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A fourth-generation high-dimensional neural
network potential with accurate electrostatics
including non-local charge transfer
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Machine learning potentials have become an important tool for atomistic simulations in many

fields, from chemistry via molecular biology to materials science. Most of the established

methods, however, rely on local properties and are thus unable to take global changes in the

electronic structure into account, which result from long-range charge transfer or different

charge states. In this work we overcome this limitation by introducing a fourth-generation

high-dimensional neural network potential that combines a charge equilibration scheme

employing environment-dependent atomic electronegativities with accurate atomic energies.

The method, which is able to correctly describe global charge distributions in arbitrary

systems, yields much improved energies and substantially extends the applicability of

modern machine learning potentials. This is demonstrated for a series of systems repre-

senting typical scenarios in chemistry and materials science that are incorrectly described by

current methods, while the fourth-generation neural network potential is in excellent

agreement with electronic structure calculations.
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Computer simulations nowadays have become an important
tool in many fields of science like chemistry, molecular
biology, physics, and materials science. The quality, and

thus the predictive power, of the results obtained in these simu-
lations crucially depends on the accurate description of the
atomic interactions. While electronic structure methods like
density functional theory (DFT) provide a reliable description of
many types of systems, the high computational costs of DFT
restrict its application in molecular dynamics (MD)1 and Monte
Carlo2 simulations to a few hundred atoms preventing the
investigation of many interesting phenomena. Larger systems can
be studied by more efficient atomistic potentials, which avoid
solving the electronic structure problem on-the-fly but instead
provide a direct functional relation between the atomic positions
and the potential energy. Atomistic potential energy surfaces
(PESs) have been developed for many types of systems, and most
of these potentials are based on physical approximations, which
necessarily limit the accuracy of the obtained results.

With the advent of machine learning (ML) potentials3–7 in
recent year an alternative approach to the construction of PESs
has emerged, which allows to combine the accuracy of quantum
mechanical electronic structure calculations with the efficiency of
simple empirical potentials. Many types of ML potentials have
been proposed to date, like neural network potentials8–12, Gaus-
sian approximation potentials (GAPs)13, moment tensor poten-
tials (MTPs)14, spectral neighbor analysis potentials (SNAPs)15,
and many others16,17.

ML potentials can be classified into four different generations.
Starting with the work of Doren and coworkers published in
19958, the first generation (1G) of ML potentials18,19 has been
applicable to low-dimensional systems depending on the posi-
tions of a few atoms only. This restriction has been overcome in
high-dimensional neural network potentials (HDNNPs) proposed
by Behler and Parrinello in 20079, which represented the first ML
potential of the second generation (2G). In this generation, which
employs the concept of nearsightedness20, the total energy of the
system is constructed as a sum of atomic energies, which depend
on the local chemical environment up to a cutoff radius and —in
case of HDNNPs—are computed by individual atomic neural
networks. Most modern ML potentials making use of different
ML algorithms, like HDNNPs, GAPs, MTPs, and SNAPs, belong
to this second generation, and as standard methods for atomistic
simulations they have been successfully applied to a wide range of
systems.

A limitation of 2G ML potentials, which are applicable to tens of
thousands of atoms, is the neglect of long-range interactions, i.e.,
electrostatics beyond the cutoff radius, but also dispersion interac-
tions, which may substantially accumulate for condensed systems,
are often truncated. This possible source of error, in particular for
ionic systems, has been recognized early, and electrostatic correc-
tions based on fixed charges have been proposed13,21. In more
flexible third generation (3G) ML potentials, long-range electrostatic
interactions are included by constructing environment-dependent
atomic charges, which in case of 3G-HDNNPs are expressed by a
second set of atomic neural networks22,23. These charges can then be
used in standard algorithms like the Ewald sum to compute the full
long-range electrostatic energy. Owing to the additional effort in
constructing and using 3G ML potentials, most applications have
been reported for molecular systems12,24,25, while in simulations of
condensed systems they are rarely used, as often long-range elec-
trostatic interactions are efficiently screened.

A remaining limitation of 3G ML potentials is their inability
to describe long-range charge transfer and different charge states
of a system, since the atomic partial charges are expressed as a
function of the local chemical environment only. Neglecting
non-local charge transfer and changes in the global charge

distribution, which can be important in many systems26,27, can
result in qualitative failures as illustrated in Fig. 1 for the mole-
cular model system XC7H7O displayed in panel a. Depending on
the choice of the functional group X in b, like an amino group
NH2 or its protonated form NH þ

3 , different partial charges, which
we use in this work as a qualitative fingerprint of the electronic
structure, are obtained as shown in the plots of the DFT Hirshfeld
charges on the right hand side. In particular the charge of the
right oxygen atom depends on the choice of X, although X is far
outside its local atomic environment displayed as dashed circle.
As a consequence, ML potentials relying on a local description,
like 2G- and 3G-HDNNPs, cannot distinguish these systems and
the same charge is assigned to the right oxygen in both molecules,
which is chemically incorrect. A second case is illustrated in
Fig. 1c. In this case the OH group on the left is deprotonated
resulting in a negative ion with two oxygen atoms almost equally
sharing the negative charge. This charge is very different from the
charge in the carbonyl oxygen of the neutral molecule. Still, again,
the local environment of the carbonyl oxygen atom is identical,
which is why 2G and 3G ML potentials cannot be applied to
multiple charge states.

This limitation of local atomistic potentials in the description
of long-range charge transfer and of systems in different charge
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Fig. 1 Illustration of long-range charge transfer in a molecular system. In
a the investigated molecule XC7H7O with X representing different
functional groups is shown. b The protonation of NH2 group yields a
positive ion and result in different charges of the oxygen atom as can be
seen in the plot of the DFT atomic partial charges on the right side. In both
cases, the local chemical environments of the oxygen atoms are identical
within the cutoff spheres shown as dashed circles. c The deprotonation of
the OH group yields a negative ion and both oxygen atoms become
chemically equivalent with the nearly same negative partial charge. Also in
this case the chemical environment of the right oxygen atom is identical to
the neutral molecule although the charge distribution differs. All these
cases cannot be correctly described by local methods like 2G and 3G ML
potentials. The structure visualization for non-periodic systems was carried
out using Ovito66.
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states has been recognized already some time ago, and for simple
empirical force fields different solutions have been proposed28–31.
In the context of ML potentials the first method that has been
proposed to address this problem is the charge equilibration via
neural network technique (CENT)32–34. In this method, a charge
equilibration28 scheme is applied, which allows for a global
redistribution of the charge over the full system to minimize a
charge-dependent total energy expression. The charges are based
on atomic electronegativities, which are determined as a function
of the local chemical environment and expressed by atomic
neural networks similar to the charges in 3G-HDNNPs. This
method has enabled the inclusion of long-range charge transfer in
a ML framework for the first time, but due to the employed
energy expression this method is primarily applicable to ionic
systems35–37, and the overall accuracy is still lower than in case of
other state-of-the-art ML potentials. Recently, another promising
method has been proposed by Xie, Persson and Small38 aiming
for a correct description of systems with different charge states. In
this method, atomic neural networks are used that do not only
depend on the local structure but also on atomic populations,
which are determined in a self-consistent process. The training
data for different populations has been generated using con-
strained DFT calculations, and a first application for LinHn

clusters has been reported. Furthermore, an extension of the
AIMNet method has been proposed39, which can be used to
predict energies and atomic charges for systems with non-zero
total charge. Here, the interaction range between atoms is
increased through iterative updates during which information is
passed between nearby atoms. Although the resulting charges are
not used to calculate explicit Coulomb interactions, many related
quantities, such as electronegativities, ionization potentials or
condensed Fukui functions can be derived.

In the present work, we propose a general solution for the
limitations of current ML potentials by introducing a fourth-
generation (4G) HDNNP, which is applicable to long-range
charge transfer and multiple charge states. It consists of highly
accurate short-range atomic energies similar to those used in 2G-
HDNNPs and charges determined from a charge equilibration
method relying on electronegativities in the spirit of the CENT
approach. Both, the short-range atomic energies as well as the
electronegativities are expressed by atomic neural networks as a
function of the chemical environments. The capabilities of the
method are illustrated for a series of model systems showcasing
typical scenarios in chemistry and materials science that cannot
be correctly described by conventional ML potentials. For all
these systems we demonstrate that 4G-HDNNPs trained to DFT
data are able to provide reliable energies, forces and charges in
excellent agreement with electronic structure calculations. In the
beginning of the following section the methodology of 4G-
HDNNPs is introduced and the relation to other generations of
HDNNPs and the CENT method is discussed. After that the
results for a series of periodic and non-periodic benchmark sys-
tems are presented, including a detailed comparison to the per-
formance of 2G- and 3G-HDNNPs. We show that previous
generations of HDNNPs, which are unable to take distant
structural changes into account, yield inaccurate energies and
forces, and even distinct local minima of the PES can be missed,
which are correctly resolved by the 4G-HDNNP. These results are
general and equally apply to other types of 2G ML potentials.

Results
4G-HDNNP. The overall structure of the 4G-HDNNP is shown
schematically in Fig. 2 for an arbitrary binary system. Like in 3G-
HDNNPs the total energy consists of a short-range part, which, as
we will see below, requires in addition non-local information, and

an electrostatic long-range part, which is not truncated,

EtotalðR;QÞ ¼ EelecðR;QÞ þ EshortðR;QÞ: ð1Þ
The electrostatic part Eelec(R, Q) depends on a set of atomic
charges Q ¼ Qif g, which are trained to reference charges
obtained in DFT calculations, and the positions of the atoms
R ¼ Rif g. An important difference to 3G-HDNNPs is that these
charges are not directly expressed by atomic neural networks as a
function of the local atomic environments, but they are obtained
indirectly from a charge equilibration scheme based on atomic
electronegativities {χi} that are adjusted to yield charges in
agreement with the DFT reference charges, which here we choose
to be Hirshfeld charges40, but many choices are in principle
possible.

Like in the CENT approach the atomic electronegativities are
local properties defined as a function of the atomic environments
using atomic neural networks. As in 2G- and 3G-HDNNPs there
is one type of atomic neural network with a fixed architecture per
element in the system making all atoms of the same type
chemically equivalent, while the specific values of the electro-
negativities depend on the positions of all neighboring atoms
inside a cutoff sphere of radius Rc. The positions of the
neighboring atoms inside this sphere are specified by a vector
Gi of atom-centered symmetry functions41, which ensures the
translational, rotational and permutational invariance of the
electronegativities.

To predict the atomic charges, which are represented by
Gaussian charge densities of width σi taken from the covalent
radii of the respective elements, a charge equilibration scheme42 is
used. In this scheme, the charge is distributed among the atoms in
an optimal way to minimize the energy expression

EQeq ¼ Eelec þ
XNat

i¼1

ðχiQi þ
1
2
JiQ

2
i Þ ; ð2Þ

with Eelec being the electrostatic energy of the Gaussian charges
and Ji the element-specific hardness. The Ji do not depend on the
chemical environment and are constant for each element. While
they are manually chosen in the CENT method, we optimize
them during training. They are hence treated as free parameters
like the weights and biases of the neural networks. For the
electrostatic energy we then obtain

Eelec ¼
XNat

i¼1

XNat

j
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rijffiffi
2
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γij
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QiQj þ
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2σ i
ffiffiffi
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with

γij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2i þ σ2j

q
: ð4Þ

To solve this minimization problem the derivatives of EQeq with
respect to the charges Qi are calculated and set to zero,

∂EQeq

∂Qi
¼ 0; 8i ¼ 1; ::;Nat )

XNat

j¼1

AijQj þ χi ¼ 0 ð5Þ

where the elements of the matrix A are given by

½A�ij ¼
Ji þ 1

σ i
ffiffi
π

p ; if i ¼ j

erf
rijffiffi
2

p
γij

� �

rij
; otherwise

8
><

>:
ð6Þ

Considering the constraint that the sum of all charges must be
equal to the total charge Qtot of the system, the following set of
linear equations is solved by including this constraint via the
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Lagrange multipliers.

ð7Þ

Highly optimized algorithms are available for systems of linear
equations, which can be efficiently solved for small and medium-
sized systems containing up to about ten thousand atoms in a few
seconds on modern hardware. For larger systems the cubic
scaling of the standard algorithms can pose a bottleneck. In that
case one could resort to using iterative solvers for which the most
expensive part of each iteration is a matrix vector multiplication
involving the matrix A. This corresponds to the evaluation of the
electrostatic potential at each atoms position for which numerous
low-complexity algorithms, such as fast multipole methods, are
known. In this way it is possible to reduce the effort from cubic to
nearly linear scaling providing access to very large systems.

Overall, this process is like in the CENT32, but the main
difference is in the training process. While in CENT only the

error with respect to the DFT energies is minimized, the atomic
charges obtained during the charge equilibration process serve
merely as intermediate quantities, which do not have a strict
physical meaning. In the 4G-HDNNP proposed in this work, the
charges are trained directly to reproduce reference charges from
DFT, which therefore are qualitatively meaningful although one
should be aware that atomic partial charges are not physical
observables and different partitioning schemes can yield different
numerical values43.

Once the atomic electronegativities have been learned, a
functional relation between the atomic structure and the atomic
partial charges is available. The intermediate global charge
equilibration step ensures that these charges depend on the
atomic positions, chemical composition and total charge of the
entire system, and thus in contrast to 3G-HDNNPs non-local
charge transfer is naturally included.

In a second step, the local atomic energy contributions yielding
the short-range energy according to

Eshort ¼
PNat

i¼1
Ei ð8Þ
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Fig. 2 Schematic structure of a 4G-HDNNP for a binary system. For a binary system containing Na atoms of element a and Nb atoms of element b the
total energy consists of a short-range energy Eshort, which is a sum of atomic energies Ei, and a long-range electrostatic energy Eelec computed from atomic
charges Qi. The atomic charges are determined by a charge equilibration method using environment-dependent atomic electronegativies χi expressed by
atomic neural networks (red). These charges are then used to calculate the electrostatic energy and in addition serve as non-local input for the short-range
atomic neural networks (blue) yielding the Ei. The geometric atomic environments are described by atom-centered symmetry function vectors Gi, which
depend on the Cartesian coordinates Ri of the atoms and serve as inputs for the atomic neural networks.
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have to be determined. Like in 2G-HDNNPs the short-range
atomic energies are provided by individual atomic neural
networks based on information about the chemical environments.
An important difference to 2G-HDNNPs is that the atomic
energies in addition depend on non-local information that is
provided to the short-range atomic neural networks by using not
only the atom-centered symmetry function values describing the
positions of the neighboring atoms inside the cutoff spheres, but
also the atomic partial charges determined in the first step (s.
Fig. 2). This information is required to take into account changes
in the local electronic structure resulting from possible long-range
charge transfer, which has an immediate effect on the local many-
body interactions.

The short-range atomic neural networks are then trained to
express the remaining part of the total energy Eref according to

Eshort ¼ Eref � Eelec ¼
XNat

i¼1

EiðfGig;QiÞ ; ð9Þ

where the electrostatic energy is determined based on the partial
charges resulting from the fitted atomic electronegativities. Thus,
by construction the goal of the short-range part is to represent all
energy contributions that are not covered by the electrostatic
energy such that double counting is avoided. In addition to the
energies, also the forces are used for determining the parameters
of the short-range atomic neural networks. We note that since the
short-range energy depends on the atomic charges, which in turn
are functions of all atomic coordinates, the derivatives ∂Eshort/∂Qi

as well as ∂Qi/∂R have to be considered in the computation of the
forces. Details on how these contributions can be efficiently
computed, as well as many other details of the 4G-HDNNP
method, can be found in the supplementary methods.

In summary, in contrast to the CENT method, the short-range
interactions are not described through the charges resulting from
the charge equilibration process but are described by separate
short-range neural networks, which enables a more accurate
description of the total energy.

Overview of test systems. In the following subsections we
demonstrate the limitations of ML potentials based on local
properties only and show how they can be overcome by the 4G-
HDNNP. For this purpose we use a set of non-periodic and
periodic systems, which cover a wide range of typical situations in
chemistry and materials science. The non-periodic systems con-
sist of a covalent organic molecule, a small metal cluster and a
cluster of an ionic material covering very different types of atomic
interactions. These examples demonstrate the simultaneous
applicability of a single 4G-HDNNP to systems of different total
charges and the correct description of long-range charge transfer
and the associated electrostatic energy. As a periodic system we
have chosen a small gold cluster adsorbed on a MgO(001) slab,
which is a prototypical example for heterogeneous catalysis. We
show that in contrast to established ML potentials, the 4G-
HDNNP is able to reproduce the change in adsorption geometry
of the cluster if dopant atoms are introduced in the slab far away
from the cluster. In all cases, the 4G-HDNNP PES is very close to
the results obtained from DFT.

While in theses examples we do not explicitly investigate the
transferability of the potentials to different systems, we expect
that the 4G-HDNNP in general provides an improved transfer-
ability compared to 2G and 3G ML potentials due to the
underlying physical description of the global charge distribution
and the resulting electrostatic energy. This expectation is
supported by the fact that even traditional charge equilibration
schemes with constant electronegativities are known to work well
across different systems44. Furthermore, for the related CENT

approach a broad transferability has already been demonstrated
for different atomic environments33.

A benchmark for organic molecules. The first model system we
study is a linear organic molecule consisting of a chain of ten sp-
hybridized carbon atoms terminated by two hydrogen atoms as
shown in Fig. 3a. Molecules of this type have been studied before
in electronic structure calculations45–47. For this molecule we will
now demonstrate the applicability of 4G-HDNNPs to systems
with long-range charge transfer induced by protonation, which
changes the total charge and the local structure in a part of the
system. Since the majority of existing machine learning potentials
rely on local structural information only without explicit infor-
mation about the global charge distribution and total charge, they
are not simultaneously applicable to both neutral and charged
systems.

This is different for 4G-HDNNPs, which naturally include the
correct long-range electrostatic energy for any global charge
present in the training set. Because of the protonation of the
terminal carbon atom, its hybridization state changes to sp2 and
the electronic structure of the resulting C10H

þ
3 cation is modified

even at very large distances along the whole molecule, which is
reflected in the differences of the DFT charges of the molecules in
Fig. 3b, which have been structurally optimized by DFT. The
geometries of both molecules are given in the supplementary
tables.

Using a data set containing both molecules, we have
constructed 2G-, 3G-, and 4G-HDNNPs using a cutoff radius
Rc= 4.23Å as illustrated by the circle in Fig. 3a for the example
of the left carbon atom. In Fig. 3c we show the atomic partial
charges obtained with the 3G-HDNNP in two forms: first as
unscaled charges directly obtained from the atomic neural
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Fig. 3 Charge redistribution in organic molecules. a DFT-optimized
structures of C10H2 (left) and C10H

þ
3 (right) with atom IDs. Carbon and

hydrogen atoms are colored in gray and white, respectively. The dashed
circle shows the cutoff radius of the left carbon atom defining its chemical
environment. b shows the atomic partial charges obtained from DFT. The
unscaled and scaled 3G-HDNNP charges are displayed in c, while the 4G-
HDNNP charges are shown in d.
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network fits without any constraint for the correct total charge of
the system, and second rescaled to ensure total charges of zero or
one, respectively. It can be seen that the scaling process does not
significantly improve the 3G-HDNNP charges.

The atoms in the left half of the molecule are far from the
added proton such that their atomic environments differ only
slightly due to the DFT geometry optimization. In addition, in the
training set a lot of basically identical environments but different
atomic charges are present for these atoms, which results in high
fitting errors due to the contradictory information. As a
consequence the neural networks assign averaged charges to
these atoms, which differ qualitatively from the DFT reference
charges of both systems. For instance, the 3G-HDNNP partial
charges on atom 2, i.e., the left carbon atom, are almost identical
in both molecules although they are very different in DFT. Note
that the predicted charges of atoms 1-6 in C10H2 and C10H

þ
3

would be even exactly identical if the latter molecule would not
have been relaxed after protonation. The charges obtained with
the 4G-HDNNP shown in Fig. 3d, on the other hand, match the
DFT charges very accurately for both molecules, as they can be
distinguished in this method.

The inaccurate charges obtained with the 3G-HDNNP lead to a
poor quality of the potential energy surface, and the same is
observed for the short-range only 2G-HDNNP. In Table 1 we
compare the errors of the total energies as well as the mean errors
of the atomic charges and forces of all HDNNP generations for
the DFT-optimized structures. It can be seen that the errors of all
quantities obtained for the 4G-HDNNP are much lower than for
the 2G- and 3G-HDNNPs. Further, we note that in several cases
the energies obtained by the 3G-HDNNP are even worse than for
the 2G-HDNNP, as the unphysical charge distribution to some
extent prevents the accurate representation of the energy.

To investigate the forces in more detail, in Fig. 4 we plot the
individual atomic forces in both molecules using the 2G-HDNNP
and the 4G-HDNNP for the DFT-optimized structures. For all
atoms in both molecules the 4G-HDNNP yields very low-force
errors, with an average error of only 0.037 eV/Å underlining the
quality of this PES. However, for the 2G-HDNNP the forces
acting on the left half of C10H

þ
3 and on all atoms in C10H2 the

force errors are significantly larger. The reason is again the 2G-
HDNNP cannot distinguish both molecules for these atoms, and
the force errors are only low close to the extra proton in C10H

þ
3 ,

which can be recognized as a distinct local structural feature in
the atomic environments of the right half of this molecule.

Interestingly, the relatively high errors of the 2G-HDNNP
forces are not matched by high energy errors, which instead are

surprisingly low and smaller than 1 meV/atom for both
molecules. This suggests that the total energy predicted by 2G-
HDNNPs may benefit from error compensation in the atomic
energies in that the atomic energies in the right half of C10H

þ
3 are

adjusted to compensate the deficiencies of the atomic energies in
the left half of the molecule.

Metal clusters: Ag3. In this example, we investigate a small metal
cluster, Ag3, in two different charge states. The potential energy
surface of small clusters is strongly influenced by the ionization
state of the cluster and the ground state can differ as a function of
the total charge of the cluster48–51. Owing to the small system size
there are no long-range effects, and the full system is included in
each atomic environment. Therefore, in principle 2G-HDNNPs
should be perfectly suited to describe the PES of Ag3, but this is
only true as long as the total charge of the system does not
change, since for a combination of data with different total
charges, like Ag þ

3 and Ag �
3 , in the training set the unique relation

between atomic positions and the energy is lost. The minimum-
energy structures of both cluster ions obtained from DFT are
shown in Fig. 5a along with the atomic partial charges. After
training a 2G-HDNNP and a 4G-HDNNP to data containing
both types of clusters, we have reoptimized the geometries by the
respective HDNNP generation. As expected, the minima obtained

Table 1 Energy and charge error obtained for the organic
molecules. Energy error (meV/atom) and mean errors of the
atomic charges (10−3 e) and forces (eV/Å) of C10H2 and
C10H

þ
3 with respect to DFT obtained with the different

HDNNP generations for the DFT-optimized structures. For
the 3G-HDNNP the results for scaled and unscaled charges
are given.

Energy Charges Forces

2G-HDNNP 0.684 — 0.095
C10H2 3G-HDNNP (unscaled) 1.255 19.72 0.430

3G-HDNNP (scaled) 2.193 10.76 0.138
4G-HDNNP 0.463 4.820 0.032
2G-HDNNP 0.922 — 0.127

C10H
þ
3 3G-HDNNP (unscaled) 0.046 17.82 0.658

3G-HDNNP (scaled) 1.425 17.72 0.259
4G-HDNNP 0.176 5.048 0.042

a

b

Fig. 4 Force errors of the HDNNPs for the organic molecules. 2G- and
4G-HDNNP forces for the atoms in the DFT-optimized structures of C10H2

and C10H
þ
3 (indicated in a and b, respectively).
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with the 2G-HDNNP (Fig. 5b) are identical for both charge states,
but do not agree with any of the DFT structures. The 4G-
HDNNP on the other hand, which in addition to the structural
information also takes the total charge and the resulting partial
charges into account, is able to predict the minima and also the
atomic partial charges of both systems with very high accuracy
(Fig. 5c). In this case, the inability of the 2G-HDNNP to distin-
guish between clusters is also apparent from the energy errors
with respect to DFT. While the energy errors for Ag �

3 and Ag þ
3

obtained from the 4G-HDNNP are only about 1.166 meV/atom
and 0.320 meV/atom, respectively, the errors of the 2G-HDNNP
are 0.605 and 2.017 eV/atom and thus several orders of magni-
tude larger. The 3G-HDNNP using scaled charges performs even
worse and errors of 0.713 and 5.721 eV/atom are obtained. This is
due to the non-physical electrostatic contribution calculated from
the incorrectly predicted charges.

NaCl cluster ions. As the last non-periodic example we select a
system with mainly ionic bonding, which is a positively charged
Na9Cl

þ
8 cluster, and we analyze the changes of the PES, if a

neutral sodium atom is removed. The initial structure of the
cluster ion has been obtained from a DFT geometry optimization
and is shown in Fig. 6. The sodium atoms are shown in purple,
blue, and brown, while the chlorine atoms are displayed in gray.
We then construct a second system by removing the brown
sodium atom from the cluster while keeping the positions of the
remaining atoms fixed. Since the overall positive charge of the
cluster is maintained, the charge is redistributed throughout the
new Na8Cl

þ
8 cluster ion.

To investigate the consequences of this change in the electronic
structure on the PES, we compute and compare the energies and
forces when moving the blue sodium atom along a one-
dimensional path indicated by the arrow in Fig. 6 for both

cluster ions. The distance to the closest neighboring sodium atom
highlighted as dashed line is used to define the structure.

Figure 7 shows the energies for both systems obtained with
DFT, as well as the 2G-, 3G- and 4G-HDNNPs. All energies are
given as relative energies to the minimum DFT energy of the
respective cluster ion and refer to the full systems. First, we note
that the positions of the DFT minima differ by more than 0.1Å,
i.e., depending on the presence of the very distant brown atom the
blue atom adopts different equilibrium positions. The 2G-
HDNNP, however, is unable to distinguish these minima and
instead the same local minimum Na–Na distance is found for
both systems, which is approximately the average value of the two
DFT minima. We note that the 2G-HDNNP energy curves of the
two systems are not identical but there is an energy offset, as
some of the atomic environments in the right part of the systems
differ yielding different atomic energies. Since these environments
do not change when moving the blue atom this offset is constant.
For the 3G-HDNNP the same qualitative behavior is observed,
and two very similar but not identical minima are found for
both systems. Still, in case of the 3G-HDNNP the energy offset

b

1.2910.420

+0.5

-0.5a
Ag Ag

c

0.002 0.006

+0.5

-0.5

+0.5

-0.5

charges
charges

charges

DFT

2G-HDNNP

4G-HDNNP

Fig. 5 Optimized geometry and atomic charges of Ag clusters. Structures
and atomic partial charges of Ag þ

3 and Ag �
3 optimized with DFT in a, the

2G-HDNNP in b and the 4G-HDNNP in c. The numbers give the root mean
squared displacement (RMSD) in Å compared to the respective DFT
minima. The partial charges in b are shown for illustration purposes only
and have been obtained from a scaled 3G-HDNNP.

Fig. 6 Optimized structure of the Na9Cl
þ
8 cluster. Sodium atoms are

shown in purple, blue and brown, chlorine atoms in gray. The arrow
indicates the direction along which the blue sodium atom is moved for the
energy and force plots in Fig. 7a and 7b. The position of this atom is defined
by the Na–Na distance indicated as dashed line.

a

b

Fig. 7 Relative energies and forces of the NaCl clusters. a Relative
energies of all potentials with respect to the DFT minima of the Na8Cl

þ
8 and

the Na9Cl
þ
8 clusters as a function of the Na–Na distance and b forces acting

on the blue sodium atom for the the path shown in Fig. 6. For the 3G-
HDNNP unscaled charges have been used in this plot.
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between both systems is not merely a constant anymore, as the
long-range electrostatic interactions between the blue and the
brown atom in Na9Cl

þ
8 are position-dependent. We note that in

spite of these qualitative differences with respect to DFT, the 2G-
and 3G-HDNNP curves show only a deviation of about 1 meV
per atom from the DFT curves. This is very small and in the
typical order of magnitude of state-of-the-art ML potentials, and
in the present case this apparently high accuracy hides the
qualitatively wrong minima. Finally, the 4G-HDNNP energies for
both systems are very accurate and the energy curves match the
corresponding DFT curves very closely. Both distinct local
minima are correctly identified and at the right positions.

Next, we turn to the forces shown in Fig. 7b. The results are
fully consistent with our discussion of the energy curves. The
DFT forces acting on the displaced atom are different for both
cluster ions and well reproduced by the 4G-HDNNP. The 2G-
HDNNP forces of both systems are exactly identical due to the
constant offset between both energy curves (Fig. 7a), while the
3G-HDNNP forces of both systems are slightly different due to
the additionally included long-range electrostatics.

Au2 cluster on MgO(001). As example for a periodic system we
choose a diatomic gold cluster supported on the MgO(001) sur-
face. Similar systems have attracted attention because of their
catalytic properties for reactions like carbon monoxide oxidation,
epoxidation of propylene, water-gas-shift reactions, and the
hydrogenation of unsaturated hydrocarbons52. Theoretical53,54 as
well as experimental studies55 have shown that the geometry of
these clusters can be modified by the introduction of dopant
atoms into the oxide substrate. This ability to control the cluster
morphology is of great interest, as it can enhance the catalytic
activity of the system54. 2G-HDNNPs have been used before to
study the properties of supported metal clusters56–58, but systems
as complex as doped substrates to date have remained inacces-
sible, since long-range charge transfer between the dopant and
the gold atoms is crucial to achieve a physically correct descrip-
tion of these systems.

For Au2 at MgO(001) there are two main adsorption
geometries, an upright “non-wetting” orientation of the dimer
attached to a surface oxygen and parallel to the surface in a
“wetting” configuration, in which the two Au atoms reside on two
Mg atoms. DFT optimizations of the positions of the gold atoms
with fixed substrate for the doped and undoped surfaces reveal
that the presence of the dopant atoms changes the relative
stability of both structures. On the pure MgO support (Fig. 8a)
the minimum-energy structure is “non-wetting”, while a flat
“wetting” geometry is more stable if the MgO is doped by three
aluminum atoms (Fig. 8b) corresponding to 2.86% of the slab.
The Al dopant atoms were introduced into the 5th layer, resulting
in a distance of >10Å from the gold atoms. Despite this large
separation, we found that by doping the charge on the Au2 cluster
is reduced (becomes more negative) by about 0.2 e compared
to the same geometry for the undoped surface. This change in
the electronic structure does not only lead to a switching in the
energetic order of the geometries but also to a change of the
bond-length between the gold atoms and the substrate.

The energy difference (Ewetting− Enon-wetting) between the
wetting and non-wetting configurations calculated with different
methods on a doped substrate are −2.7meV for DFT, 375meV
for the 2G-HDNNP and −41meV for the 4G-HDNNP. On an
undoped substrate we obtained 929meV for DFT, 375meV for
the 2G-HDNNP and 975meV for the 4G-HDNNP. These
numbers were obtained after the positions of the gold atoms
were optimized. In case of the 2G-HDNNP, both optimizations
yield the same structure. For the 2G-HDNNP the energy

differences for the doped and undoped systems are exactly the
same as the dopant atoms are outside the local chemical
environments of the gold atoms. Thus, the 2G-HDNNP cannot
take the change of the PES by doping into account. The DFT and
4G-HDNNP results agree in that there is a slight preference for
the wetting configuration for the doped surface, while in the
undoped case the non-wetting configuration is clearly more stable.

An analysis of the PES for the case of the non-wetting
geometry for the doped and undoped slabs is given in Fig. 9,
which shows the energies relative to the minimum DFT energies
of the respective systems as a function of the distance between the
bottom Au atom and its neighboring oxygen atom for DFT, the
2G-HDNNP and the 4G-HDNNP. The energy curves of the 4G-
HDNNP and DFT are very similar and can resolve the different
equilibrium bond lengths for the doped (4G-HDNNP: 2.342Å;
DFT: 2.332Å) and undoped (4G-HDNNP: 2.177Å; DFT:
2.190Å) substrates. The 2G-HDNNP yields the same adsorption
geometry with a bond-length of 2.256Å in both cases, while the
energies substantially differ from the DFT values with the main
effect of the dopant being a constant energy shift between both
substrates, similar to what we have observed in the presence or
absence of the additional sodium atom in the NaCl cluster.

Discussion
In this work, we developed a fourth-generation high-dimensional
neural network potential with accurate long-range electrostatic
interactions, which is able to take long-range charge transfer as
well as multiple charge states of a system into account. The new
method is thus applicable to chemical problems, which are
incorrectly described by current machine learning potentials
relying on a local description of the atomic environments only.

The 4G-HDNNP combines the advantages of the CENT
approach and conventional high-dimensional neural network
potentials of second and third generation by being generally
applicable to all types of systems and providing a very high
accuracy. Employing environment-dependent atomic electro-
negativities, which are expressed by atomic neural networks, a
charge equilibration method is used to determine the global
charge distribution in the system. The resulting charges are then
used to compute the long-range electrostatic energy, as well as to
include information about the global electronic structure into the

a b

Fig. 8 Geometry of Au2 clusters on undoped and doped MgO(001)
surface. Au2 cluster in the non-wetting geometry on the undoped a and the
wetting geometry on Al-doped b MgO(001) surface represented by a
periodic (3 × 3) supercell. Au atoms are shown in yellow, O in red, Mg in
green and Al in blue. The configuration of the gold cluster has been
optimized by DFT for a fixed substrate. The structure visualization for
periodic systems was carried out using VESTA67.
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short-range atomic energy contributions represented by a second
set of atomic neural networks.

The superiority of the 4G-HDNNP potential energy surface
with respect to established 2G- and 3G-HDNNPs has been
demonstrated for a series of systems, where conventional meth-
ods give qualitatively wrong results. In addition to the qualita-
tively correct description, we also obtained a clearly improved
quantitative agreement of energies, forces and atomic charges
with the underlying DFT data, and we could demonstrate that
local minimum structures that are missed by the previous gen-
erations of HDNNPs are correctly identified by the new method.

The results obtained in this work are general and equally valid
for other types of machine learning potentials relying on
environment-dependent atomic energies only. Thus, the 4G-
HDNNP is a vital step for the further development of next-
generation ML potentials providing a correct description of the
PES based a global charge distribution.

Methods
Neural network potentials. The HDNNPs reported in this work have been
constructed using the program RuNNer59–61. Atom-centered symmetry func-
tions41 have been used for the description of the atomic environments within a
spatial cutoff radius set to 8–10 Bohr depending on the system. For a given system,
the same parameters of the symmetry functions and the same atomic neural net-
work architectures have been used for the different generations of HDNNPs being
compared, and the parameters and cutoff radii for all systems can be found in
supplementary tables. The functional forms of the symmetry functions are given in
ref. 41. In all examples, the atomic neural networks consist of an input layer with
the number of symmetry functions ranging from 12 to 54 depending on the specific
element and system, two hidden layers with 15 neurons each, and an output layer
with one neuron providing either the atomic short-range energy or electro-
negativity. Forces have been obtained as analytic energy derivative. The activation

functions in the hidden layers and the output layer were the hyperbolic tangent and
the linear function, respectively.

In all cases 90% of the available reference data was used for training the
HDNNPs while the remaining 10% of the data points were used as an independent
test set to confirm the reliability of PESs and detect possible over-fitting. Energies
and forces were used for training the short-range atomic neural networks.

Moreover, a screening of the short-range Coulomb electrostatic interaction was
applied in order to facilitate the fitting of the short-range energies and forces
obtained from Eq. (9)23. The inner and outer cutoff radius for screening of the
electrostatic interaction have been set to 1.69–2.54Å and the cutoff of the
symmetry functions, respectively. The widths of the Gaussian charge densities in
Eq. (4) have been set to the covalent radii of the elements. All the details of the
training process and the validation strategies for HDNNPs in general can be found
in recent reviews60,61.

The HDNNP-based geometry optimizations were performed using simple
gradient descent algorithms and the numerical threshold of the forces was set to
10−4 Ha/Bohr ≈ 0.005 eV/Å, which is the same convergence used in the DFT
calculations used for validating the HDNNP results.

DFT calculations. The DFT reference data has been generated using the all-
electron code FHI-aims62 employing the Perdew–Burke–Ernzerhof63 (PBE)
exchange-correlation functional with light setting. The total energy, sum of
eigenvalues, and charge density for all systems except Au2-MgO were converged to
10−5 eV, 10−2 eV, and 10−4 e, respectively. For the Au2-MgO systems stricter
settings have been applied by multiplying each criterion by a factor 0.1 in com-
bination with a 3 × 3 × 1 k-point grid. Spin polarized calculations have been carried
out for the Au2-MgO, NaCl and Ag3 systems. Reference atomic charges were
calculated using Hirshfeld population analysis40. In principle any other charge
partitioning scheme could be used in the same way.

The data set of the C10H2/C10H
þ
3 molecules and the Ag3 clusters have been

constructed by performing Born-Oppenheimer molecular dynamics64 simulations
for each system at 300 K with 5000 steps at a time step of 0.5 fs. A Nosé-Hoover
thermostat65 was applied to run simulations in the canonical (NVT) ensemble, and
the effective mass was set to 1700 cm−1. In addition, the trajectory path during the
geometry relaxations up to a numerical convergence of 0.001 eV/Å of the forces
was also added to the data set to have sufficient sampling close to equilibrium
structures. The geometry optimization of the Ag �

3 system has been terminated
when reaching forces below 0.0015 eV/Å.

In case of the NaCl cluster and the Au2 cluster at the MgO surface the reference
data set consists of two structurally different types of systems, and half of the data
set was dedicated to each of the two cases. We performed a random sampling along
the trajectories depicted in Figs. 7 and 9 and added further Gaussian distributed
displacements to ensure sufficient sampling of the PES in the vicinity of the
structures of interest. For the NaCl cluster we used Gaussian displacements with a
standard deviation of 0.05Å. As in the Au2-MgO system we only investigated the
change in geometry of the Au2 cluster, while the MgO substrate remained fixed
during all geometry relaxations, we used a smaller magnitude of the Gaussian
displacements for the substrate than for the cluster. A standard deviation of 0.02Å
was used for the substrate and 0.1Å was used for the gold cluster. Half of the data
set consists of structures with an undoped substrate, while the other half includes a
doped substrate. Half of the samples of each substrate configuration were generated
with the Au2 cluster in its wetting configuration, and the other half with the cluster
in its non-wetting configuration. The total number of reference data points for the
NaCl cluster and Au2-MgO slab is 5000, while the the Ag3 clusters and the organic
molecule it is 10,019 and 11,013, respectively.

Data availability
The datasets used to train the NNPs presented in this paper have been published online68.
All data that support the findings of this study are available in the Supplementary
information file or from the corresponding author upon reasonable request.

Code availability
All DFT calculations were performed using FHI-aims (version 171221_1). The HDNNPs
have constructed using the program RuNNer, which is freely available under the GPL3
license at https://www.uni-goettingen.de/de/software/616512.html.
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