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1  |   INTRODUCTION

The endocannabinoid system is a neurological pathway that 
has received much attention over the past decades, partly 
because it is the primary target for Δ9-tetrahydrocannabinol 
(THC), the main psychoactive compound in the cannabis plant 
(Pertwee, 2006b). In the scientific community, however, the 

endocannabinoid system has gained a lot of attention due to 
its pharmacological promise for the development of new com-
pounds for treatment of a large variety of disorders (Bonnet 
& Marchalant,  2015; Chiurchiù et  al.,  2018; Guindon & 
Hohmann, 2008; Leweke et al., 2016; Pertwee, 2006b; Saito 
et al., 2013; Watkins & Kim, 2014). In particular, the study of 
existing ligands and the development of new substances that 
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Abstract
The endocannabinoid system is a complex neuronal system involved in a number of 
biological functions, like attention, anxiety, mood, memory, appetite, reward, and 
immune responses. It is at the centre of scientific interest, which is driven by thera-
peutic promise of certain cannabinoid ligands and the changing legalization of herbal 
cannabis in many countries. The endocannabinoid system is a modulatory system, 
with endocannabinoids as retrograde neurotransmitters rather than direct neuro-
transmitters. Neuropharmacology of cannabinoid ligands in the brain can therefore 
be understood in terms of their modulatory actions through other neurotransmitter 
systems. The CB1 receptor is chiefly responsible for effects of endocannabinoids 
and analogous ligands in the brain. An overview of the neuropharmacology of sev-
eral cannabinoid receptor ligands, including endocannabinoids, herbal cannabis and 
synthetic cannabinoid receptor ligands is given in this review. Their mechanism of 
action at the endocannabinoid system is described, mainly in the brain. In addition, 
effects of cannabinoid ligands on other neurotransmitter systems will also be de-
scribed, such as dopamine, serotonin, glutamate, noradrenaline, opioid, and GABA. 
In light of this, therapeutic potential and adverse effects of cannabinoid receptor 
ligands will also be discussed.
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are able to bind to the endocannabinoid system and to modu-
late its properties in the central nervous system (CNS) or the 
periphery seem to be at the core of this regained attention.

The endocannabinoid system consists of at least two types 
of receptors (CB1 and CB2) and endogenous ligands that bind 
to these receptors (Katona & Freund, 2012). CB1 receptors 
are primarily found in the brain, with the highest concentra-
tions demonstrated in the basal ganglia, cerebellum, hippo-
campus, and cerebral cortex (Glass & Felder, 1997; Hoffman 
et  al.,  2003; Hohmann & Herkenham,  1999; Mackie,2005; 
Wong et al., 2010). At nerve terminals they mediate release 
of both inhibitory and excitatory neurotransmitters (Katona 
& Freund,  2012; Maejima et  al.,  2001). CB1 receptors are 
involved in many brain functions such as movement, coordi-
nation, sensory perception, learning and memory, and pro-
cessing of reward and emotions (Bossong et al., 2014; Hill 
et al., 2009; Van Hell et al., 2012; Zanettini et al., 2011). CB2 
receptors occur in the periphery, like immune cells and gas-
trointestinal tract (Lombard et al., 2007; Lunn et al., 2006; 
Wright et  al.,  2008) and in the CNS mainly on microglia 
(Cabral et al., 2008; Pertwee, 2006a).

This review provides an overview of the neuropharma-
cology of a number of endocannabinoid receptor ligands, 
including endocannabinoids, the main pharmacological 
compounds of herbal cannabis and synthetic cannabinoid re-
ceptor ligands. This comprises not only their action on the 
endocannabinoid system, but also describes cannabinoid ef-
fects on other neurotransmitter systems, such as dopamine, 
glutamate, and GABA. Finally, in light of the action of dif-
ferent cannabinoid ligands, their therapeutic potential as well 
as neuropathology as a result of abnormal activation of the 
endocannabinoid system is discussed.

2  |   THE ENDOCANNABINOID 
SYSTEM

CB1 receptors are found mainly at the terminals of central and 
peripheral neurons, inhibiting or mediating release of different 
neurotransmitters (Bossong & Niesink, 2010; Pertwee, 2006a). 
They are also found on immune cells and other types of non-
neuronal cells (Kaplan,  2013; Osei-Hyiaman et  al.,  2005). 
CB2 receptors are expressed primarily on cells of the immune 
system and are able to modulate immune cell migration and 
cytokine release, both outside and within the brain (Turcotte 
et  al.,  2016). However, CB2 receptors are also expressed by 
some neurons, but the function of these neuronal CB2 recep-
tors is yet to be elucidated (Den Boon et  al.,  2012; Stempel 
et al., 2016). It is believed that both cannabinoid receptor types 
are involved in both central and peripheral functions, includ-
ing neuronal development, inflammatory responses, cardiovas-
cular, respiratory and reproductive functions, hormone release 
and action (Pacher & Kunos, 2013). The expression level of 

both cannabinoid receptors and endocannabinoids changes fol-
lowing physiological and pathological stimuli.

Cannabinoid receptors are G-protein-coupled receptors 
(GPCRs; Gyombolai et  al.,  2012). CB1 and CB2 receptors 
both signal through G proteins, by doing so, they inhibit ad-
enylyl cyclase and activate mitogen-activated protein kinases 
(Howlett & Abood, 2017). It has been established that the en-
docannabinoid system is activated by other GPCRs through-
out the CNS, which can trigger release of endocannabinoids 
and subsequently modulate neurotransmitter release via 
the CB1 receptors at the presynaptic terminals (Gyombolai 
et  al.,  2012). Release of endocannabinoids only happens 
when GPCRs are activated on specific cells or by specific ag-
onists (Pertwee, 2008). Cannabinoid receptor activation, both 
in brain synapses and in peripheral tissue, leads to ‘retrograde 
endocannabinoid signaling’ (Hashimotodani et al., 2011). In 
principle, presynaptic glutamate release activates both iono-
tropic and metabotropic (mGluR) glutamate receptors post-
synaptically and leads to release of endocannabinoids. The 
released endocannabinoids activate presynaptically local-
ized CB1 receptors. In addition, CB1 receptor G proteins can 
mediate activation of A-type inwardly rectifying potassium 
channels, and inhibition of N- and P/Q-type calcium currents.

Metabotropic glutamatergic GPCRs (mGluR) were among 
the first documented to trigger the release of endocanna-
binoids (Kreitzer & Regehr,  2001; Maejima et  al.,  2001). 
Endocannabinoid release upon mGluR activation occurs in many 
areas of the brain, which suggests a physiologically important 
signaling mechanism (Izumi & Zorumski,  2012). Likewise, 
muscarinic acetylcholine receptors (mAChRs) modulate syn-
aptic transmission through release of endocannabinoids (Kim 
et  al.,  2002). So, both postsynaptically localized G-coupled 
mAChRs and mGluRs modulate synaptic transmission through 
endocannabinoid signaling in the brain. In addition, activation 
of the serotoninergic G-coupled 5HT2A and 5HT2C receptors 
have also been shown to release endocannabinoids and activate 
the endocannabinoid system (Pertwee, 2015). Furthermore, se-
rotonergic functionality through 5HT2A and 5HT2C receptors 
is impaired in CB1 receptor-deficient mice (Aso et al., 2009; 
Mato et al., 2007). Endocannabinoid-serotonin system interac-
tion was shown in human studies (Lazary et al., 2009; Salaga 
et al., 2019). Finally, activation of angiotensin G-coupled AT1 
receptors with angiotensin can lead to stimulation of CB1 re-
ceptors, thereby regulating blood pressure in the hypothalamus 
(Argiolas & Melis, 2005).

3  |   LIGANDS

3.1  |  Endocannabinoids

Most abundant endogenous ligands of the endocannabinoid 
receptor system are anandamide and 2-arachidonylglycerol 
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(2-AG; Figure 1). Synthesized and released postsynaptically, 
they bind to the presynaptic cannabinoid receptors, thereby 
modulating neurotransmitter release. Both endocannabinoids 
are synthesized on demand in response to elevations of intra-
cellular calcium, due to GPCR activation as mentioned above 
or to other cellular processes (Bossong & Niesink,  2010; 
Pertwee, 2006b). Anandamide is synthesized via a two step-
pathway, involving N-acyltranferase and phospholipase D, 
2-AG through diacylglycerol lipase and phospholipase C. 
Both endocannabinoids have a limited timeframe of action 
because of their rapid degradation. Degradation occurs via 
phospholipid-dependent pathways. Anandamide is degraded 
primarily by the fatty acid amide hydrolase (FAAH) enzyme, 
which converts anandamide into ethanolamine and arachi-
donic acid (Pertwee,  2006a). Evidence has also emerged 
for the existence of additional endocannabinoids, although 

research on their pharmacology and function is still in its 
infancy.

Endogenous cannabinoid ligands have been implicated 
in a number of physiological relevant functions, modulat-
ing sleeping, feeding, and reward behavior as well as im-
munomodulatory and antinociceptive properties (Pacher 
et  al.,  2006). Both inflammatory and anti-inflammatory 
properties have been linked to the peripheral CB2 endocan-
nabinoid system, like the downregulation of inflammatory 
mediators and cells upon activation of the CB2 receptor 
(Turcotte et al., 2016). Antinociceptive properties are me-
diated via CB1 receptors that are located throughout the 
pain circuits peripherally and centrally. Endocannabinoid 
effects on appetite and reward are complex, but involves 
regulation via the CB1 receptor of GABAergic and gluta-
matergic input to the dopaminergic regions in the brain, 

F I G U R E  1   Molecular structures of some well-known cannabinoid receptor ligands, including endocannabinoids, phytocannabinoids and 
synthetic cannabinoids. 2-AG, 2-arachidonylglycerol; delta-9-THC, delta-9-tetrahydrocannabinol; JWH-018, 1-pentyl-3-(1-naphthoyl)indole; AM-
2201, 1-(5-fluoropentyl)-3-(1-naphthoyl)indole; HU-210, (6aR)[-trans-3-(1,1-Dimethylheptyl)-6a,7,10,10a-tetrahydro-1-hydroxy-6,6-dimethyl-
6Hdibenzo[b,d]pyran-9-methanol; ABFUBINACA, N-[(2S)-1-Amino-3-methyl-1-oxo-2-butanyl]-1-(4-fluorobenzyl)-1H-indazole-3-carboxamide
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resulting in decreased avoidance behavior and increased 
appetitive responding to a rewarding stimulus, like food or 
substances of abuse (Parsons & Hurd, 2015).

3.2  |  Components in herbal cannabis

More than 100 phytocannabinoids have been characterized so 
far in the Cannabis Sativa plant (McPartland et al., 2015). The 
best known are Δ9-tetrahydrocannabinol (THC) and canna-
bidiol (CBD; Figure 1). THC and CBD are biosynthesized by 
enzymes, which are expressed by alleles located at the same 
gene locus in the Cannabis plant (De Meijer et al., 2003). In 
cannabis plants that are grown for recreational consumption, 
the ratio of THC:CBD was about 14 in 1995, but this has 
since then increased to about 80 (ElSohly et al., 2016). Both 
THC and CBD are partial agonists of the CB1 and CB2 recep-
tors, with moderate binding affinity of THC and low binding 
affinity of CBD (Pertwee, 2008). In comparison to the endo-
cannabinoids anandamide and 2-AG, THC displays a lower 
binding affinity for cannabinoid receptors. THC mimics en-
docannabinoids as a partial agonist at CB1 and CB2 receptors 
(Mechoulam et al., 1998). Besides being ligands for the en-
docannabinoid receptors, cannabis and its many constituents 
have a more complex mechanism of action and activate the 
endocannabinoid system through several different pathways 
(McPartland et al., 2015). THC is the prominent psychoac-
tive cannabinoid and mediates the subjective mental prop-
erties of cannabis, like reward (Pertwee,  2008). CBD does 
not have rewarding and reinforcing effects or abuse potential 
(Wenzel & Cheer, 2018).

The positive subjective effects of smoked cannabis are 
largely blocked by inverse CB1 receptor agonists, like rimon-
abant, demonstrating that the subjective pleasurable effects 
of THC is mediated by the CB1 receptor (Pertwee,  2008). 
THC modulates the mesolimbic dopamine system by increas-
ing baseline firing rate of dopamine neurons in the ventral 
tegmental area (VTA) and it increases phasic dopamine re-
lease in the nucleus accumbens (NAc) by the CB1 receptor in 
rodents (Cheer et al., 2004). It is thought that during periods 
of burst firing, GABAergic terminals expressing CB1 recep-
tors are modulated by cannabinoids, decreasing GABAergic 
inhibition, thereby causing disinhibition of dopamine release 
(Zlebnik & Cheer, 2016). However, in the human brain, this 
increase in dopamine release in the striatum seems more 
modest (Bossong et  al.,  2009, 2015). It is products mainly 
containing natural THC, like cannabis, and products contain-
ing synthetic THC, like dronabinol and nabilone, that have 
been approved for the treatment of nausea as well as for ap-
petite stimulation in cancer and acquired immunodeficiency 
syndrome (AIDS; Hill et al., 2012). The effects of THC on the 
reward system and appetite stimulation have also led to the 
development of CB1 antagonists such as rimonabant to treat 

addiction disorders and weight loss in obesity (Christensen 
et al., 2007; Pertwee, 2010). However, rimonabant was with-
drawn from the market, because it caused severe psychiatric 
side effects (McPartland et al., 2015).

CBD is a non-intoxicating cannabinoid compound that 
may attenuate some of the acute as well as long-term ef-
fects associated with cannabis use (Freeman et  al.,  2019; 
McPartland et al., 2015; Pertwee, 2008). Although the mode 
of action of CBD is not fully understood, there are indica-
tions that it acts as either a cannabinoid CB1/CB2 receptor 
inverse agonist (Laprairie et al., 2015; Thomas et al., 2007) 
or a negative allosteric modulator of the cannabinoid CB1 
receptor (Laprairie et al., 2015). It may also act as an indi-
rect agonist and antagonist at the CB1 receptor, by increas-
ing endocannabinoid availability through inhibition of the 
hydrolytic enzyme that breaks down anandamide (Di Marzo 
& De Petrocellis, 2012) and as non-competitive antagonist at 
CB1 (Thomas et  al., 2007). Furthermore, CBD inhibits ad-
enosine uptake and is a 5-hydroxytryptamine 1A (5-HT1A) 
receptor agonist. CBD is also able to modulate opioid, do-
pamine D2, GABAA, and glycine receptors. When CBD 
and THC are co-administered, it appears that CBD reduces 
the subjective intoxication and anxiety effects of THC 
(Zlebnik & Cheer,  2016). For instance, CBD reduced the 
fear response of THC in humans in functional MRI studies 
(Bhattacharyya et al., 2010; Fusar-Poli et al., 2009). CBD is 
also proposed to counteract the rewarding, anxiogenic, and 
psychosis-like properties of THC, although the attenuating 
impact of CBD is largely dependent on dose, route of admin-
istration, and THC:CBD ratio (Freeman et al., 2019; Iseger & 
Bossong, 2015; Zlebnik & Cheer, 2016).

CBD has gained much attention as molecule without the 
typical psychiatric side effects of rimonabant or THC, be-
cause of its low affinity for the CB1 receptor (McPartland 
et  al.,  2015). Therefore, the development of cannabi-
noid-based therapeutics has shifted toward CBD and herbal 
cannabis formulations with a low THC:CBD ratio (Freeman 
et al., 2019). At the moment CBD is viewed as a phytocan-
nabinoid with great therapeutic promise, due to its potential 
anxiolytic, antidepressant, antipsychotic, anti-inflammatory, 
and anti-carcinogenic effects (Pellati et al., 2018; Zlebnik & 
Cheer, 2016; Iseger & Bossong, 2015). For example, fhe first 
clinical trials with CBD treatment of schizophrenia patients 
show the potential of CBD as an effective, safe, and well-tol-
erated antipsychotic compound (Batalla et  al., 2019; Iseger 
& Bossong,  2015). The first randomized clinical trial of 
CBD for cannabis use disorder demonstrated that CBD was 
safe and more efficacious than placebo at reducing cannabis 
use (Freeman et al., 2020). Furthermore, Sativex®, a whole 
cannabis extract with a THC:CBD ratio of 1 has been devel-
oped for treatment of pain and spasticity in multiple sclerosis 
(Barnes, 2006) and has shown potential in the treatment of 
cannabis use disorder (Batalla et al., 2019).
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3.3  |  Synthetic cannabinoids (SC)

Synthetic cannabinoids (SC) were originally designed and 
manufactured in the 1970s and 1980s to study the cannabi-
noid receptors in the brain, such as the cyclohexylphenols 
(CP), like (6aR)[-trans-3-(1,1-Dimethylheptyl)-6a,7,10,10a-
tetrahydro-1-hydroxy-6,6-dimethyl-6Hdibenzo[b,d]pyran-
9-methanol (HU-210), a structural analogue of THC, with a 
potency that is >100 times higher at the CB1 and CB2 re-
ceptors (De Fonseca et al., 1994; Mechoulam et al., 1988). 
Later on, aminoalkylindoles were developed as possible 
safe therapeutic alternatives for THC, like 1-pentyl-3-(1-
naphthoyl)indole (JWH-018) and the other SC series cre-
ated by John W. Huffman (JWH), AM-series (created by 
Alexandros Makriyannis) SC (Castaneto et  al.,  2014) and 
indazole-carboxamide derivatives, like N-[(2S)-1-Amino-3-
methyl-1-oxo-2-butanyl]-1-(4-fluorobenzyl)-1H-indazole-
3-carboxamide (AB-FUBINACA; Banister et  al.,  2015; 
Figure 1). To date several hundred SC are known, belonging 
to various chemical classes (EMCDDA, 2017). They can be 
non-selective or highly selective agonists at the CB1 or CB2 
receptor, or at both (Pertwee, 2010). In general, SC are lipo-
philic molecules and almost all of them have a much greater 
binding affinity to the cannabinoid receptors than THC or 
endocannabinoids (Table 1).

Whereas the therapeutic use, originally intended for SC, 
seems virtually non-existent, SC were increasingly synthe-
sized in clandestine laboratories to be marketed and sold as 
legal cannabis alternatives, since the early 2000s (United 
Nations Office on Drugs & Crime, 2020). They are sold 
through the Internet, either on webshops or on the dark-
web, but also in head shops, under slang names as “Spice” 
or “K2”. They can be purchased as tablets, pure powder, 
smokable herbal blends (whereby the SC are sprayed over 
plant like material) or even in liquids that can be vaped via an 
electronic cigarette (Karila et al., 2016). As they often do not 
show up on routine toxicology screenings and are accessible 
with relative ease, popularity of SC has risen in some parts of 
the world that have a strict cannabis legislation. Even though 
some countries have banned many SC (Drug Enforcement 
Agency,2020), many new SC keep emerging, sometimes not 
covered by the current legislations. Legislation is often by-
passed by modification of chemical structures, leading to an 
ever-growing plethora of new analogues (Karila et al., 2016).

Because of their high affinity and selectivity to the canna-
binoid receptors, use of SC tends to cause much more intense 
and severe effects than endocannabinoids and herbal canna-
binoids (Castaneto et  al.,  2014; Le Boisselier et  al.,  2017). 
Whereas severity of adverse effects with herbal cannabis is 
considered low and fatalities are virtually absent, this is not 
the case with SC (Tait et al., 2016; Van Amsterdam, Brunt, 
et al., 2015; Van Amsterdam, Brunt, et al., 2015). SC use is 
frequently associated with hospitalizations and deaths. SC are 

known to cause mental adverse effects, like panic attacks, anx-
iety, paranoia, hallucinations, and psychosis (Tait et al., 2016; 
Van Amsterdam, Brunt, et al., 2015; Van Amsterdam, Brunt, 
et al., 2015). This is not surprising, given the fact that high 
doses of THC, present in strong herbal cannabis formulations, 
have been long known to increase the risk of adverse mental 
effects and psychosis (Englund et al., 2017). In chronic SC 
users, studies have found increased anxiety, depression, and 
an impairment in executive functioning (Cohen et al., 2017, 
2020), reduced grey matter density and impairments in work-
ing memory (Livny et al., 2018).

In addition, SC can cause major physiological side effects 
such as hypertension, hypotension, bradycardia, tachycar-
dia, agitation, nausea, and vomiting (Castaneto et al., 2014). 
Cannabinoid receptors are present in the heart, and, upon ac-
tivation, they may lead to undesirable cardiac effects (Ozturk 
et al., 2019). In moderate doses, THC is known to cause car-
diac effects, like tachycardia, and together with myocardial 
oxygen demand can contribute to arrhythmia development, 
whereas at high doses THC causes bradycardia (Pacher 
et al., 2018). Use of SC has been linked to serious adverse car-
diovascular effects such as stroke, myocardial infarction, car-
diomyopathy, and cardiac arrest (Ozturk et al., 2019; Pacher 
et al., 2018). Most prominently, cardiac arrhythmia was seen 
in hospitalized cases. However, the interaction between car-
diac contractility and cannabinoid receptors is complex and 

T A B L E  1   Affinities of some well-known cannabinoid receptor 
ligands for the Cb1 and CB2 receptors

Compound
CB1 Ki 
(nM)

CB2 Ki 
(nM) Reference

AB-FUBINACA 0.9 — Castaneto 
et al. (2014)

AM2201 1.0 2.6 Castaneto 
et al. (2014)

CP47,497 0.8 — Castaneto 
et al. (2014)

HU210 0.2 0.4 Castaneto 
et al. (2014)

JWH-018 9.0 2.9 Castaneto 
et al. (2014)

JWH-073 8.9 38.0 Castaneto 
et al. (2014)

JWH-210 0.5 0.7 Castaneto 
et al. (2014)

XLR-144 29.0 2.1 Castaneto 
et al. (2014)

THC 41.0 36.0 Castaneto 
et al. (2014)

CBD 842.0 203.0 Howlett et al. (2002)

Anandamide 32.0 1932.0 Vemuri et al. (2008)

2-AG 472.0 1,400.0 Vemuri et al. (2008)

   | BRUNT aNd BOSSONG 913



includes both the central nervous system and local physiolog-
ical cardiac systems. Possibly, a distorted autonomic nervous 
system control by SC disrupts the cardiovascular system at 
several levels, leading to cardiac arrhythmia.

4  |   ENDOCANNABINOID SYSTEM 
AND NEUROTRANSMISSION IN THE 
BRAIN

The endocannabinoid system is present throughout the whole 
brain, with particular high CB1 concentrations in the basal 
ganglia, the putamen, hypothalamus, and nucleus accum-
bens (Shu-Jung Hu & Mackie, 2015). In addition, at a lower 
density, CB1 receptors are located in the cortex, cerebellum, 
amygdala, spinal cord, and brainstem, where also CB2 recep-
tors are located as they are on microglial cells. In accordance 
to its brain topography, the endocannabinoid system displays 
actions at various brain neuronal pathways and modifies their 
specific functions (Di Marzo,  2009). The endocannabinoid 
system modulates neurotransmission indirectly, with endo-
cannabinoids acting as retrograde neurotransmitters instead 
of direct neurotransmitters. The mechanism of action of 
endocannabinoids and analogous ligands can therefore be 
understood in terms of their modulatory actions on other neu-
rotransmitter systems.

It has been proposed that cannabinoids increase the risk 
of both psychosis and addiction, and that their actions at 
the striatal dopamine system contribute to this (Bossong 
et al., 2015; Daniju et al., 2020; Sami et al., 2015). It seems 
that chronic cannabis users have lower baseline dopamine 
levels (D’Souza et al., 2008; Bloomfield et al., 2016; van de 
Giessen et al., 2017). Especially, the age of onset of canna-
bis use was associated with lower striatal dopamine release 
(Urban et  al.,  2012). This lower dopamine activity might 
be responsible for increased addiction potential of cannabis 
(Bloomfield et al., 2016). Also, decreased cognitive function-
ing in cannabis-dependent users might also be due to lower 
baseline dopamine levels (Sami et  al.,  2015). On the other 
hand, the increase in striatal dopamine after acute cannabis 
administration might underlie the increased risk for psychosis 
(Bossong et  al.,  2009). For instance, SC produce profound 
increases in dopamine levels, in the nucleus accumbens for 
instance (Canazza et al., 2016; De Luca et al., 2015; Ossato 
et  al.,  2017), most likely via inhibition of GABAergic and 
glutamatergic neurotransmission (Le Boisselier et al., 2017). 
In addition, reduced dopamine activity was seen in chronic 
cannabis users that were prone to develop psychotic symp-
toms after exposure to cannabis or other substances of abuse 
(Mizrahi et  al.,  2014). However, the relevance of cannabis 
exposure was obscured in all of these studies because of other 
risk factors that might play a role, like genetic predisposition 
or environment.

Cannabinoid signaling also influences the serotonin sys-
tem. Activation of the CB1 receptors by ligands inhibits sero-
tonin release in the prefrontal cortex, while blockade of these 
receptors increased serotonin release (Cohen et  al.,  2019; 
Haj-Dahmane & Shen,  2009). Chronic cannabis use also 
seems to lower the serotonin levels in the raphe nuclei 
(Bambico et al., 2010) and high doses of cannabis or high af-
finity CB1 agonists cause aversive mood effects, anxiety, and 
depression (Castaneto et al., 2014; Leweke & Koethe, 2008). 
Cannabinoid ligands also regulate expression of serotonergic 
receptors and this contributes to the side effects on mood of 
cannabinoids (Le Boisselier et al., 2017). Recently, for exam-
ple, it was found that SC upregulated the 5-HT2A receptors 
via the CB1 receptor (Fantegrossi et  al.,  2018; Franklin & 
Carrasco, 2012). This upregulation was hypothesized to un-
derlie proneness for psychotic symptoms or mood disorders. 
Also, an interaction was shown between the serotonin and the 
endocannabinoid systems in the treatment of mood disorders 
with CBD (Schier et al., 2014).

Glutamatergic synaptic transmission is affected via 
chronic CB1 activation and this disrupts glutamate synaptic 
plasticity, ultimately affecting cognitive abilities and de-
velopment of the brain during vulnerable periods, like ad-
olescence (Bossong & Niesink, 2010; Colizzi et al., 2016). 
For instance, repeated administration of THC or SC are 
able to down-regulate expression of glutamate AMPA and 
NMDA receptors in the rat cerebellum (Fan et al., 2010; Li 
et al., 2010,). Cannabinoid receptor agonists reduce glutama-
tergic synaptic transmission in several brain areas, like the 
hippocampus, prefrontal cortex, and nucleus accumbens via 
pre-synaptic modulation of glutamatergic neurons (Cohen 
et  al.,  2019). Magnetic resonance spectroscopy (MRS) is 
able to visualize the activity of the glutamatergic system and 
through this method it was found that chronic exposure to 
cannabinoid receptor agonists resulted in a decreased activity 
of the glutamatergic system in the basal ganglia and ante-
rior cingulate cortex (Fan et al., 2010; Newman et al., 2019; 
Prescot et al., 2013). Reduction of glutamatergic activity in 
the prefrontal cortex was also found in chronic cannabis users 
with psychotic symptomatology and this was accompanied 
with impairments of working memory (Rigucci et al., 2018). 
Effects of cannabinoids on the glutamatergic system have 
also been associated in the development of schizophrenia 
(Cohen et al., 2019).

The endocannabinoid system is also able to potenti-
ate GABAA mediated currents, as was demonstrated by 
application of endocannabinoids and phytocannabinoids, 
especially CBD (Bakas et  al.,  2017). CBD has a binding 
affinity to the GABAA receptor and showed comparable 
efficacy as the benzodiazepine flunitrazepam at increasing 
GABAA receptor mediated currents, suggesting CBD has a 
therapeutic potential for treating anxiety disorders (Cifelli 
et al., 2020). In addition to binding affinity for the GABAA 
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receptors, cannabinoid agonists also modulate GABAergic 
neurotransmission through the presynaptic CB1 receptors 
on GABA neurons, in the basal ganglia and thalamus for in-
stance (Szabó et al., 2014). This mechanism of action on the 
GABA system has led to the study of cannabinoid receptor 
agonists in neurological conditions, like Alzheimer Disease, 
Parkinson's Disease, and epilepsy (Cifelli et al., 2020). For 
example, CBD was effective at reducing seizure frequency 
and severity in epileptic patients, without adverse side ef-
fects (Elliott et  al.,  2020; Herlopian et  al.,  2020; Lattanzi 
et  al., 2018). Alzheimer Disease is characterized by distur-
bances in glutamatergic and GABAergic transmission and 
recent studies found that cannabinoids were able to recover 
the cognitive impairment in patients (Cassano et  al.,  2020; 
Schubert et al., 2019).

Interactions between the opioid and cannabinoid sys-
tems has been long thought to exist (Fattore et al., 2004; 
Pertwee,  2001; Starowicz & Di Marzo,  2013). For in-
stance, the antinociceptive effects of cannabinoid receptor 
agonists are mediated through the release of endogenous 
opioids (Smith et al., 1994). The endogenous cannabinoid 
and opioid systems show large overlap in distribution, 
both in the brain and the spinal cord (Salio et al., 2001). 
Treatment with cannabinoid receptor agonists triggered 
the release of dynorphin B in the rat's spinal cord (Mason 
et  al.,  1999). Interestingly, treatment with CB1 receptor 
antagonist AM251 reversed antinociceptive effects of 
morphine (Da Fonseca Pacheco et al., 2009). Several ex-
perimental animal studies have also shown that cannabi-
noid receptor agonists, mainly SC, are able to increase 
the rewarding properties of opioids, like morphine and 
heroin, supporting the interaction between the opioid and 
cannabinoid systems. Cannabis also induces locus coeru-
leus (LC) neuronal activity, which is thought to underlie 
cannabis-induced anxiety and panic disorders (Carvalho 
& Van Bockstaele,  2012). On the other hand, endocan-
nabinoids also inhibit KCL-evoked excitation of the LC, 
showing some functional role in attenuating noradrena-
line-mediated anxiety. The application of exogenous can-
nabinoid receptor agonists leads to too much inhibitory 
action on the noradrenaline system and disrupts attention 
processes (Solowij et al., 2002). Administration of canna-
binoids alters the release of noradrenaline in specific areas 
of the brain, like the prefrontal cortex, LC, hippocampus, 
hypothalamus, and cerebellum (Moranta et  al.,  2004). 
CB1 receptor antagonists are capable of increasing nor-
adrenaline release, in the prefrontal cortex and hypothal-
amus for instance (Carvalho & Van Bockstaele,  2012). 
Since there is an interaction between cannabinoid and 
noradrenaline systems, it might be that certain highly 
specific cannabinoid receptor ligands might be beneficial 
in treating noradrenaline-related disorders, like post-trau-
matic stress disorder for instance.

5  |   CONCLUSIONS

The endocannabinoid system is a complex neuronal system 
and is involved in a number of biological functions, like 
attention, anxiety, mood, memory, appetite, reward, and 
immune responses. Cannabinoid ligands mainly exert their 
actions in the brain through the CB1 receptor and this re-
ceptor is distributed in the basal ganglia, brainstem, spinal 
cord, cerebellum, cortex, the putamen, hypothalamus, and 
NAc (Shu-Jung Hu & Mackie,  2015). Mechanism of ac-
tion of cannabinoid ligands in the brain seems to depend 
mainly on their mediatory actions on neurotransmission. 
The rewarding properties of cannabinoid receptor ligands 
seem to be mediated through their actions at the dopamine 
system, as is supported by several studies (Bloomfield 
et  al.,  2016; Bossong et  al.,  2015; Daniju et  al.,  2020; 
Sami et  al.,  2015). The actions at the dopamine system 
is also implicated in the associated psychotic symptoms 
induced by exogenous cannabinoid receptor agonists 
(Bossong et al., 2009; Le Boisselier et al., 2017), although 
this has been suggested to be chiefly due to indirect ef-
fects through GABAergic and glutamatergic neurotrans-
mission (Bossong & Niesink,  2010; Cohen et  al.,  2019; 
Rigucci et al., 2018). Other side effects of exogenous can-
nabinoid ligands frequently reported are anxiety and mood 
disorders, likely due to their actions at noradrenergic and 
serotonergic neurotransmission (Castaneto et  al.,  2014; 
Leweke & Koethe,  2008). The magnitude by which can-
nabinoid receptor ligands are able to induce these effects 
seems to lie in their affinity and selectivity for the CB1 
receptor (Sherif et al., 2016; Van Amsterdam, Brunt, et al., 
2015; Van Amsterdam, Brunt, et al., 2015). This explains 
why SC are often associated with adverse side effects (Le 
Boisselier et al., 2017; Tait et al., 2016).

Whereas cannabinoid receptor ligands are well-known 
for adverse side effects and chronic cannabis use seems 
to be with considerable risks, like addiction or psychosis, 
much research centres on beneficial effects of cannabinoid 
ligands and their therapeutic applications (Barnes,  2006; 
Batalla et al., 2019; Iseger & Bossong, 2015; McPartland 
et al., 2015; Pellati et al., 2018; Zlebnik & Cheer, 2016). 
Several medical conditions seem to benefit from the an-
tinociceptive and appetite-stimulating properties of can-
nabinoid receptor agonists, like symptoms of the human 
immunodeficiency virus (HIV), multiple sclerosis, rheu-
matoid arthritis and different forms of cancer (Whiting 
et  al.,  2015). But there is also a lack of robust data sup-
porting therapeutic benefits, like controlled clinical trials. 
Therapeutic application of cannabinoid ligands is a careful 
consideration between the adverse and beneficial effects, 
which skews development of cannabis formulations with 
the right balance between agonism and antagonism at the 
CB1 receptor, such as preparations containing only CBD or 
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with a low THC:CBD ratio (Englund et al., 2017; Freeman 
et  al.,  2019, 2020; Iseger & Bossong,  2015; Zlebnik & 
Cheer, 2016). Furthermore, CBD seems to counteract psy-
chotic symptoms and addictive properties of THC (Zlebnik 
& Cheer, 2016). Therefore, it remains questionable whether 
most SC will ever reach the phase of therapeutic applica-
tion in any of these disorders, because of their superior 
potency at the endocannabinoid receptor system and the 
lack of attenuating factors, like CBD (Karila et al., 2016; 
Pacher et  al.,  2018; Tait et  al.,  2016; Van Amsterdam, 
Brunt, et al., 2015; Van Amsterdam, Brunt, et al., 2015; 
Weinstein et al., 2017).

Taken together, the endocannabinoid system remains an 
interesting neurobiological avenue for study, both in terms 
of therapeutic promise as in the mechanistic functioning and 
modulation of neurotransmission in the brain. It is expected 
that this interest will not wane in the future, since herbal can-
nabis is legalized by more countries and accepted as medi-
cine, so the debate about its positive versus negative effects 
continues and the consequences of chronic cannabis use in 
relation to psychiatric disorders (Hall et al., 2019). The hun-
dreds of cannabinoid receptor ligands that are currently out 
there and the many more that will be developed will hope-
fully lead to an increased insight into the function of the en-
docannabinoid system in the brain and the development of 
more effective therapeutics.

METHODS: LITERATURE 
ASSEMBLY

Literature was researched in the Medline database on the 
basis of Boolean operators, “AND”, “OR” and “NOT”. 
MeSH terms were “endocannabinoids”, “cannabinoid”, 
“cannabis”, “marijuana”, “cb1 receptor”, “cb2 receptor”, 
“synthetic cannabinoids”, “spice”, “JWH”, “therapeutic”, 
“adverse effects”, “cannabinoid ligands”, “THC”, “CBD”, 
“anandamide”, “2-AG”, “neurotransmitters”, “dopamine”, 
“serotonin”, “glutamate”, “GABA”, “noradrenaline”, “opi-
oid”, “CNS”, “brain”.
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