (0.053, Figure 2B and C). The patients’ risk scores were
defined as follows:

Risk score ¼ 0:081� PYCARD expð Þ þ 0:315� GPX4 expð Þ þ 0:028� CASP1 expð Þ þ � 0:066� ELANE expð Þ

þ 0:066� CASP9 expð Þ þ 0:053� AIM2 expð Þ þ � 0:111� CASP6 expð Þ þ � 0:026� CASP3 expð Þ

We divided AML samples into low- and high-risk groups by median score obtained from the formula (Figure 3A).
The principal component analysis (PCA) analysis showed that the patients in two subgroups could be divided well into
different clusters (Figure S1A). In addition, the prognosis of patients in high-risk group was more unfavorable than those
with low risk (Figure 3B). Kaplan-Meier curve suggested that patients in the high-risk group had a significantly poor
prognosis compared to those with low risk (Figure 3D, P < 0.0001). To assess the accuracy of risk model on OS
prediction performance, we employed time-dependent receiver operating characteristic (ROC) analysis and found that the
area under the ROC curve (AUC) reached 0.734 at 1 year, 0.811 at 3 years, and 0.874 at 5 years (Figure 3E). As shown in
Figure 3C, the heatmap of 8-PRG expression levels revealed that the ELANE, CASP3, and CASP6 genes had higher
expression levels in the low-risk group than those in high-risk group, in contract, GPX4, CASP1, CASP9, AIM2, and
PYCARD were lower expressed. Subsequently, we explored the clinical relevance of our 8-PRG signature and evaluated
the correlation between the risk scores and clinical factors of AML patients in the TCGA dataset. The results showed that
risks scores had significant difference in some clinical factors, such as survival status (“alive” or “dead”), age and eight

Figure 2 Construction of the survival model to screen hub PRGs. (A) Forest map of univariate Cox proportional hazards regression: 8 hub PRGs with P < 0.05 were
selected from 33 common PRGs. (B and C) LASSO regression of the 8 OS-related PRGs. (D) Venn diagram showing the differentially expressed PRGs between normal and
AML tissues that were related to OS (green: 33 common PRGs, blue: 30 DEGs, pink: 10 RPGs related to OS).
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FAB classifications (p<0.05, Figure S1B, D and E), but there is no obvious difference in sex and race of AML patients
(Figure S1C and F).

Independent Prognostic Value of the Risk Model
The results of Univariate Cox regression indicated that risk score and age were independent indicators for prognosis, with
a risk score’s HR of 3.887 (95% CI: 2.361–6.399, Figure 4A). After bringing into multiple factors such as FAB
classifications, gender and age, risk score still remained an independent prognostic factor in multivariate Cox regression
analysis (Figure 4B, HR=3.70). To provide a quantitative approach for prognosis of AML, a nomogram concluded risk
score, gender, age, and FAB classifications was constructed (Figure 4C). As indicated in the nomogram, risk score and
age contributed largest to 1-, 3- and 5-year OS of AML patients, and the C-index of the prognostic model was 0.708
(95% CI: 0.64822–0.76778). Besides, the AUC of 5-year OS rate confirmed the prediction performance of risk score
(0.874) and age (0.777, Figure 4D). The calibration curves indicated excellent consistency with the standard curve in
predicting 5-year OS for AML patients (Figure 4E). This indicates that the nomogram made up with the risk score and
clinical parameters could better predict the long-term survival rate of AML patients.

Prognostic Value of the 8-PRG Model in the Validation Set
To validate the predictive ability of the TCGA cohort’ prognostic model, we served the GEO cohort (GSE71014) as
a validation set. Based on the 8-PRG model, risk score of each AML patient was calculated. Additionally, the patients

Figure 3 Evaluation the prognostic value of the PRG signature in the training set. (A) Distribution of the risk scores calculated by 8-PRG model. (B) Patient distribution in
the low- and high-risk score groups based on survival status. (C) Heatmap of 8 PRGs expression profiles based on the TCGA data. (D) Overall survival curves stratified by
the low- and high-risk group. (E) Time-dependent ROC curves for PRG-based overall survival prediction.

https://doi.org/10.2147/IJGM.S352062

DovePress

International Journal of General Medicine 2022:152918

Liu et al Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com/get_supplementary_file.php?f=352062.zip
https://www.dovepress.com/get_supplementary_file.php?f=352062.zip
https://www.dovepress.com/get_supplementary_file.php?f=352062.zip
https://www.dovepress.com/get_supplementary_file.php?f=352062.zip
https://www.dovepress.com/get_supplementary_file.php?f=352062.zip
https://www.dovepress.com
https://www.dovepress.com


were divided into high- (n = 52) and low-risk (n = 52) groups according to the median score. The distribution of risk
scores was displayed in Figure 5A. In consistent with the results of TCGA cohort, the patients with high risk had
a probability of worse OS (Figure 5B). Corresponding heatmap of the expression level of PRGs were displayed in
Figure 5C, which we could find the same conclusion: in the low-risk group, the ELANE, CASP3, and CASP6 genes were
also enriched, while genes (GPX4, CASP1, CASP9, AIM2, and PYCARD) were down-regulated. The results of PCA
analysis also indicated that there were significant differences between two groups (Figure S1G). In addition, Kaplan–

Figure 4 Univariate and multivariate Cox regression analyses for the risk score. (A) Univariate Cox regression analysis of signature and other clinical parameters. (B)
Multivariate Cox regression analysis of signature and other clinical parameters. (C) The nomogram of 1-year, 3-year or 5-year OS based on risk score, age, gender and FAB
stage. (D) The ROC curves analysis based on risk score and other clinicopathologic parameters. (E) Calibration plots for assessing the conformance between the predicted
and the actual OS for the prognostic nomogram model.

International Journal of General Medicine 2022:15 https://doi.org/10.2147/IJGM.S352062

DovePress
2919

Dovepress Liu et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com/get_supplementary_file.php?f=352062.zip
https://www.dovepress.com
https://www.dovepress.com


Meier analysis also revealed patients in high-risk subgroup had lower survival rates and shorter survival times
(Figure 5D, P=0.048). The ROC curve analysis showed the AUC of 1-year, 3-year, and 5-year survival was 0.650,
0.682, and 0.535 respectively, which corroborated the predictive performance of our model (Figure 5E). And the risk
scores had difference between “alive” and “dead” survival status (Figure S1H). In general, these results indicate that the
8-PRG model has good accuracy in predicting the occurrence and development of AML.

Functional Enrichment Analysis of Differentially Expressed Genes (DEGs) Between
High- and Low-Risk Groups
Through the analysis above, we discovered there were notable differences in the survival time and survival rate between
two groups in both cohorts. To further explore the differences in the gene functions and pathways, in TCGA dataset, we
identified 1435 DEGs (652 up-regulated and 783 down-regulated, Figure 6C) using the edgeR package with the FDR<
0.05 and |log2 FC |≥ 1. The heatmap of total DEGs expression was displayed by Figure 6A. As expected, the GO term
analysis (Table S3) revealed that the DEGs were mostly associated with skeletal system morphogenesis, regulation of
myeloid leukocyte mediated immunity pathways, neutrophil activation involved in humoral immune response, regulation
of immune effector process, and T cell proliferation (Figure 6B). KEGG pathways (Table S4) suggested that the DEGs
were mainly enriched in the pathways of cytokine-cytokine receptor interaction, phagosome, viral protein interaction
with cytokine and cytokine receptor, osteoclast differentiation, and B cell receptor signaling pathway (Figure 6D). All of
them are related to AML progression and immune response.

Figure 5 Verification the prognostic value of the 8-PRG signature in the validation set (GSE71014). (A) Distribution of the risk scores calculated by the 8-PRG model. (B)
Patient distribution in the low- and high-risk score groups based on survival status. (C) Heatmap of 8 PRGs expression profiles based on the GEO data. (D) Overall survival
curves stratified by the low- and high-risk group. (E) Time-dependent ROC curves for PRG-based overall survival prediction.
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Identification of Differentially Expressed Infiltrating Immune Cells Between High- and
Low-Risk Group
As the DEGs between two subgroups of AML patients were apparently concentrated in multiple pathways related to
immunity (GO and KEGG analysis), we then explored the association between tumor microenvironment (TME) and our
8-PRG related signature. Firstly, ESTIMATE analysis was used for calculating the estimate scores, immune scores, and
stromal scores. And the results implicated there was strong correlation between TME scores and risk scores (Figure 7D–F):
Among AML samples, the high-risk group scored much higher compared to those with low risk in the three scores, and
there was significantly statistical difference in immune scores and estimate scores (Figure 7A–C).

Furthermore, we studied the composition of the 22 infiltrating immune cells between high- and low-risk group,
respectively in TCGA cohort and GEO cohort. In the two cohorts, only the AML samples qualified with CIBERSORT
p<0.05 were chosen. Violin plot, barplot and heatmap were used to show the difference of immune cells’ radio between
two subgroups (Figure 7G and H; Figure S2A–D). Both cohorts showed a consistent result that monocytes and resting
mast cells rather than other cells accounted for the highest of fraction, while the activated dendritic cells accounted for
the lowest proportion. Additionally, eosinophils, plasma cells, resting mast cells, and resting CD4+ memory T cells were

Figure 6 Functional enrichment analysis of differentially expressed genes (DEGs) between the high- and the low-risk groups. (A) Heatmap of the DEGs between the two
subgroups. (B) Significantly enriched GO terms of the DEGs. (C) Volcano plot of the DEGs between high- and low-risk groups. (D) Significantly enriched KEGG pathways of
the DEGs.
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Figure 7 AML-immune microenvironment analysis of the high- and low-risk groups. (A–C) Boxplot of the TME scores between low- and high-risk group. (D–F) Verifying
the correlation between three scores and risk scores. (G and H) Violin plot showing the difference between AML-infiltrating immune cells. (The blue violin reflects the low-
risk group and the red violin represents the high-risk group. (G) TCGA cohort, (H) GEO cohort.).
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activated at high levels in the low-risk group, on the contrary, monocytes, Neutrophils and M2 macrophages were
significantly increased in the high-risk samples.

The correlations of the infiltrating immune cells were displayed as Figure 8A and B and their corresponding Pearson
coefficients were appeared in Figure S2E and F. Plasma cells was positively related with activated Mast cells, and CD8+
T cells was positively related with resting NK cells; monocytes were negatively correlated with resting CD4+ T memory
cells and plasma cells with correlation coefficient < −0.5 in the TCGA cohorts, which reached consistency with the
results of the GEO cohort. Moreover, we investigated the relationships between the fraction of immune cells and AML
patients’ OS. In the TCGA cohort, high percentages of resting Mast cells and activated Mast cells were correlated with
the higher survival rate (Figure 8C and D). But in GEO cohort, we only found high fraction of plasma cells may indicate
a better prognosis (Figure 8E).

Figure 8 The correlation and prognostic value of the infiltrating immune cells in TCGA and GEO cohorts. (A and B) Circle plot for showing the Pearson correlation of the
immune cells (only the correlation coefficient>0.15 was remained. The gray and black line represents the positive and negative correlation, respectively. The larger size of the
point, the more correlation with other immune cells). (C–E) Survival curve of immune cells stratified by fraction ((C and D) in TCGA cohort, (E) in GEO cohort).

International Journal of General Medicine 2022:15 https://doi.org/10.2147/IJGM.S352062

DovePress
2923

Dovepress Liu et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com/get_supplementary_file.php?f=352062.zip
https://www.dovepress.com/get_supplementary_file.php?f=352062.zip
https://www.dovepress.com
https://www.dovepress.com


Discussion
Recent studies suggested that pyroptosis which may influence tumorigenesis and tumor progression has become an
emerging topic in oncology research. Pyroptosis may act as a tumor suppressor.24 But in some instances, inflammatory
mediators produced during pyroptosis may promote tumorigenesis and may be associated with tumor drug resistance.25

Overall, it is proposed that pyroptosis may act as dual role in tumor pathogenesis. The introduction of pyroptosis may
also be an effective way to re-challenge anti-apoptotic cancers.

Previous studies have identified novel models for PRGs to predicting prognosis in several tumors.15 However, how
pyroptosis is associated with AML remains unknown. Investigating the expression pattern of PRGs is essential to
understand the performance of pyroptosis process in AML. Thus, in our study, PRGs’ impact on the prognosis of AML
patients was systematically evaluated. We elucidated the expression of PRGs and surprisingly found that 30 of 33 PRGs
were differentially expressed between AML and normal tissues. Next, we applied univariate Cox regression analysis and
LASSO algorithm to evaluate the expression levels of PRGs in the TCGA dataset and constructed a prognostic model
based on eight prognostic PRGs (PYCARD, GPX4, CASP1, ELANE, CASP9, AIM2, CASP6, and CASP3), which could
predict AML patients’ OS with medium to high accuracy. This model was validated in an external cohort. In addition,
a nomogram that shows good calibration and differentiation had been developed for accurate clinical determination of
five-year survival prognosis in AML.

Few of nodes involved in our prognostic model have been reported to be associated with the progression of AML
through modulation pyroptosis.26 For example, in the Cancer Genome Atlas,27,28 the highest median expression level of
caspase-1 mRNA was found in primary AML rather than any other cancer, which is correlated with poor prognoses of
primary AML. However, the roles of OS-related PRGs, such as PYCARD, GPX4, ELANE, CASP9, AIM2, CASP6, and
CASP3, in the regulation of AML have not been elucidated. GPX4, one of the glutathione peroxidases (GPXs), is
capable of reducing phospholipid hydroperoxides in cell membranes, keeping cells away from damage by oxidation,
meanwhile, it attributes a lot to maintain redox homeostasis for survival and function of cells.29 Noteworthy, some
studies have evidenced that programmed cell death could be modulated by lipid peroxidation.30,31 One study showed that
GPX4 has the ability to reduce lipid peroxidation, negatively regulate macrophage pyroptosis and sepsis lethality in
mice.32 The results of other researches also showed that GPX4 presents in ferroptotic cancer cell death as a key mediator
and is particularly sensitive in diffuse large B-cell lymphoma as well as renal cell carcinoma.33,34 In AML, the newly
developed drug APR-246 promotes cell death in vivo and in vitro through genetic inactivation of GPX4-induced
ferroptosis.35 However, the accurate mechanism of molecule through which pyroptosis driven by GSDMD is accelerated
by lipid peroxidation still poorly understood.36 In our study, we found that GPX4 is one of the prognostic biomarkers
associated with focal ptosis in AML, and low expression of GPx4 appears to be associated with a better survival
prognosis.

Caspase-1, caspase-3, caspase-6 and caspase-9 belong to the family of cysteine proteases, which can mediate
apoptosis and pyroptosis of regulated cells. Active caspase-1 is in charge of GSDMD-driven pyroptosis through
caspase-1-GSDMD pathway.37 Reports have demonstrated that upregulated expression of caspase-1 is upregulated
along with AML patients who had poor prognosis,38 which is consistent with our observations. ASC is a bipartite
protein composed of a pyrin domain (PYD) and a caspase recruitment domain (CARD), also called PYDCARD.39 Absent
in melanoma 2 (AIM2) has been reported to be mediated by ASC.39 The connexin activates CASP-1, which accelerates
IL-1β and IL-8 maturating and releasing in order to promotes pyrolysis. In this study, PYDCARD, AIM2, CASP-1 and
CASP-9 were upregulated along with high-risk group, which was relevant to poor prognosis. Moreover, the interaction
mechanism of each molecule has not been clarified.

Caspase-3 plays an essential role in either apoptosis or pyroptosis. Studies showed that in cancer, apoptosis can
change into pyroptosis through the caspase-3/GSDME signal pathway.40 This study found that CASP-3 was low
expressed in AML in the high-risk group, with low expression portending a poor prognosis, which indicates that
CASP-3 may emerge as a tumor suppressor gene in AML. GSDMD cleavage mediated by neutrophil-specific serine
protease, neutrophil elastase (ELANE) is located on the side of caspase, by which an activated NT fragment driven by
ELANE (GSDMD-eNT) is produced, is which working as efficiently as caspase GSDMD-cNT in inducing cell death and
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lysing cells. ELANE is generated in cytoplasmic granules and is delivered into the cytoplasm in senescent neutrophils.
However, ELANE is only expressed in neutrophils and not in mononuclear macrophages.41–43In this study, the low
expression of ELANE is associated with poor OS, which may be due to the suppression of neutrophils in AML, further
showing that ELANE may exist as a cancer suppressor gene in AML.

To further investigate the whether PRGs-mediated mechanism is different in patients with AML, we used the GO as
well as KEGG enrichment analysis on low- and high-risk groups. Unexpectedly, we found that most PRGs were enriched
in biological processes and pathways which are related to immunity. It can be presumed that cancer immunization is
closely implicated in pyroptosis process. Since pyroptosis-induced inflammation could trigger robust antitumor
immunity,44 we next investigated the relationship between pyroptosis and the immune microenvironment, finding that
the risk scores calculated from the our 8-PRG model were positively correlated with the TME scores and that there were
significant differences between high- and low-risk subgroups in ESTIMATE scores and immune scores. Therefore, to
further explore their relationship, we continued to analyze the association between infiltrated status of immune cells and
8-PRG signature.

Our observations suggested that a strong positive correlation was shown between the high-risk group and high percentage
of infiltration of monocytes, Neutrophils and M2 macrophages. Meanwhile, levels of the plasma cells, resting CD4+ memory
T cells, eosinophils and resting mast cells were significantly increased in patients among the low-risk group.

A recent study has recently evidenced that M2 macrophages could facilitate tumor growth by inducing immune
suppression,45 and higher M2 macrophages predicted the worse survival status of patients.46 In TCGA cohort, high-risk
group had significantly more M2 macrophages than low-risk group (p<0.05). AML patients with high percentage of M2
macrophages were associated with poor prognosis, but no significant difference was found compared them to low
(p=0.151). Monocytes which had been considered as the reservoir for renewal of tissue macrophages,47 preferentially
differentiated into immunosuppressive tumor- associated macrophages,48 and that would suppress the anti-tumor immune
response. In our study, it was surprisingly to found that the monocytes’ ratio was the highest of all cell types with
a higher percentage in high-risk group compared to the low-risk group. During pyroptosis, the release of IL-18 and IL-1β
in the form of exosomes could recruit and activate mast cells, which induced inflammation and cell damage,49 but the
mechanism had not been elucidated in AML. However, we found that the fraction of mast cells had a strong positive
relevance to low-risk group while the high-risk group showed contrary, and the patients with a high proportion of mast
cells had a better prognosis (p<0.05). Finally, by exploring immune cells and survival prognosis of AML patients, we
found that high expression of activated and resting mast cells in the TCGA cohort may be associated with patients’ good
prognosis, but in the GEO cohort high expression of plasma cells was found to lead to a good prognosis. Therefore, we
would further explore the clinical relevance of immune cell types and their relationship with prognosis.

Yet, there are some limitations in this study. First, the sample numbers of M6 and M7 in FAB staging in the TCGA
cohort is too small, for which the nomogram were constructed may lead to little error in the indicator of FAB
classification, so we should use more independent AML datasets in the future to improve the accuracy of prognostic
model. Second, vitro and vivo experimentation is needed to prove the results. Therefore, we need further studies to
inspect the mechanisms underlying the PRGs identified in AML.

In conclusion, we identified 30 PRGs differently expressed in AML and normal samples, and developed an 8-PRG
prognostic model for predicting the OS of AML patients, which was also validated by a GEO cohort. The results of
multivariate cox analysis demonstrated the model can be treat as an independent prognostic factor, and a nomogram was
thus constructed. In the end, we characterized pyroptosis might relate with AML immune microenvironment.
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