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Abstract: Metal foam inserts are known for their high potential for weight and vibration reduction
in composite gear wheels. However, most metal foams do not meet the strength requirements
mandatory for the transfer of sufficiently high levels of torque by the gears. Syntactic iron and steel
foams offer higher strength levels than conventional two-phase metal foams, thus making them
optimum candidates for such inserts. The present study investigates to what extent surface hardening
treatments commonly applied to gear wheels can improve the mechanical properties of iron-based
syntactic foams. Experiments performed thus focus on case hardening treatments based on carbur-
izing and carbonitriding, with subsequent quenching and tempering to achieve surface hardening
effects. Production of samples relied on the powder metallurgical metal injection molding (MIM)
process. Syntactic iron foams containing 10 wt.% of S60HS hollow glass microspheres were compared
to reference materials without such filler. Following heat treatments, the samples’ microstructure was
evaluated metallographically; mechanical properties were determined via hardness measurements on
reference samples and 4-point bending tests, on both reference and syntactic foam materials. The data
obtained show that case hardening can indeed improve the mechanical performance of syntactic iron
foams by inducing the formation of a hardened surface layer. Moreover, the investigation indicates
that the respective thermo-chemical treatments can be applied to composite gear wheels in exactly
the same way as to monolithic ones. In the surface region modified by the treatment, martensitic
microstructures were observed, and as consequence, the bending limits of syntactic foam samples
were increased by a factor of three.

Keywords: syntactic foam; metal matrix syntactic foam; iron; steel; case hardening; carburizing;
carbonitriding; powder metallurgy; metal injection moulding (MIM); vibration damping

1. Introduction

Metal foams are characterized by low density, high specific stiffness, and superior
crash and vibration energy absorption, whereas their strength is reduced in comparison
to the respective conventionally produced matrix alloys [1–6]. For this reason, metal
foams are frequently used in combination with compact materials, e.g., as a permanent
insert in cast or molded components, or as the core of sandwich structures [3,7,8]. Typical
applications of metal foam structures include crash absorbers for cars and trains, supports
for traction batteries of electric vehicles or other lightweight automotive structures, façade
elements, roboter handling equipment, and vibration damping supports [9–12]. In the
latter case, the effect of the foam is twofold: first, the foam’s vibration-damping capacity is
utilized directly, while secondly, the lower Young’s modulus of the foam leads to a stiffness
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respectively impedance mismatch at the interface of the foam and the compact component
of the composite structure. Elastic waves will thus be reflected at this interface, limiting the
transmission of vibrations to other parts of the overall structure. Considering the example of
aluminum foam sandwich materials, which are currently used as damping supports of e.g.,
linear axles, at least two interfaces with impedance mismatch (face sheet to foam and vice
versa) have to be transgressed and can thus contribute to vibration alleviation. Advantages
of this purely metallic as opposed to an adhesively bonded solution are better long-term
stability, a lower risk of aging, and a reduced need for inspection and maintenance.

A further example of metal foams’ general ability to damp and absorb vibration
and sound is a prototype study of gear wheels with FoaminalTM aluminum foam insert
between gear ring and hub, see Figure S1 (Supplementary Information). In comparison to
the original compact steel design, in addition to a weight reduction of 30%, a reduction
of gear sound of up to 8 dB in a wide range of rotational speed (300–1000 rpm) and loads
(0–100 Nm) was obtained. However, the limited strength of the FoaminalTM foam (density
0.3–0.7 g/cm3, compression strength 2–20 MPa) afforded the addition of a support plate
made of a carbon fiber-reinforced polymer (CFRP) to secure sufficiently high levels of
transmissible torque [5].

In contrast to conventional two-phase metal foams, of which FoaminalTM is a typical
example, syntactic metal foams represent a special subclass of porous metals, as their poros-
ity is not generated e.g., by blowing agents, but instead by the addition of porous or hollow
filler particles to the metallic matrix [13–15]. Examples of such filler particles are hollow
glass microspheres, cenospheres, as well as hollow metal or ceramic spheres [13,16–20].
Syntactic metal foams typically show higher densities than other metal foams like e.g.,
FoaminalTM or investment cast sponges—specifically, if single-size or at least narrow size
distributions of filler particles are used [17]. Due to their higher density, but also due to
the intrinsic strength of the integrated hollow particles, the strength of syntactic foams
surpasses that of most other types of metal foam [6]. In some cases, they have even been
shown to exceed the specific yield strength level of the unfilled matrix material [21]. How-
ever, notwithstanding their higher density, they still exhibit the same general features as
other foams, including a high deformation and vibration energy absorption capability. Be-
cause of this combination of increased strength and considerable damping capacity, metal
matrix syntactic foams are natural candidates for application as inserts in gear wheels. In
comparison to the aforementioned FoaminalTM-CFRP-solution, the possibility to abstain
from using an additional reinforcement to realize a purely metallic solution will simplify
assembly and processing. It will thus help to reduce costs and avoid foreseeable problems
associated e.g., with differences in thermal expansion and thus long-term stability.

For applications focused on weight reduction and improved damping characteristics
like the gear wheel example, careful balancing between insert properties, gear and insert
geometry, and design loads is mandatory [22–24]. Besides their role in vibration attenuation,
insert properties and geometries influence the elastic deformation of the loaded gear as
a whole. Altogether, too “soft” elastic behavior of the gear can lead to changes of the
contact geometries between gear teeth and thus of the conditions during gear engagement.
This in turn can cause increased excitation of vibrations and would be counterproductive.
Thus, despite the superior damping characteristics of metal matrix syntactic foams, an
improper adaption of gear and insert to each other can eventually result in increased
vibration and noise levels. Furthermore, changes in actual contact areas of gears need
careful consideration in teeth correction not to cause premature failure.

Elastic and plastic behavior of metal foams depends primarily on the properties
of the metal matrix alloy and its density; other parameters like pore size distributions
are of second-order [2]. Changing the density of a foam from a specific matrix alloy
will influence both the elastic and plastic properties in quite a similar way [1,2]. So,
for adapting those properties independently, one can revert to heat treatments, like e.g.,
precipitation hardening in the case of aluminum alloys [25,26]. In this respect, iron and
steel matrices are especially interesting as a plurality of hardening mechanisms can be used,
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including solution, precipitation, and transformation hardening [27,28]. In consideration
of the aforementioned application in gears, further advantages are that in the case of the
proposed configuration based on a metal matrix syntactic foam insert, the base material
of the gear ring insert and hub are similar and can thus be expected to show matching
coefficients of thermal expansion and corrosion behavior. Moreover, other than in the case
of the steel-FoaminalTM example, the combination provides no driving force for galvanic
corrosion and eases recycling.

So far, only very few studies have been published on heat treatment of steel foams in
general, and much less covering syntactic iron and steel foams in particular [29–31], and
all of these focus on hardening rather than thermo-chemical surface-oriented techniques.
Taking into account that most high-strength gear wheels today are case hardened, the
application of syntactic foam inserts needs to be reviewed regarding actual heat treatment
technology of gears to make the same heat treatment of insert and gear possible. The
aim of the present work is thus to extend the state of the art by investigating the influ-
ence of thermo-chemical heat treatment by case hardening methods, and among these
specifically carburizing and carbonitriding—as both types of treatments are frequently
used in gear wheel technology—on the structure and properties of syntactic iron foams.
Besides shedding light on the associated property change in the foam, the aim is to evaluate
the general response of these materials to the treatment, and thus to establish whether a
compound design incorporating both conventional steel and steel matrix syntactic foams
can be subjected to these processes without compromising foam structure.

The study included two-sphere content levels (reference 0% and 40%) and three heat
treatment conditions (as-sintered, carburized, and carbonitrided). The sphere content was
not varied further as, (a) for much lower sphere contents both the decoupling and the
damping capacity of the foam insert would be reduced significantly, and (b) at much higher
sphere contents the reduced strength and ductility of the syntactic metal foams might be
insufficient for the target application (e.g., [4,15]).

2. Materials and Methods
2.1. Production of Foam Specimens

The production of the syntactic iron foam samples for the subsequent hardening
treatments followed the approach described in [18,32], i.e., hollow glass microspheres were
used as an additive to the feedstock processed in conventional metal powder injection
molding (MIM). The MIM process consists of the following steps: feedstock preparation,
injection, chemical debinding, thermal debinding, and sintering, see Figure S2.

The primary materials for the experiments were iron powder of grade Diafe 5100
(Dr. Fritsch, Fellbach, Germany) and micro hollow glass spheres S60HS (producer 3M,
supplied by Omya, Cologne, Germany). The characteristics of both materials are listed in
Table 1. With Diafe 5100, a rather fine iron powder with high sintering activity was chosen
to account for the low softening point of the S60HS hollow glass sphere, which limits the
allowable sintering temperatures [33,34].

Two feedstock batches of 400 mL each were produced. For the first batch (reference
material), 60 vol.% of iron powder and 40 vol.% of binder (mixture containing paraffin,
lupolen, and stearin) were processed for 2 h at 120 ◦C in a mixer (self-constructed equipment
based on Brabender components), cooled to room temperature and granulated. The second
batch (syntactic foam) was processed in a similar way, however, after 90 min of mixing
time the S60HS spheres were added to the feedstock. The mass fractions of the mixtures
are noted in Table 2. The added mass of the S60HS spheres was calculated in order to
adjust the sphere volume content to 40%. This correlates with the following theoretical
volume contents: metal 60%, glass 11%, and void 29%. The composition was chosen this
way because it was known from earlier investigations that syntactic metal foams with
40 vol% spheres exhibit a good compromise of remanent strength and increased damping
resp. decoupling [4,21].
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Table 1. Properties of the used raw materials [33,34].

Material Diafe 5100 S60HS

Chemical Composition (wt.%)

Fe > 97.7
C < 0.9
O < 0.5
N < 0.9

SiO2 appr. 70–80
Na2O appr. 3–8
CaO appr. 8–15
B2O3 appr. 2–6

Size Distribution
d(10) max. 1.2 µm
d(50) max. 2.5 µm
d(90) max. 3.5 µm

d(10) max. 12 µm
d(50) max. 29 µm
d(90) max. 48 µm

Other
Density 7.8 g/cm3

Sintering density (900 ◦C)
7.5 g/cm3

True density 0.6 g/cm3

Softening point 600 ◦C
Crush strength 1240 bar

Table 2. Composition of mixtures of the test batches.

Masses Batch 1 Batch 2

Diafe 5100 [g] 1884.00 1130.4

binder [g] 148.22 148.22

S60HS [g] - 57.6

The injection molding was performed on a BOY XS type injection molding ma-
chine (Dr. BOY GmbH), Figure S3. The dimensions of the rectangular mold cavity were
40 mm × 15 mm × 5 mm. Molding parameters are summarized in Table 3.

Table 3. Moulding parameters.

Parameter Setting

Injection temperature 120 ◦C

Injection pressure 120 bar

Injection velocity 200 mm/s

Mould temperature 40 ◦C

After injection, the samples were examined using radioscopy (MU2000, 160 kV,
YXLON International GmbH, Hamburg, Germany) and debinded chemically (model series
EDA, LÖMI GmbH, Aschaffenburg, Germany) for 24 h in hexane at 35 ◦C, then dried
for 16 h and subsequently transferred to the sintering furnace (Thermal Technology LLC,
Santa Rosa, CA, USA, support: alumina plates). Thermal debinding and sintering took
place in a hydrogen atmosphere. The temperature program is depicted in Figure S4. The
initial heating rate from room temperature to 100 ◦C was 2 K/min, between 100 ◦C and
500 ◦C a rate of 0.1 K/min was used. For thermal debinding a holding step at 500 ◦C was
inserted. Afterwards, the heating rate was increased to 3 K/min. The sintering itself is
done at 900 ◦C for 3 h. The cooling after sintering was relatively slow (appr. 2 K/min down
to 300 ◦C, then 1 K/min). After sintering, the samples were checked once more by means
of radioscopy (YXLON MU2000, 160 kV). Sample dimensions were determined manually
and shrinkage was calculated from the differences observed between green and sintered
parts dimensions. The density of samples was measured by means of Archimedes’ method.

2.2. Heat Treatment, Hardening

The case hardening treatment was conducted using a bell furnace (type 11CG, SOLO
Swiss SA, Porrentruy, Switzerland, Figure S5) with a nitrogen–methanol atmosphere.
The carbon level was automatically controlled by a control system (Process-Electronic
GmbH/United Process Controls, Heiningen, Germany) using an oxygen probe. All gaseous
and liquid media was introduced through liquid flow (LFC) and mass flow controllers
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(MFC). The carburization was performed according to the time-temperature program
shown in Figure 1a. Samples were prepared on a steel batch tray in a hanging positon.

Figure 1. (a) Schematic T-t-C-level-course of the carburizing during the case hardening process, and
(b) the parameters of the carbonitriding process.

The batch was introduced into the hot furnace (850 ◦C), directly heated to 850 ◦C, and
held there for 30 min to achieve a temperature homogenization. Carburizing started at
750 ◦C with a carbon level of 0.6%. Thereafter, heating to carburizing temperature was
started until 920 ◦C was reached. The main carburizing step took place at 920 ◦C and
C-levels of 1.1% respective 1% for carburization. Afterwards, the specimens were quenched
directly from 920 ◦C in water at RT and tempered for 1 h at 180 ◦C.

The program for the carbonitriding treatment of the samples closely followed the
carburizing with only slightly adapted carbon levels and the addition of 10 vol.% ammonia,
see Figure 1b. The C-level was slightly reduced to achieve a sufficient solubility for both
carbon and nitrogen. After carbonitriding, the specimens were quenched in water at RT
and tempered for 1 h at 180 ◦C.

2.3. Metallographical Investigations and Mechanical Testing

After the case-hardening by carburizing respective carbonitriding of both reference
and foam samples, one sample per batch was used for metallographic investigations.
Samples were polished and subsequently etched 20–25 s using 3% HNO3 (Nital). On
the reference samples, Vickers hardness (HV1) measurements were performed in order
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to determine hardness profiles normal to the sample surface. Similar measurements
were not feasible in the case of the syntactic foam samples, as the diagonal length of the
Vickers indentations is in the same order of magnitude as both the diameter of the hollow
microspheres integrated into the metal matrix and their average distance. Therefore, any
indentation will necessarily be positioned close to several microspheres, which leads to a
large scatter of the observed hardness values and prevents the establishment of reliable
hardness values and local material condition, i.e., heat treatment state.

Sparc optical emission spectrometry (S-OES/ARLTM 3460 Thermo Fisher Scientific,
Dreieich, Germany) was again applied only to the reference samples. Previous experiments
with foam samples had shown that measurements on syntactic foams lead to large scatter
and unrealistic compositional information. Five measurements per sample and depth
were carried out; the focal spot diameter of the measurements was 6 mm with a depth
of 10–30 µm. Before measurement, the sample surfaces were leveled slightly using a
zirconia grinding wheel. For each depth of the profile, grinding by the zirconia wheel
was performed with repeated measurements of local carbon content at the specific depth.
Thus, a discrete point-to-point carbon profile was derived by this method. To maintain
the accuracy of the measured carbon contents multiple standard samples were used to
calibrate the machine data.

Using the hollow sphere-free sample was mandatory to achieve any process control
by the means of carbon profiling. Obviously, some deviations are to be expected on the
carbon profile of the samples with spheres because the additional surface tends to speed
up diffusion in the material.

For the determination of mechanical properties, 4-point-bending tests were performed.
Bending test samples were produced from sintered samples by milling and burring, final
cross-section dimensions were 7 mm × 3.7 mm, length was in the range of 33.5–34 mm. Both
for reference and syntactic foam materials, batches of seven samples each were carburized
respective carbonitrided and hardened in water. To prevent a thorough carburization,
the flanks of the samples were protected against carburization using the carburization
protection paste Condursal 777 (NÜSSLE GmbH & Co.KG, Nagold, Germany) on both
sides of the sample (7 × 40 mm flanks). Twelve samples—six with and six without
microspheres—remained untreated.

For the 4-point-bending test, two samples were equipped with strain gauges, with
data monitoring conducted via a quarter bridge circuit, a multiplier of type Picas (Peekel
Instruments, Gemsbach, Germany), and the WaveMatrix (Instron GmbH, Darmstadt,
Germany) software used for data analysis. Calculation of the bending stress σB was based
on the formula

σB =
3F(L − l)

2bh2 (1)

with F the applied force, L the support span, l the loading span, b and h the width and
height of the sample. Nominal sample dimensions have been given above, for the actual
experiments, and their evaluation, width, and height were measured individually on each
sample. The length of the support span was 28 mm, those of the loading span were 11.5 mm.
The experimental setup is shown in Figure S6. Not all samples were evaluated using strain
gauges to achieve data on effective strain rates during testing. Mostly for the case hardened
samples the effective ductility was that low, that an evaluation of the straining could be
derived from elastic deformation only by using the displacement sensor of the machine.
The bending modulus was determined from the slope of a linear regression line in the
quasi-elastic initial region of the bending stress-deflection diagrams (ranging from test start
to the bending limit).

3. Results

Radioscopy showed that both the as-injected green parts, with and without hollow
sphere additions, were mostly flawless. The subsequent chemical debinding and sintering
did not lead to crack formation, except for a very few cases. For the subsequent tests,
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only specimens without cracks or exceptional porosity were used. The densities of the
sintered specimens of the different batches are summarized in Table 4 and compared to the
theoretical respective literature values. The theoretical density of the syntactic iron foam
was calculated according to the formula:

ρ f ,th =
〈

1 − φsph

〉
∗ ρ f e + φsph ∗ ρsph,tr (2)

with Φsph, ρsph,tr the volume content respective the true density of the hollow glass spheres
and ρfe the density of the iron matrix (7.787 g/cm3). An additional comparison is based on
the reference density of pressed and sintered iron, according to [34]. The linear shrinkage
in three dimensions is listed in Table 5.

Table 4. Results of the density measurements.

Material Measured Density [g/cm3]
Comparison with Reference Value

Reference/Theoretical Value Comparison

Sintered compact batch 7.09 7.787
(7.5)

91%
(94.5%)

Sintered foam with S60HS spheres 4.65 4.96
(4.74)

94%
(98%)

Table 5. Results of shrinkage measurements.

Directional Shrinkage Compact Material Syntactic Foam

Length shrinkage [%] 14.5 15.3

Width shrinkage [%] 14.2 15.2

Height shrinkage [%] 15.1 14.9

The results of the metallographic investigation of the un-treated, as-sintered samples
are shown in Figure 2. As was expected from the density measurements, the metal matrix
contains some residual sintering porosity, uniformly distributed over the area of the met-
allographic section. The size of these pores is in the range of 2–6 µm. Most of the hollow
glass spheres are intact, several are deformed, and a significant number of neighboring
spheres appear to have merged, while others have melted. The results of the S-OES (optical
emission spectroscopy) measurements are listed in Table 6.

Table 6. Results of the S-OES measurements on compact samples in the as-sintered state (3 samples).

Element C P S Ni Co Ti

wt.% 0.007–0.02 <0.001 <0.001 <0.003 <0.006 <0.005

The macroscopic metallographic sections of the carburized samples without hollow
spheres featured clearly distinguishable core, transition, and carburized areas (Figure 3).
The case reaches deep into the samples leaving only little material which was non-carburized.
Detailed views of the different areas are shown in Figure 4. The case area is characterized by
a mainly martensitic structure with finely dispersed retained austenite. In comparison, the
cores exhibit martensite, bainite, and perlite. Furthermore, small residual sintering pores
can be observed in the iron matrix. Because of the non-ferritic core, it must be assumed
that the carbon profile reaches down into the core of the sample.
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Figure 2. Macroscopic overview of the polished section of an as-sintered sample without hollow,
(a,b) and with spheres (c,d).

Figure 3. Macroscopic overview of the polished section of the carburized sample without hollow
spheres. Color differences provide a visual idea of the hardening depth.

The Vickers hardness and carbon content profiles are shown in Figure 5. Hardness
measurements were performed “case-to-core” of the sample since the metallographic
section in Figure 3 shows that the microstructure of the sample is symmetrical with no
indication of any dependency of the hardness profile on the sample face. The maximum
hardness is 720 HV1 at a distance of 0.2 mm from the sample surface. The minimum
hardness is 166 HV1 in the center axis of the sample. The case hardening depth (CHD)
according to standard DIN 50190-1 [35] was determined to be 0.84 mm.

Macroscopic metallographic sections of the carburized samples with hollow spheres
are displayed in Figures 6 and 7. As for the sample without hollow spheres, core, case,
and a transition zone can clearly be distinguished. The case is again characterized by a
martensitic structure with finely dispersed retained austenite; the core contains bainite and
perlite, with martensite missing in this region, and in contrast to the reference compact
samples. The presence of a non-ferritic microstructure in the core of the sample means that
some carbon has reached the core of the sample at a low magnitude. On the surface of the
sample, a thin oxide scale can be observed being formed during the transfer of the samples
from the furnace into the quenching tank through the air. Again, most of the hollow glass
spheres are intact, but several are deformed, and a significant number of neighboring
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spheres appear to have merged, while others have melted. This is somewhat surprising
given that the heat treatment temperature exceeds the sintering temperature by only 20 ◦C.

Figure 4. Detailed view of the polished section of the carburized sample without hollow spheres with
(a) showing the overview of the case, (b) showing the surface near layer, (c) showing the transition
zone at the case hardening depth CHD, and (d) showing the core microstructure.

Figure 5. Hardness (HV1) and carbon content profile of the carburized sample without hol-
low spheres.



Materials 2021, 14, 4358 10 of 23

Figure 6. Macroscopic overview of the polished section of the carburized sample with hollow spheres.

Figure 7. Detailed images of the polished section of the carburized and hardened sample with
hollow spheres with (a) showing the overview of the case, (b) showing the surface near layer, and
(c) showing the core microstructure.

The macroscopic structures of the carbonitrided samples without and with hollow
glass spheres are similar to the respective carburized ones; in each batch core, case, and
transition zone can clearly be identified. For samples without hollow spheres, the case
exhibits martensite with finely dispersed retained austenite and some low amounts of
troostit being visible on the former austenite grain boundaries; the core shows martensite,
bainite, and perlite, Figure 8. The main structural components are thus similar to the batch
of carburized samples without hollow spheres. The HV1 hardness profile is shown in
Figure 9. Again, hardness measurements were performed “case-to-core” of the sample.
The hardness maximum is detected at a distance of 0.2 mm from the surface at 640 HV1.
The hardness remains on a level of 600 HV1 up to a distance from the surface of 0.4 mm
and decreases to a minimum of 124 HV1 in the samples’ center. From the data, a hard-
ening depth of 0.48 mm was determined following the standard procedure laid down in
DIN 50190-1.
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Figure 8. Detailed images of the polished section of the carbonitrided sample without hollow spheres;
(a) location of the respective position relative to the core, case, and transition zone, (b) view of the
case, (c) transition zone, and (d) core.

Figure 9. Hardness (HV1), carbon, and nitrogen content profile of a carbonitrided sample without
hollow spheres.

The carbon and nitrogen content profiles, determined by S-OES, are also shown in
Figure 9. The surface carbon content (at 0.05 mm distance from the surface) is 0.88 wt.% and
decreases almost linearly with increasing distance from the surface to a level of 0.262 wt.%
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at 1.2 mm depth. The carburizing depth is 1.06 mm. The surface nitrogen content is
0.198 wt.% at a depth of 0.05 mm. The nitrogen content increases to a maximum value of
0.206 wt.% at 0.1 mm and decreases then also almost linearly to a level of 0.029 wt.% at a
1.2 mm distance from the surface.

Detailed images of the metallographic section of carbonitrided samples with hollow
spheres are shown in Figure 10. The surface near the carburized layer contains (as in the
case of all other batches) martensite and fine retained austenite, and the core contains some
martensite and mainly bainite. Again, the hollow spheres are generally in good condition,
but significantly deformed with a fused appearance; often, neighboring spheres seem to
have merged.

Figure 10. Detailed images of the polished section of the carbonitrided sample with hollow spheres
with (a) showing the overview of the case, (b) showing the surface near layer, and (c) showing the
core microstructure.

Figures 11–13 depict the results of the 4-point-bending tests based on the force-
deflection curves recorded. Representative samples in their post-testing condition are
shown as inserts in these figures. The respective curves can be associated with four funda-
mentally different types of failure, which correspond to samples without heat treatment,
without and with microspheres (Figure 11a,b), samples with heat treatment without mi-
crospheres (Figure 12), and samples with heat treatment and microspheres (Figure 13). In
other words, this means that the way in which the failure mode of reference samples and
syntactic foam samples is influenced by the heat treatment is independent of the type of
heat treatment, i.e., a case-hardened reference sample will deviate in basically the same
way from a reference sample without heat treatment as a carbonitrided one. The same
is true for syntactic foam samples. However, the failure modes of heat-treated reference
samples differ from those of the heat-treated syntactic foam samples, just as the sintered
reference samples differ from the syntactic foam ones.
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Figure 11. Force-deflection curve for samples without heat treatment, (a) without, (b) with hollow
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Un-treated, as-sintered iron samples without filler failed in a predominantly ductile
manner. The force-deflection curve pictured in Figure 11a is characterized by a constant
increase following the initial elastic region. This behavior can be explained by the specific
deformation pattern of this type of sample as exemplified in the insert in the aforementioned
Figure 11a. The reference samples’ high level of ductility causes the region of plastic
deformation to move from the area between two load introduction points to the region
between load introduction and support points.

To a limited extent, this behavior is mirrored by the force-deflection curves measured
on syntactic foam samples without heat treatment, which also show plastic deforma-
tion, but no localization of the same. Instead, these samples fracture at varying levels of
deformation (Figure 11b).
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Figure 12. Force-deflection curves for samples without hollow glass microspheres, (a) carburized,
and (b) carbonitrided. Inserts show the samples corresponding to the red curve. Note the difference
in scale of both axes.

All non-heat treated samples show a distinct mixed-mode elastic-plastic deformation
from the beginning of loading, making a distinction of a clearly elastic deformation very
difficult. Therefore the localized deformation changing over from elastic-plastic bending
with a characteristic bending behavior, equally distributed between the two-force inducing
points, to a localized deformation at the load-inducing points is taken as a marker for
stating the failure of the sample.

Carburized and carbonitrided unfilled samples respond to the bending test in alto-
gether three stages: the elastic region is followed by the initiation of a crack, which however
does not transgress the full sample, but is apparently arrested in its more ductile core. This
results in a steadily declining shape of the force-deflection curve which is in some cases
interrupted by a second fracture initiation. The scatter in terms of deflection and thus
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strain at the first occurrence of a crack observed for carburized and carbonitrided samples
is larger in the latter case (Figure 12).

Figure 13. Force-deflection curves for samples with hollow glass microspheres, (a) carburized, and
(b) carbonitrided. Inserts show the samples corresponding to the red curves.

In contrast to the unfilled samples with heat treatment, the corresponding syntactic
foam samples fail in a completely brittle manner. Once a certain stress level is reached and
a crack is created, the latter will immediately pass through the whole sample. Both force
and deflection are slightly higher at this point in the case of the carbonitrided samples,
which also show slightly less scatter of the parameters in question than their carburized
counterparts (Figure 13).

Interestingly, the lower elastic modulus of the foam samples allows them to reach
the same level of deformation at failure as the associated reference samples despite the
formers’ lower strength. The moduli were determined by means of linear regression of



Materials 2021, 14, 4358 16 of 23

stress-strain curves derived from the force-deflection data using an equation to determine
stress as well as the readings from the strain gauges; the material and condition-dependent
values obtained are collected in Figure 14.

Figure 14. Comparison of the approximate elastic (bending) modulus of the various types of samples
with/without heat treatment and with/without filler (with standard deviation).

Not surprisingly, and in line with general notions on the characteristics of porous
materials, the comparison of the elastic modulus values summarized in Figure 14 reveals a
reduction of this property which is clearly associated with the addition of filler particles;
whereas samples without these reach levels between 130 and 190 GPa, and syntactic foams
remain in a range of 80 to 100 GPa. Looking at the reference samples, it is noteworthy
that heat treatment results in an apparent increase of the bending modulus when opposed
to specimens in the as-sintered state; this effect is missing in the case of the syntactic
foam samples, which all show identical values of the elastic modulus with slightly higher
scatter if relative rather than absolute figures are considered. This observation can be
seen as an indication that for the reference samples without heat treatment, some plastic
deformation is occurring already within the deformation range taken as the basis for the
determination of the modulus values, effectively making this an elasto-plastic rather than a
truly elastic range.

The bending limits of the different batches are contrasted in Figure 15. Data scattering
is comparatively low. The diagrams show that carburizing and carbonitriding lead to a
significant increase of bending limit both for the reference material and the foam. However,
no significant difference between the two treatments can be found, the bending levels
are quite similar in each case. This reflects the earlier observation that within each of the
two groups, the failure mode does not change with the heat treatment either.

Altogether, the bending limit of the carburized and carbonitrided syntactic foams is
significantly lower than those of their non-porous counterparts but higher than that of
the as-sintered reference samples. The factor of approximately 3.5, by which both heat
treatments increase the bending limit, is similar for reference and foam samples.

While the differences in the heat treatments effects is insignificant in the case of the
reference samples, the effect of carbonitriding appears to exceed that of carburizing for the
syntactic foam samples, although the hardness is lower.
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Figure 15. Bending limit of the different material batches (with standard deviation).

4. Discussion

The lower density of the sintered iron samples without and with hollow spheres
in comparison to the reference densities of pure iron and the theoretical foam density
can be explained by the use of MIM and relatively low sintering temperatures. Hollow
glass spheres like S60HS are not suitable for PM-processes like uniaxial pressing because
of their limited crush strength. Furthermore, the large difference in density between
hollow spheres and iron particles results in a pronounced demixing tendency. Using
injection molding, those problems can be circumvented. A large amount of binder of
the feedstock effectively prevents demixing and the moderate shaping temperatures and
pressures ensure the survival of the hollow spheres. On the other hand, the metal powder
bulk of MIM parts in the initial sintering phase resembles that of a loose powder, and a
relatively large densification has to be obtained by the sintering. The relatively moderate
sintering temperature (900 ◦C) is necessitated by the limited thermal stability of the S60HS
spheres. Though it is known that such spheres, embedded in fine metal powder, can
survive temperatures much higher than their softening point of 600 ◦C, it was shown in
earlier investigations that low process temperatures and fine, highly sintering-active metal
powders are preferable to retain the integrity of the microspheres [36]. On the other hand,
one also has to consider the higher costs for very fine metal powder. In comparison to earlier
works somewhat coarser iron powder was used in the present investigation—d50 = 2.5 µm
in comparison to d50 = 1.4 µm in [37]. The sintering density of the compact specimens is
comparable to the results of Tavares et al. [38]. The relative deviation of theoretical and
measured densities is somewhat smaller for the foam than for the compact samples. This
can be attributed to the fact that during softening and deformation hollow spheres can
exhibit volume shrinkage. The residual porosity of the metal matrix is, therefore, balanced
to some extend by shrinking hollow spheres [39]. The shrinkage of the samples is isotropic,
indicating neither gravity-induced deformation nor collapse of the soft hollow spheres
during sintering. The related volume shrinkage (0.85 × 0.85 × 0.85) matches the binder
volume content and the observed residual porosity.

The sintering pores remaining in the metal matrix are small and globular for both the
compact as the foam samples. In the case of the foam samples, the influence of those pores
on the overall mechanical behavior should be negligible.

Because of the analytical restrictions caused by the hollow spheres embedded in the
metal matrix, a direct comparison of reference and foam samples was only possible by
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means of optical microscopy of the respective metallographic sections, and by mechanical
characterization. Based on the observed, clearly expressed case with a mainly martensitic
microstructure, and mostly bainite and some martensite in the samples’ cores, it can be
concluded that clearly both compact and porous samples can successfully be case-hardened
by carburization or carbonitriding with subsequent water quenching. Water quenching was
necessary because carbon and nitrogen were the only hardenability-increasing elements in
the metal powder used. The core hardness of the case hardened compact samples was, at
124 HV1 and 165 HV1, respectively, more than doubled in comparison to pure ferritic iron
(60 HV1 [40]).

The only significant structural differences in samples with deviating heat treatments
are found in the core of foam samples hardened using carburizing and carbonitriding: the
former exhibits bainite and perlite, the latter martensite, and bainite. This concurs with the
fact that enrichment of nitrogen and carbon in the iron matrix reduces the critical cooling
rate for the hardening and the martensitic transformation [41].

It can be assumed that the superficial heat transfer conditions during quenching are
similar for all samples, as MIM-based syntactic foam samples tend to show no microspheres
on the surface. The internal thermal situation is quite different, however, for the compact
and porous samples. Introducing the hollow glass spheres into the metal matrix changes
both the heat capacity (respective thermal energy to be transported) and the thermal
conductivity of the samples. Neither porosity nor glass walls will contribute appreciably to
the thermal conductivity (the thermal conductivity of borosilicate glass is 1.2 W/m/K in
comparison to 40–60 W/m/K for low alloyed steel). Furthermore, the intrinsic structure of
foams leads to longer thermal diffusion paths. According to [2], the relation

λ f = λm

(
ρ f

ρm

)q
with 1.65 < q < 1.8 (3)

can be used for estimating the foam’s thermal conductivity, with λf, λm, ρf and ρm, the
thermal conductivities and the densities of the foam and the matrix, respectively. When
only the metal content (95.1 wt.%) is taken into account in the foam, Formula (2) shows that
this property is reduced to approximately 0.36–0.39 λm in the foam. In comparison, the heat
capacity (to which both iron and glass contribute) is 0.63 of the heat capacity of the compact
iron. As a result, the cooling rate of the foam is lower than that of the compact material,
concurring with the fact that martensite formation is partly suppressed and perlite retained
in the core area of the carburized foam.

In the investigation of the carbon and nitrogen profile derived from carbonitriding
or carburizing, carburizing and carbonitriding effects were in good agreement with the
expected behavior of a metal sample made of unalloyed steel. Taking into account the
characteristics of the iron base of the powder used for feedstock production of both the
MIM syntactic foam and the reference samples made without spheres, the carburization led
to a surface carbon content in the range of the applied carbon level. The profile of carbon in
both processes is mostly linear decreasing from surface to core because of the carbon level
being held at one stage during the entire process. By carbonitriding, the surface carbon
content is lower (about 0.1 wt.%) than in the carburized sample which is in agreement
with the effective c-level being set to 0.8% during the second stage of carbonitriding. By
the addition of 10 vol.% ammonia to the atmosphere, a surface nitrogen content of about
0.2 wt.% was achieved. This is again in good agreement with similar investigations where
unalloyed steels tend to achieve a nitrogen content of no more than 0.2 wt.% at the given
ammonia addition and temperature.

The depth of the carbon penetration was in both processes that deep, that the core
material is showing some light carburization making the core hardenable by martensitic
and bainitic transformation. Without the addition of carbon during the carburization in the
core, a fully ferritic matrix would have been achieved which is from a strength perspective
not favorable for the bending beams. Although the material with and without spheres
exhibits some porosity after sintering, no abnormally fast diffusion of both carbon and
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nitrogen could be observed in the profiles. This points to a good material density achieved
by sintering, leaving no surface-active diffusion component being driver for extremely
high diffusion rates. Therefore carburization is comparable to a steel sample made of a
steel bar from a conventional steel route.

The hardening of the samples being carbonitrided and carburized was performed in
water at RT. Water was chosen to achieve a good hardenability and a sufficient hardening
depth in the unalloyed steel matrix. The results indicate that for both processes, a full
martensitic case could be achieved with a core microstructure composed of mainly bainite
and martensite. The slightly increased core carbon content helped to achieve some hardness
increase. The surface carbon content seems to be a major driver in this unalloyed steel to
achieve sufficient hardness. For the tempered sample having been carburized, a surface
hardness of about 700 HV1 was achieved which is in very good agreement with a case
hardened sample made of conventional steel. The carbonitrided sample showed a slightly
lower hardness of up to 650 HV1 at the surface, having a 0.1 wt.% lower surface carbon
content being the driver for the changed hardness. The additional nitrogen content of
about 0.2 wt.% obviously could not compensate for the lack of 0.1 wt.% carbon.

The surface microstructure for both the carburized and the carbonitrided sample is
mostly martensite with some retained austenite. The carburized sample with a slightly
higher surface carbon content showed a little more retained austenite in the metallographic
cuts than the carbonitrided sample. This is in good agreement with the fact that carbon is
lowering the Martensite-Start (Ms) and Martensite-Finish-temperature (Mf) twice as much
as nitrogen, but nonetheless surprising as nitrogen and carbon in the carbonitrided sample
should in sum achieve the same Ms and Mf temperature as in the carburized-only sample.
Taking the results achieved by the samples into account the effective carbon profile should
have been the same for both heat treatment variants adding only a nitrogen profile by the
carbonitriding process to achieve a little increase in retained austenite content.

Though the hollow spheres have deformed due to the high process temperatures of
sintering and case hardening, no indication could be found for sphere destruction by the
reaction of SiO2 (the main component of borosilicate glass) with the diffusing carbon or
nitrogen. This could be expected, as the enthalpy of the formation of CO is more negative
than that for SiO2 only for temperatures above 1500 ◦C.

The effects of the case hardening are clearly reflected in the results of the bending
tests. As already described above, altogether four fundamentally different responses to
these experiments could be distinguished, all of them clearly linked to (a) presence of
microspheres and (b) heat treatment state of the specimens. These are summarized in
Table 7 below.

Table 7. Failure mechanisms under a 4-point bending load of reference samples without microspheres (compact material),
and syntactic foam samples with and without case hardening treatment, as expressed in the force-deflection curves.

Heat Treatment Compact Material Syntactic Foam

Without

Elastic region followed by consecutive plastic
deformation with a shift of the plastic zone from the

loading span to in between the load introduction
and support points. No fracture of the

sample (Figure 11).

Elasto-plastic region followed by linear
increase of the force deflection curve,
indicating plastic deformation and

subsequent progressive crack propagation
until complete failure of the

sample (Figure 11).

Case hardened

Elasto-plastic region followed by crack initiation,
growth, arrest, and subsequent further plastic

bending of the samples; in some cases, continued
crack propagation after intermediate plastic

deformation, the latter remaining within the loading
span (Figure 12).

Elasto-plastic region followed by
immediate, brittle failure of the

sample (Figure 13).
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The presence of an initial elastic or elasto-plastic region prior to any localization of
deformation allowed determination or, in the case of the syntactic foams, approximation of
Young’s modulus using data from the strain gauges mounted on the samples between the
load introduction points (data summarized in Figure 14). In the comparison of the respec-
tive data, the reduced elastic modulus of the samples containing hollow glass microspheres
obvious, which is typical for foams in general, and thus also for syntactic foams [42], and
which enters as a linear factor into the formula for flexural rigidity of the samples. As
expected, the case hardening treatments did not have a significant influence on the slope of
the curve in this (quasi-elastic) bending regime.

Looking at the data on bending limits as depicted in Figure 15, it is noteworthy that
when comparing reference and syntactic foam samples, the latter maintains an advantage
corresponding to a factor of approximately 2.2 over their counterparts in both untreated
and the two case hardened conditions. However, because the case hardening treatment
obviously has a significant effect on matrix properties, as is also proven by the hardness
profiles obtained for the reference samples, the heat-treated syntactic foam samples outper-
form the as-sintered reference materials in absolute values of the bending limit despite that
fact that their density is significantly reduced by the filler addition.

The observed difference in failure modes of reference and syntactic foam materials
can be linked to previous studies on fracture toughness of identical types of syntactic
foams. Not surprisingly, these have indicated that failure tends to be more ductile in
unfilled compared to syntactic foam materials, with a matching effect on crack propagation.
Concerning crack propagation, some similarities can be found in other investigations
concerning high dynamic testing documented in the literature: impact energies measured
in Charpy impact tests performed on U- and V-notched samples proved to be one order of
magnitude higher for the former type of specimen, irrespective of the shape of the notch.
Similar differences were observed in J integral values [43].

The fact that case hardened reference samples exhibit a stepwise failure, may be in-
terpreted as an expression of the change in material properties with increasing distance
from the sample surface. This property gradient is of course the aim, and thus a logical
consequence of case hardening, and as such, it is also reflected in the hardness measure-
ments performed on the reference samples. It can be assumed that the drop in hardness
towards the core reflected in Figures 5 and 9 is correlated with a corresponding reduction in
strength and a parallel increase in ductility. This may explain the observed crack arrest and
the continuation of failure following an intermediary plastic phase as observed in some
of these samples. The contrasting response of the case hardened syntactic foam samples
confirms this understanding.

Altogether, these findings illustrate the very positive effect of the hardening treatments
on the properties of syntactic iron foams which open new application areas.

5. Conclusions

The present study has, for the first time, shed light on the susceptibility of iron matrix
syntactic foams to thermo-chemical surface hardening treatments. The main questions
addressed were whether the build-up of syntactic foam samples would significantly affect
the heat treatment outcome, and whether the treatment itself would cause damage to the
structure of the foam. The investigations have shown that treatments at parameter settings
typical for non-porous materials, can in fact be transferred to syntactic foams. The depth of
the case has been shown to be similar in both conventional and syntactic foam samples
containing approximately 40 vol.% of hollow glass microspheres. Moreover, the increase in
the bending limit obtained by the surface hardening treatments is similar for both groups
of materials and reaches factors of approximately 3.5. Not surprisingly, this increase in
strength coincides with a loss of ductility. The latter effect is more pronounced in the case
of the syntactic foam samples, as here both the change of matrix properties caused by the
heat treatment and the porosity adversely affects ductility.
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In terms of the elastic modulus, a positive effect of heat treatment is observed for non-
porous samples, indicating that in non-heat treated reference materials, plastic deformation
is initiated already during the very early stages of deformation. In the case of syntactic
foams, neither carburizing nor carbonitriding affects the elastic modulus in any statistically
significant way. Surface hardened reference materials outperform syntactic foams in this
respect once more by a factor of 2. However, the apparent advantage of the non-porous
materials is somewhat alleviated if the reduced density (−34.5%) of the foams is taken into
account, too, and weight-specific properties are compared.

In conclusion, it can be stated that thermo-chemical surface hardening treatments are
a viable option for iron matrix syntactic foams, and can be performed in the same manner
as would be the case for the unfilled matrix material. From a manufacturing technology
and application point of view, this is an extremely important result, as it means that

• thermo-chemical treatments common for gears can be transferred to composite gears
consisting of compact and porous, i.e., syntactic foam, components, and

• treatment parameters do not necessarily have to be adapted to accommodate special
requirements of the syntactic foam components.

In effect, this means that in terms of secondary processes, composite gear wheels,
which promise massive benefits in terms of weight reduction, vibration, and damping
characteristics, can be treated just like their conventional counterparts without the need
for additional dedicated process developments. This will greatly reduce any effort related
to their introduction, and it will open up paths for the realization of other highly loaded
engineering components on the basis of iron matrix syntactic foams.

Prior to this introduction, however, further research on material properties would be
beneficial. This includes the quantification of vibration damping properties of syntactic
foams in the as-sintered versus the surface hardened state, as well as the evaluation of these
materials’ characteristics under cyclic loads to judge their performance under conditions of
fatigue, which are important in gear wheel applications. The notion that effects specific to
syntactic foams may be encountered in this respect, is based on the observation that for
the material combination studied in the present case (hollow glass microspheres as filler),
some effect of the thermal treatment on the structure of the spheres was observed. If this
change turns out to have detrimental effects on, e.g., fatigue strength and consideration of
alternative filler materials with increased temperature resistance might be of interest.

According to the results of the presented investigations, syntactic foams represent an
excellent basis for the application, for example, as filling material for lightweight gears.
It can be assumed that the foams have a positive effect on the damping properties and
will therefore be of particular future interest for gears that are running at high speeds,
resulting in high excitation frequencies. It should be emphasized that the application of the
current processing technology for carburizing and carbonitriding gears with the highest
load capacity requirements is possible without adapting the heat treatment to the partial
change in materials brought in by a syntactic foam insert.

In view of the alternative fields of application (e.g., decoupling support structures)
besides the gear scenario, further studies with varied sphere contents in the range of
20–60 vol.% might be interesting and provide additional insights into the interaction of the
materials’ 3D structure with the diffusing components during the hardening treatments. In
view of the core application scenario, future studies should attempt to shed light on material
properties under cyclic loads to provide additional data for dimensioning of components.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ma14164358/s1, Figure S1: Example of a gear wheel with foam insert (Here: Al foam produced
via the FoaminalTM process). Inserted picture shows the added CFRP inlay required for sufficient
transmission of torque due to the limited strength of the low density Al foam. The gear originates
from a coopera-tion between Fraunhofer IFAM and WZL (RWTH Aachen). Figure S2: Overall
process chain of the sample production, Figure S3: Injection mould for sample production, Figure S4:

https://www.mdpi.com/article/10.3390/ma14164358/s1
https://www.mdpi.com/article/10.3390/ma14164358/s1


Materials 2021, 14, 4358 22 of 23

Time-temperature program for thermal debinding and sintering, Figure S5: Sample chamber of the
bell furnace used for hardening treatments, Figure S6: Setup of the 4-point bending test.
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