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1  | INTRODUC TION

A significant positive correlation between protein intake and muscle 
mass has been reported (Houston et al., 2008). Sarcopenia is a con-
dition caused by the decline in muscle and bone mass. In particular, 
age-related loss of muscles cannot be reversed by any existing drugs 
and must be treated with nutrition and physical exercise. Protein is 
a nutrient that builds muscles, and its intake is known to be signifi-
cantly associated with muscle mass. However, it is quite challenging 
for the elderly to consume a large amount of protein, and they need 
sources of high-quality protein. Meanwhile, strenuous exercise pro-
duces excessive free radical in muscle tissues (Murakic-Sposta et al., 
2015), while causing muscles to be damaged or fatigued (Nosaka & 
Newton, 2002; Nosaka, Newton, & Sacco, 2002). This can lead to 
reduced physical activities, which may turn into a vicious cycle of 
muscle mass decline. Therefore, early recovery from muscle fatigue 
is critical in maintaining and enhancing physical health.

The early recovery from muscle damage is significant not only 
for the elderly, but also for athletes for continuing their training. 
There are a number of means to counter such damage, which include 
massage, stretching, and improved nutrition through a balanced diet. 
And, for a balanced diet to work efficiently, it must include high-
quality sources of protein.

Previous studies involving human subjects have found that EWH 
reduce muscle damage in long-distance runners (Sugiyama et al., 
2016).

The egg white’s protein component has been reported to have 
a high amino acid score and a high net protein utilization rate, and 
thus, it represents a good source of protein (Matsuoka, Takahashi, 
Kimura, Masuda, & Kunou, 2017; Sheffner, Eckfeldt, & Spector, 
1956). Egg white proteins (EWP) are reported to decrease cho-
lesterol (Matsuoka, Usuda, Masuda, Kunou, & Utsunomiya, 2017; 
Matsuoka et al., 2008; Matsuoka et al., 2014), improve visceral fat 
obesity (Matsuoka et al., 2017; Matsuoka, Shirouchi et al., 2017) 
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Abstract
We studied the effect of egg white hydrolysate (EWH) on swimming endurance in 
mice. 7-week-old male ddY mice (28–30 g) were divided into three groups and fed an 
AIN-93G diet supplemented with casein (n = 8), EWH (n = 7), or egg white protein 
(EWP, n = 8) for 14 days. From day 11, the mice underwent a swimming test daily 
with a weight load equivalent to 10% of their body weight, and the lengths of time 
they swam were recorded. Blood was sampled for testing on the last day of the study. 
We observed that increases in the swimming duration through day 14 were signifi-
cantly greater in the EWH group than in the casein group (p = 0.049). As a factor 
underlying this, the hexanoyl-lysine level in blood was confirmed to be decreased in 
the former group (p = 0.013). These findings indicate that consumption of EWH ex-
tended the swimming duration and suggest the mechanistic involvement of an anti-
fatigue effect mediated by its antioxidant activity.
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facilitate iron absorption (Kobayashi, Kido, & Nakabou, 2007) and, 
when combined with exercise, increase muscle (Kato, Sawada, 
Numao, & Suzuki, 2011). Egg white hydrolyzed to peptides by di-
gestive enzymes is expected to be absorbed more quickly and have 
novel physiological functions. Previously, egg white-derived pep-
tides were reported to decrease blood pressure (Miguel, López-
Fandiño, Ramos, & Aleixandre, 2005).

Egg white is characterized by high levels of sulfur-containing 
amino acids and branched-chain amino acids (BCAAs) (WHO, 1985). 
Because glutathione is produced in vivo from sulfur-containing 
amino acids (Seligson & Rotruck, 1983), egg white can be expected 
to have antioxidant effects that are reportedly linked to antifatigue 
effects and the prevention of various diseases such as arterioscle-
rosis (Steinberg, Parthasarathy, Carew, Khoo, & Witztum, 1989). 
Moreover, BCAAs have been reported to ameliorate muscle fatigue 
(Matsumoto et al., 2009). Their concentration in the blood increases 
after ingesting an EWP preparation and decreases after exercise 
(Kato, Numao, Miyauchi, & Suzuki, 2010). Therefore, an antifatigue 
effect mediated by BCAAs can also be expected.

Although there are no reports on the antifatigue effects of 
proteins, such reports have been published for egg white-derived 
peptides. Imidazole peptides from chicken meat have been reported 
to exhibit antioxidant effects, thus imparting antifatigue effects 
(Harada et al., 2002). Whey-derived peptides have been reported to 
extend swimming duration in mice via radical-scavenging and iron-
chelating actions (Liu, Wang, & Zhao, 2004).

Davalos, Miguel, Bartolome, & Lopez-Fandino (2004) have re-
ported the antioxidant effects of egg white hydrolysate (EWH). 
Antioxidant effects of pepsin-hydrolyzed egg white have been re-
ported in vivo; thus, it is associated with antifatigue effects (Sun, 
Niu, Yang, lin, Luo, & Ma, 2014). Particularly, in athletes, accumulated 
physical fatigue affects their performance the following day, and it 
can lead to injuries in worst-case scenarios. Food product develop-
ment with antifatigue effects is thus likely to be useful for athletes.

Although antifatigue effects have been reported for EWH, re-
ports on this issue are limited to studies using peptides prepared 
by enzymatic degradation. Proteins digested with enzymes and 
peptides have beneficial effects on health; however, they taste bit-
ter and unpleasant as consumable food. We thus developed a new 
EWH preparation with decreased bitterness by collecting water-
soluble fractions from enzyme-digested egg white. In this study, we 
assessed the influence of the EWH preparation on swimming endur-
ance in mice.

2  | MATERIAL S AND METHODS

2.1 | Materials

Egg white hydrolysate, primarily developed as pathological nutri-
tion food, was used and was prepared by successively heating egg 
white under alkaline conditions, followed by enzyme treatment 
with a neutral protease, heating to inactivate the protease, filtration 

to remove insoluble matter, and then spray-drying (Watabe, 2013). 
The resulting EWH had a mean molecular weight of 700 Da and 
contained the following nutrients: 71.9 g/kg of protein, 0.9 g/kg of 
fat, 11.9 g/kg of minerals, and 10.8 g/kg of carbohydrate. Table 1 
shows the amino acid composition. The EWP preparation used was 
dried egg white K type (CS No. 2) from Kewpie Corporation. Casein 
was purchased from Oriental Bioservice (Kyoto, Japan).

2.2 | Animals and diets

In this study, 6-week-old male ddY mice (Japan SLC, Shizuoka, Japan; 
28–30 g, n = 30) were used. The ddY mice were used because this 
strain has been frequently used for animal tests in sports science 
and antifatigue research and had a track record of successful use in 
the present test system (Kamakura, Mitani, Fukuda, & Fukushima, 
2001; Nakagawasai et al., 2013; Osada, Komai, Sugiyama, Urayama, 
& Furukawa, 2004). The mice were housed in stainless steel cages 
placed in an environment with lights on between 7:00 and 19:00, 
a temperature range of 20–26°C, and a humidity of 40%–70%. 
Their diet was prepared in accordance with the AIN 93G compo-
sition (Reeves, Nielsen, & Fahey, 1993). The reason for using the 
AIN-93G diet was the latest base diet. The diet was supplemented 
with 20% casein, EWP, or EWH. Other components were cysteine 
(0.3%), α-cornstarch (13.2%), cellulose (5%), sucrose (10%), mineral 
mix (AIN-93G; 3.5%), vitamin mix (AIN-93; 1%), soybean oil (7%), 
choline bitartrate (0.25%), tert-butylhydroquinone (0.0014%), and 
β-cornstarch (the remainder).

After 7 days of habituation, 30 mice were divided into three equal 
groups each to be fed a casein-containing diet, EWH-containing 

TABLE  1 Amino acid composition of egg white hydrolysate 
(mg/g N)

Amino acid Egg white hydrolysate

Cys 117

Met 212

Thr 312

Val 442

Ile 302

Phe 291

Leu 521

Tyr 253

Lys 438

His 139

Try 85

Asp 734

Ser 449

Glu 971

Gly 255

Ala 397

Arg 387

Pro 228
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diet, or EWP-containing diet. The mice were allowed to freely ingest 
the assigned diet and distilled water for 14 days. They underwent 
swimming time assessments from day 11 onward, and the swimming 
time periods were recorded.

We chose to mix a dose in feed because this test was a food eval-
uation and we wanted to conduct the test in a condition as natural as 
possible. In some feeding tests, food intake does not stabilize until 
animals get used to depending on the type of diet. Since exercise 
loading before food intake stabilizes increases variability of the food 
intake, no exercise load was applied before the food intake stabilized 
in the present test. In this test, the food intake levels of the animals 
became stable on day 8, and swimming time evaluation was started 
3 days after the food intake stabilized (day 11) and conducted for 
3 days thereafter.

After completing the swimming test on the last day of the study, 
the mice were sacrificed by drawing blood from the vena cava under 
anesthesia using pentobarbital (Nembutal; Sumitomo Dainippon 
Pharma, Tokyo, Japan). Blood samples were centrifuged at 1,700 g 
for 15 min and then sera were collected. Serum samples were stored 
at −80°C until analyses. This study was approved by the Animal Care 
and Use Committee of the Center of Japan Biological Chemistry & 
Co. and was conducted at the Center of Japan Biological Chemistry 
& Co. This experiment was performed under the guidelines for 
Animal Experiments, Law No. 105 and Notification No. 6 of the 
Government of Japan.

2.3 | Swimming time assessment

An acrylic resin cylinder (19-cm diameter, 50-cm height) containing 
tap water (20-cm deep) at 23–24°C was used. With a weight corre-
sponding to 10% of its body weight, each mouse was made to swim 
in the cylinder, and swimming time was defined as the length of time 
until the mouth and nose of the mouse remained continuously un-
derwater for 10 s (Zhang et al., 2011).

2.4 | Blood analysis

In vena cava serum samples, lactic acid was measured with Lactic 
Assay Kit II (Bio Vision, Inc., Milpitas, CA, USA), creatinine kinase with 
CPK II Test Wako (Wako Pure Chemical Industries, Tokyo, Japan), 
and hexanoyl-lysine using a Hexanoyl-lysine Measurement Kit 
(Nikken SEIL, Tokyo, Japan) (Allain, Henson, Nadel, & Knoblesdorff, 
1973; Marbach & Weil, 1967; Sakai et al., 2014).

2.5 | Statistical analysis

Test results are presented as mean ± standard error. Statistical anal-
yses were performed by one-way analysis of variance followed by 
Tukey–Kramar test if a significant difference was detected in the 
former analysis. A difference was considered significant when the 
hazard rate was <5%. Statistical analyses were performed using the 
computer software Dr. SPSS II for Windows (SPSS, Tokyo, Japan).

3  | RESULTS

3.1 | Growth parameters

Here, ad libitum feeding was used, resulting in mean food intake 
being significantly less in the EWH group (5.3 ± 0.1 g) than in the ca-
sein group (5.8 ± 0.2 g) or the EWP group (5.7 ± 0.2 g). To minimize 
any effect of different protein intake on the swimming time, we ex-
cluded two mice each with the highest intake in the casein and EWP 
groups, and two mice with the lowest intake in the EWH group. In the 
EWH group, there were three mice with the second lowest food in-
take. Of these, the one with the lowest weight was excluded, because 
the mean body weight in the EWH group (41.4 g) was less than that 
in the other two groups (casein group, 43.3 g; EWP group, 42.3 g). In 
addition, one mouse in the EWH group had a mean swimming time 
of 73 s over 4 days, which was considerably shorter than the mean 
swimming time (195 s) of all other mice. This mouse was considered 
incapable of swimming and was thus excluded from the analyses. The 
analysis set, therefore, included eight animals from the casein group, 
seven animals from the EWH group, and eight animals from the EWP 
group. No significant differences in body weight gain, dietary intake, 
and feed efficiency were found among the three groups (Table 2).

3.2 | Swimming time assessment

The results on swimming time for mice that received casein, 
EWH, and EWP are shown (Figure 1). At the commencement of 
the study, the mean swimming time was 132 ± 16 s in the casein 
group, 151 ± 21 s in the EWH group, and 151 ± 21 s in the EWP 
group, showing no significant differences among the three groups. 
Although the data on day 11 did not show significant intergroup 
differences, the swimming time in the casein group tended to be 
shorter than that in the EWH group or the EWP group. Therefore, 
we expressed the swimming time data as Δ with the swimming time 

Initial body 
weight (g)

Final body 
weight (g)

Body weight 
gain (g/day)

Dietary intake 
(g/day)

Food 
efficiency

Casein 35.6 ± 0.6 42.3 ± 0.6 0.48 ± 0.04 5.58 ± 0.17 0.09 ± 0.01

EWH 34.3 ± 0.4 41.6 ± 0.8 0.52 ± 0.06 5.30 ± 0.10 0.10 ± 0.01

EWP 34.6 ± 0.7 41.7 ± 0.8 0.51 ± 0.05 5.55 ± 0.16 0.09 ± 0.01

Notes. Mean ± SE of 7–8 mice.
EWH: egg white hydrolysate; EWP: egg white protein.

TABLE  2 Growth parameters in mice
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on day 11 being defined as 0. The Δ swimming time on day 14 in the 
EWH group was found to be significantly greater than that in the 
casein group or the EWP group (p = 0.049).

3.3 | Blood tests

Blood analyses were performed on mice immediately after swim-
ming. Blood lactic acid levels in the casein, EWH, and EWP groups 
were 1141 ± 9, 1256 ± 16, and 1225 ± 16 nmol/ml, respectively, in-
dicating that levels in the EWH and EWP groups were significantly 
higher than the level in the casein group. Blood creatinine phospho-
kinase concentrations in the casein, EWH, and EWP groups were 
20.6 ± 1.9, 22.5 ± 1.3, and 22.8 ± 0.8 IU/l, respectively, indicating 
no significant differences among the three groups. Blood hexanoyl-
lysine levels in the casein, EWH, and EWP groups were 89.8 ± 26.2, 
20.1 ± 4.3, and 26.6 ± 8.3 nmol/l, respectively, indicating that the 
EWP and EWH groups of mice had significantly lower levels than 
the casein group.

As these parameters are likely to be affected by swimming du-
ration, concentrations per unit swimming time were calculated 
(Table 3). The results showed no intergroup differences in per swim-
ming time values of serum lactic acid and creatinine kinase levels. 
The hexanoyl-lysine concentration per swimming time in the EWH 
and EWP groups was significantly higher than that in the casein 
group (p = 0.013 and p = 0.022, respectively).

4  | DISCUSSION

The results of this study confirmed that EWH exhibited an antifa-
tigue effect via its antioxidant activity. In general, intensive exer-
cise results in the generation of reactive oxygen species, which 
have been reported to damage DNA and cells and cause fatigue 
(Kawanishi, Hiraku, & Oikawa, 2001; Kobayashi, Oikawa, Umemura, 
Hirosawa, & Kawanishi, 2008).

The results also confirmed an in vivo antioxidant effect of EWH, 
as indicated by the decreased blood hexanoyl-lysine levels after re-
ceiving EWH. Furthermore, the study confirmed an in vivo antiox-
idant effect after swimming in the EWP group, but only the EWH 
group showed an extended swimming time.

It has been reported that reactive oxygen species are generated 
in the body after performing intensive exercise. This study showed 
a significantly longer swimming time in the EWH group than in the 
casein group or the EWP group. Therefore, we calculated hexanoyl-
lysine levels per unit swimming time and found a significantly lower 
value in the EWH group than in the casein group, with no significant 
difference between the EWP and casein groups. This finding con-
firmed a more potent in vivo antioxidant effect of EWH.

Some reports have documented the antifatigue effect of pep-
tides, but no such reports are available for EWP itself. This is attrib-
utable to differences in the amino acid absorption rate. It is clear that 
low-molecular-weight peptides have higher absorption rates than 
high-molecular-weight proteins (Hara, Funabiki, Iwata, & Yamazaki, 
1984; Matthews & Adibi, 1976).

The observed effect was assumed to be attributable to a de-
creased physical burden because EWH ingested immediately after 
swimming quickly migrated into target organs such as muscles and 
could quickly decrease reactive oxygen species therein. Another 
contributing factor may be the rapid supply of amino acids required 
to repair muscle cells disrupted during exercise. These findings may 
explain the observed significant differences in serum creatinine ki-
nase levels among the three groups. The antifatigue effect has also 
been reported for pepsin digests from EWP, and the absorption 
rate was considered a likely contributing factor (Sun et al., 2014). 
Therefore, this difference in absorption rates may be involved in the 
various increases in swimming time. And we think this is a subject for 
further studies. Egg white is a quality source of protein, and muscle 
enlargement has been reported to occur when it is ingested in ad-
dition to exercise (Kato et al., 2011). A muscle-enlarging effect may 
also be expected for EWH, although we could not address this issue 
in the present study.

F IGURE  1 Swimming time in ddY mice fed casein, egg white 
hydrolysate, or egg white protein. EWH: egg white hydrolysate, 
EWP: egg white protein. Mean ± SE of 7–8 mice. Different letters 
represent significant differences (p < 0.05)
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Swimming time(Δs.)

Time (days)

Lactic acid (mg/ml/min 
swimming time)

CPK (mg/ml/min 
swimming time)

HSL (mg/ml/min 
swimming time)

Casein 478 ± 32 8.68 ± 1.10 35.2 ± 10.0a

EWH 422 ± 87 7.62 ± 1.79 6.39 ± 1.48b

EWP 450 ± 31 8.27 ± 0.49 9.51 ± 0.27b

Notes. Mean ± SE of 7–8 mice. Different letters represent significant differences (p < 0.05).
EWH: egg white hydrolysate; EWP: egg white protein.

TABLE  3 Serum antifatigue parameters 
in mice
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The EWH used in this study was prepared by degradation with 
a neutral protease, which is not a physiological digestive enzyme. 
Therefore, the EWH likely comprised peptides with sequences dif-
ferent from those of products of EWP digestion in the body, and 
it is also possible that such peptides are involved in the antifatigue 
effect. Further elucidatory studies are required to shed light on this 
issue.

Regarding active ingredients in this study, we think that they may 
include antioxidant peptides, since we confirmed that the egg white 
hydrolysate itself had the antioxidant effect, although the process of 
digestion and absorption was not taken into consideration. In addi-
tion, egg white peptides contain many sulfur-containing amino acids 
and BCAA (Table 1). Sulfur-containing amino acids can be expected 
to exert the antioxidant effect, since they are source materials for 
producing glutathione (Seligson & Rotruck, 1983). BCAA has been 
reported to improve muscle fatigue (Matsumoto et al., 2009), and 
although it is possible that they caused muscle hypertrophy, it is un-
likely that muscle hypertrophy occurred in a short-term test like the 
present test.

Lysine has been reported to have an antifatigue effect and is 
also a component of hexanoyl-lysine which is used in this study as 
an indicator of antioxidative effects in vivo. We thus calculated the 
amount of lysine intake based on the amino acid composition value 
of EWH in this study, as well as those of casein and EWP reported 
elsewhere (Matsuoka, Shirouchi et al., 2017) The results were as fol-
lows: 1.37 g/100 g in the casein diet, 1.01 g/100 g in the EWH diet, 
and 1.23 g/100 g in the EWP diet. In other words, the amount of 
lysine intake was lowest in the EWH diet, followed by the EWP diet 
and the casein diet. This has suggested that lysine intake was more 
closely related to the antioxidative effects in vivo rather than to the 
extended swimming time. Therefore, we studied the correlation be-
tween lysine intake and the serum concentration of hexanoyl-lysine, 
which turned out to be nonsignificant (r = 0.256, p = 0.222). As a 
follow-up, we checked the correlation between the change in swim-
ming time and lysine intake, and also found it to be nonsignificant 
(r = 0.303, p = 0.160). These indicate that the results of our study 
were not affected by lysine intake.

In a previous study, antioxidant and antifatigue effects were 
observed with pepsin-degraded products of EWP at a low dose of 
0.2 mg/g/day (Sun et al., 2014). As pepsin is a typical enzyme found 
in the stomach, it is reasonable to expect effects similar with those of 
the ingestion of unprocessed EWP, although it may be less effective. 
However, virtually no antioxidant effect or extension of swimming 
time was observed in this study for mice that received approximately 
1 g/day (approximately 25 mg/g/day) of the EWP preparation. There 
are two potential reasons for this.

First, the pepsin digest of egg white used previously was pre-
pared by subjecting heat-treated egg white to pepsin (Sun et al., 
2014). In contrast, the EWP preparation used in the present study 
did not undergo any heat treatment. Ovalbumin, a protein in egg 
white, is known to be susceptible to hydrolysis by pepsin only when it 
is heated in advance (Sakai, Ushiyama, & Manabe, 1999). Therefore, 
products from pepsin treatment of heat-treated ovalbumin may 

contain potent antioxidant peptides. The EWH used in our study was 
also prepared from egg white heated prior to the enzyme treatment.

Second, as opposed to the ad libitum feeding used in the pres-
ent study, oral administration was used in the previous study, which 
likely allowed effective scheduled administration of the pepsin-
treated preparation of egg white (Sun et al., 2014). EWP do not 
exhibit antifatigue effects unless an appropriate dosing schedule is 
used. The EWH used in this study, on the contrary, resulted in an-
tioxidant effects and extension of swimming time under ad libitum 
feeding conditions, suggesting that it has beneficial effects regard-
less of the feeding schedule.

In this study, blood lactic acid levels in the EWP and EWH groups 
were significantly higher than those in the casein group. It is gen-
erally considered that lactic acid is generated as a result of fatigue 
(Brooks & Gladden, 2003). However, this notion has been ques-
tioned by some studies, and the details remain to be elucidated fur-
ther (Gladden, 2004). This study also showed that EWH extended 
the swimming time despite a significant increase in lactic acid in 
blood compared with the level observed for animals receiving ca-
sein, suggesting that an elevated lactic acid level did not influence 
the antifatigue effect in this study. The absence of significant inter-
group differences in blood lactic acid per swimming time suggests 
that the increased lactic acid levels after swimming observed in the 
EWP and EWH groups reflect effects from an increased swimming 
time rather than dietary effects.

It has been demonstrated in mouse experiments that the in-
gestion of 500 mg/kg/day (0.5 mg/g/day) of an imidazole dipep-
tide produced antifatigue effects (Harada et al., 2002). The EWH 
in this study showed an antifatigue effect at an approximate daily 
intake level of 25 mg/g. The daily intake of 200 mg of imidazole di-
peptide in humans has been reported to be effective for achieving 
an antifatigue effect, albeit weakly, in those experiencing tired-
ness in daily life (Hayami, Fukuda, & Yamamoto, 2009). Although 
the minimum effective dose for the antifatigue effect should be 
determined empirically in human studies, a simple calculation 
using these values allowed us to estimate it as approximately 10 g 
per day of EWH.

Issues associated with the consumption of egg white include al-
lergic reactions. Given the fact that EWH is prepared by the enzy-
matic degradation of egg white, it seems reasonable to expect that 
EWH would be hypoallergenic. Patients with egg allergies may thus 
be able to use EWH safely, although close monitoring may still be 
required.

Problems associated with peptides include bitterness and in-
soluble matter that can affect suitability for food processing. The 
peptide preparation used in this study comprises a combined water-
soluble fraction from enzyme-digested egg white. Because peptides 
constitute the main component, EWH is resistant to heat, and it is 
possible for an antifatigue dose of 10 g per day to be taken by sup-
plementing beverages with EWH. Furthermore, the EWH used in 
this study has a decreased level of bitterness and can be ingested 
without adding any masking agent. Thus, EWH appears to have a 
wide variety of food applications.
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5  | CONCLUSION

Although some issues remain to be addressed in future studies, the 
results presented here demonstrate that EWH extended the swim-
ming time in mice and suggest the mechanistic involvement of anti-
fatigue effects via antioxidant activity.
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