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Abstract

Aims: Most trials leading to the approval of glucagon-like peptide receptor agonists

(GLP-1RAs) and sodium-glucose co-transporter-2 inhibitors (SGLT2is) were primarily

designed to confirm their non-inferiority to placebo (commonly using an upper 95%

confidence limit threshold of 1.3) and, if confirmed, superiority (threshold 1): this

asymmetry of margins (1 vs. 1.3) favours the active intervention. We aimed to quan-

tify the probability of clinical superiority of the active treatment by applying the same

threshold used to claim non-inferiority.

Materials and Methods: We searched PubMed and Cochrane CENTRAL for cardio-

renal outcome trials in subjects with type 2 diabetes published before 5 December

2021, to reconstruct from Kaplan-Meier plots individual-level data for the primary

outcome or all-cause mortality. We calculated Bayesian posterior densities to obtain

the probability for a treatment effect (hazard ratio) <0.769, which is symmetric to the

1.3 threshold (i.e. its reciprocal 1/1.3), emulating a scenario where the active treat-

ment is placebo and placebo is the active treatment.

Results: We extracted data from 27 Kaplan-Meier plots (18 for the primary outcome,

nine for mortality). Probabilities of clinical superiority to placebo varied significantly:

for GLP-1RAs, from a minimum of 0% to a maximum of 69% for the primary outcome

and from 0% to 8% for mortality; corresponding estimates for SGLT2is were 0% to

96% and 0% to 93%. Probabilities were on average greater for SGLT2is, particularly

in trials investigating kidney or heart failure outcomes.

Conclusions: The probability of clinical superiority to placebo varies widely across tri-

als previously reported as showing superiority of GLP-1RAs or SGLT2is compared

with placebo. These results showed within- and between-class differences, highlight

the drawbacks of a binary interpretation of the results, particularly in the context of

the current designs of non-inferiority trials, and have implications for decision makers

and future clinical recommendations.
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1 | INTRODUCTION

Randomized controlled trials showed that treatments with glucagon-

like peptide 1 receptor agonists (GLP-1RA) or sodium-glucose co-

transporter-2 inhibitors (SGLT2is) result in notable reductions in the

rates of classical atherothrombotic cardiovascular events, such as

myocardial infarction and stroke, as well as in renal and heart failure

outcomes in subjects with type 2 diabetes.1 Most of these trials, pop-

ularized as ‘cardiovascular outcome trials’ (CVOTs), were designed

according to the 2008 United States Food and Drug Administration

(FDA) recommendations for industry,2 after concerns around the car-

diovascular risks of glucose-lowering medications such as

rosiglitazone.3 Newer glucose-lowering medications now had to be

shown not to result in an unacceptable increase in the risk of cardio-

vascular disease. To secure FDA approval, these large phase 3 trials

had to show safety in the form of non-inferiority of the active com-

pared with the control treatment, defined as an upper bound of the

two-sided 95% confidence interval (CI) lower than 1.3 (more rarely

1.8) in the active versus control comparison.

Many CVOTs also tested the hypothesis of efficacy through

superiority of the active treatment in a hierarchical way, i.e. upon

demonstration first of non-inferiority. This approach, however, may

result in an important limitation, which stems from the way in which

the thresholds used to claim non-inferiority (1.3) and superiority

(1) are applied,4 which becomes apparent in certain scenarios where

the roles of the active treatment and the control are being reversed

(Figure 1). As an example, if the comparison active versus control

results in a hazard ratio (HR) of 0.95 (95% CI: 0.85-1.06), the trial is

labelled as showing non-inferiority of the active treatment to control.

When inverting the roles and estimating the reciprocal of the HRs

(1/HR), the control versus active treatment results in an HR of 1.05

(0.94-1.18), which indicates the non-inferiority of the control (and

thus its potential approval) compared with the active treatment

(Figure 1). In that hypothetical trial, each arm is non-inferior to the

other and neither is superior, a conclusion that is logically sound. By

contrast, in a trial where the comparison of active versus control

results in an HR of 0.90 (0.85-0.95) – labelled as showing both non-

inferiority and superiority of the active treatment, the inverse compar-

ison (1.11; 1.05-1.18) still indicates the non-inferiority of control to

active treatment. In other words, the active treatment here is superior

to the control and, at the same time, the control non-inferior (based

on the arbitrarily chosen non-inferiority margin of 1.3) to the active

treatment (Figure 1).

The incongruence stems from the asymmetry of the two thresh-

olds, HR <1.3 for non-inferiority and HR <1 for superiority, which

favours the active over the control treatment.4 If an increase in the

rate of the outcome up to 1.3 (30%) is accepted to claim non-inferior-

ity, it seems reasonable and ethical to declare clinical rather than mere

statistical superiority to the control when the reduction in the rate

with the active treatment is also at least 30%, rather than any reduc-

tion greater than 0% (i.e. 95% CI upper bound lower than 1).4 Conse-

quently, when comparing the active versus control treatment the

upper bound of the 95% CI should be <1/1.3, which equates to

0.769; such a threshold could help distinguish between a ‘statistically’

F IGURE 1 Statistical and clinical significance in non-inferiority trials. Five hypothetical trials showed the logical inconsistency between the
criteria for non-inferiority and for superiority. Black dotted line shows the margin of 1 to determine statistical superiority, while the dotted
magenta line indicates the margin of 1.3 commonly considered when investigating the non-inferiority of the active medication to control in
cardiorenal outcome trials in type 2 diabetes. A trial comparing an active versus control intervention with an hazards ratio (HR) of 0.95 (0.85-1.06;
second row) shows the non-inferiority (upper bound of 95% confidence interval lower than 1.3) of the active compared with the control
intervention; when inverting the roles and considering control versus active intervention, the HR is 1.05 (0.94-1.18) and shows non-inferiority of
the control compared with the active intervention; therefore, in this trial each arm is clinically non-inferior to the other and neither is clinically
superior. A trial showing an HR of 0.90 (0.85-0.95; first row) comparing active with control intervention shows both clinical non-inferiority (upper
bound of 95% confidence interval lower than 1.3) and statistical superiority (upper bound of 95% confidence interval lower than 1); however, this
trial is considered to indicate clinical superiority as the threshold of 1 is also used to claim clinical superiority. This results in a paradox as the
inverse comparison control versus active (1.11; 1.05-1.18) shows the clinical non-inferiority of the control to the active treatment; therefore, in
the same trial the active treatment is superior to the control but, at the same time, the control is non-inferior to the active treatment. Note that
not all possible results are shown in this active versus control example [i.e. 0.93 (0.60-1.45); 1.09 (0.95-1.25); 1.17 (0.95, 1.45)].
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(upper bound <1) and a ‘clinically’ (upper bound <0.769) significant

reduction in the outcome rates.

Different thresholds may be defined to deem an active treatment

clinically significant. It may be argued that 1.3 is high in some scenar-

ios (e.g. the costs of the active and comparator treatment are similar)

but not in others (e.g. the side effects in the current treatment are too

severe or frequent), which would make the process of clinical inter-

pretation more subjective. In this respect, a Bayesian estimation of

the treatment effect is helpful, as it allows us to quantify the probabil-

ity that the effect is lower (or greater) than any specific threshold

(Figure 2).5-9

Within this context, we extracted individual level data from all

published CVOTs including subjects with type 2 diabetes randomized

to a GLP-1RA or SGLT2 inhibitor and reporting incident

cardiovascular or renal (cardiorenal) or all-cause mortality events, to

estimate their effects with two main goals: (a) quantify the probability

that each treatment results in a reduction of the outcome at least

equal to the 1.3 threshold used to declare non-inferiority to the con-

trol, i.e. the probability that the active treatment is clinically superior,

and (b) estimate these probabilities for a range of other thresholds to

aid the understanding of treatment effects across a continuum and

facilitate comparisons within and between the two glucose-lowering

classes.

2 | MATERIALS AND METHODS

2.1 | Data sources and searches

We conducted this study in line with a pre-specified protocol and

reported the results following current guidance for conducting and

reporting systematic reviews (PRISMA checklist reported in the

Appendix S1).10 We searched PubMed and the Cochrane Central Reg-

ister of Controlled Trials (CENTRAL) for randomized controlled trials

published in English before 5 December 2021; the search strategy is

reported in Figure S1.

2.2 | Study selection

We initially identified trials including adult patients with type 2 diabe-

tes mellitus randomized to a GLP-1RA or SGLT2i and investigating the

risk of cardiovascular outcomes or death. Records were included if

the Kaplan-Meier plot was available for the primary outcome or all-

cause mortality. In view of the prominent effect of the SGLT2is on

chronic kidney disease and heart failure outcomes observed in earlier

trials, more recent studies have primarily explored the effects of

SGLT2is on these two outcomes in subjects with and without type

2 diabetes at randomization. We therefore identified also studies with

outcomes related to chronic kidney disease or heart failure, which

enrolled all or a subcohort of subjects with type 2 diabetes; in the lat-

ter case, studies were included if the Kaplan-Meier plot for the pri-

mary outcome or death was available for the group of subjects with

type 2 diabetes. We excluded studies reporting subgroup analyses of

the main trial (i.e. stratified Kaplan-Meier plots by the presence of

chronic kidney disease or heart failure at randomization).

2.3 | Data extraction and quality assessment

We used a standardized, pre-defined form to extract trial data. In each

study, information was retrieved for: first author name; trial acronym;

ClinicalTrials.gov (NCT) number; PubMed ID (PMID) identifier num-

ber; GLP-1RA or SGLT2i agent; baseline characteristics of trial partici-

pants (number of randomized participants, age and sex);

characteristics of the trial (inclusion criteria, follow-up duration, pri-

mary outcome definition, number of subjects with primary outcome

F IGURE 2 Posterior distribution and probabilities for a
hypothetical trial. Top panel: Posterior hazard ratio distribution with
mean 0.95 and 95% credible interval of 0.76-1.15 (yellow circles on
the x-axis) in a simulated trial comparing active versus control
treatment. The area under the curve A indicates the probability of
values of hazard ratio ≤0.8: such probability (6.5%) can be determined
in the bottom panel (cumulative density plot) as the value on the y-
axis corresponding to the hazard ratio of 0.8. Probability of values of
hazard ratio ≤1.1 is 93.0%, corresponding to the sum of the three
areas A + B + C. This plot shows how, in a Bayesian context, it is

possible to quantify the probability that the magnitude of a treatment
effect is smaller (or larger) than a specific threshold.
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events and number of deaths); available Kaplan-Meier plots. Study

quality was assessed with the Cochrane risk of bias tool.11 Disagree-

ment at any stage of the review process was solved by consensus or

arbitration.

2.4 | Data synthesis and analysis

From each Kaplan-Meier curve, we extracted data on the number of

patients at risk and, using Engauge Digitizer, on the time (x-axis) and

survival probability (y-axis) coordinates. We then used the Stata

ipdfc command to reconstruct individual level time to event data

from the corresponding x-y values and the total number of events.12

To estimate the treatment effect (the HR comparing the active

treatment vs. placebo), individual-level data were analysed in R using

the Bayesian survival analysis package rstanarm.13 We modelled the

log baseline hazard function with a B-spline (four degrees of free-

dom) and selected weakly informative normal priors for the inter-

cept of the linear predictor and for each spline coefficient (mean

± standard deviation 0 ± 20) as well as for the treatment effect

(mean ± standard deviation 0 ± 2.5):13 these priors allow the results

to be closer to the treatment effect calculated in the original trial

with the Cox regression.14 For each trial and outcome, we obtained

the posterior density distribution with 10 000 Markov chain Monte

Carlo iterations; convergence was evaluated by visual inspection of

the trace and autocorrelation plots and using the bR statistic. The

probabilities of a treatment effect lower than 0.769 and 1 were calcu-

lated as the proportions of values of HR lower than 0.769 and

1, respectively. As the value of the non-inferiority margin is based on

a combination of clinical and statistical criteria, we estimated probabil-

ities also for other values of HR.

We also estimated the HR with the frequentist Cox regression

using the extracted data and compared it with the Bayesian and origi-

nal, reported study estimate: this served to clarify whether potential

differences between the Bayesian and reported estimate were

because of the Bayesian modelling (Cox and reported estimate similar

but Bayesian different) or to the quality of data extraction from the

Kaplan-Meier curves (Cox and Bayesian estimate similar but different

from the original report).

We used Engauge Digitizer (version 10.11) for Kaplan-Meier data

extraction; Stata BE (version 17.0) for data manipulation, analyses and

graphs; R (version 4.0.1) for the Bayesian analysis;13 and Inkscape

(version 0.92.3) for graph finalization.

3 | RESULTS

3.1 | Study characteristics

After excluding duplicates and screening by title or abstract, we

assessed the full text of 44 articles: six reported the baseline charac-

teristics of trial participants, trial protocol or comments on the results,

while in 19 no Kaplan-Meier plots for the primary outcome or all-

cause mortality were available, leaving 19 articles (reporting

27 Kaplan-Meier plots in 18 trials) for data extraction and quantitative

analyses (Figure S1, Tables S1 and S2). The references of the included

studies are reported in Appendix S1.

The characteristics of the included trials are summarized in

Tables S1 and S2: Kaplan-Meier curves for the primary outcome

were available in all trials (eight with GLP-1RAs and 10 with

SGLT2is). The definition of the primary outcome was largely consis-

tent across studies with GLP-1RAs [composite of a 3-point major

adverse cardiac events (MACE): non-fatal myocardial infarction,

non-fatal stroke or death from cardiovascular causes]; conversely, it

varied across studies with SGLT2is, being 3-point MACE in five and

a variable combination of hospitalization for heart failure and renal

outcomes in the remaining five studies (Table S2). In all trials with a

GLP-1RA and in seven with a SGLT2i, all subjects had type 2 diabe-

tes at randomization; in DAPA-CKD and DAPA-HF, subjects with

type 2 diabetes constituted a subcohort representing 67.5% and

45.1% of the overall participants, respectively; in EMPEROR

Reduced, the proportion of subjects with type 1 or type 2 diabetes

was 49.8%. Inclusion criteria also varied across trials: most studies

with GLP-1RAs enrolled adult subjects with either established ath-

erosclerotic cardiovascular disease or cardiovascular risk factors

(both heterogeneously defined) while trials with SGLT2is included

predominantly adult subjects with chronic kidney disease or heart

failure (Table S2).

In total, 109 977 subjects with diabetes participated in the trials:

60 080 in studies with GLP-1RAs (range 3183-14 752) and 49 897 in

those with SGLT2is (range 1222-10 584). At baseline, the weighted

median (interquartile range) age was 64.3 (63.1-66.0) years and 64%

were men; the median follow-up was 2.6 (1.6-3.5) years. The primary

outcome, reported in all but one trial, occurred in 12 792 participants;

the number of deaths was reported in all but one trial, totalling 8769;

and the rate of primary outcome and death in the placebo arm ranged

from 24 to 246 and 16 to 163 per 1000 person-years, respectively

(Table S1).

Across all items and trials, the risk of bias was deemed low, high

and unclear in 92%, 3% and 5% of cases, respectively (Table S3). The

highest domain-specific bias was observed for ‘incomplete outcome

data’ (three trials, 17%) followed by ‘blinding of outcome assessment’
(one trial, 6%).

3.2 | Treatment effects

Posterior medians and 95% credible intervals of the distributions of

the HRs, for each trial and available outcome, are summarized in

Figure 3; their densities and cumulative probabilities are shown in

Figures S2 and S3, respectively.

In trials with GLP-1RAs, for the primary outcome the probability

of resulting in any reduction in the event rate (i.e. upper limit of the

95% credible interval <1) ranged from 92% (PIONEER-6) to 100%

(LEADER, HARMONY Outcomes and AMPLITUDE-O), with the

exception of ELIXA (40%). The probability of a reduction greater than
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the threshold used to declare the non-inferiority to placebo –

corresponding to the probability for the active treatment of being clin-

ically superior to placebo – varied significantly across trials (Figure 4):

it ranged from 0% to 2% in ELIXA, EXSCEL, REWIND and LEADER;

and from 41% to 69% in PIONEER-6, SUSTAIN-6 and

AMPLITUDE-O. In the original reports, all trials showed superiority to

placebo, except ELIXA and PIONEER-6 (Table 1 and Figure 4). Among

the three trials with data on all-cause death, REWIND and EXSCEL

showed a probability of an HR <1 of 98%, and LEADER of 99%; the

corresponding probabilities of clinical superiority to placebo were 1%,

1% and 8%, respectively (Figure 4). REWIND and LEADER also

showed superiority to placebo in the original reports (Table 1 and

Figure 4).

For SGLT2is, the probability of any reduction in the rates of

primary outcomes was lowest in VERTIS-CV (77%) followed by

DECLARE-TIMI-58 (89%); for all other trials, it was ≥99%. Proba-

bilities of clinical superiority varied more than those estimated for

GLP-1RAs, ranging from 0% to 17% in DECLARE-TIMI-58,

VERTIS-CV, EMPA-REG OUTCOME, CANVAS Program and

SCORED; 55% to 77% in DAPA-HF and EMPEROR Reduced,

F IGURE 3 Bayesian treatment effect
estimates. Each point corresponds to the
estimate from a single iteration (10 000
for each trial and outcome); the box plot
shows the median and interquartile range
with spikes indicating the 95% credible
interval; and the dotted magenta and
green lines indicate the hazard ratio
corresponding to the margin for clinical

(1/1.3 = 0.769) and statistical
(1) superiority, respectively, comparing
active medication to placebo. Trials are
sorted by drug class (blue, glucagon-like
peptide-1 receptor agonists; orange,
sodium-glucose co-transporter-2
inhibitors) and alphabetically.

F IGURE 4 Statistical and
clinical superiority of the active
drug compared with placebo.
Tornado plot showing the
probability of statistical [grey;
hazard ratio (HR) <1) and clinical
(red; HR <0.769) superiority of
the active drug compared with
placebo; corresponding HRs
reported in the original article are
shown in the forest plot. Trials
sorted by drug class, outcome (M,
mortality; P, primary), and
increasing probability of clinical
superiority of the active drug.
GLP-1, glucagon-like peptide-1;
SGLT2i, sodium-glucose co-
transporter-2.
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respectively; and ≥89% in CREDENCE, SOLOIST-WHF and DAPA-

CKD (Figure 4). All trials, except VERTIS-CV, showed superiority to

placebo in the original reports (Table 1 and Figure 4). Six trials

yielded data on all-cause mortality; the probability of an HR <1

was 70% in DECLARE-TIMI-58 and ≥97% in CREDENCE, CANVAS

Program, DAPA-CKD, DAPA-HF and EMPA-REG OUTCOME; the

corresponding probabilities of clinical superiority were: 0% in

DECLARE-TIMI-58; 10% in CANVAS Program; 28% in CREDENCE;

44% in DAPA-HF; 63% in DAPA-CKD; and 93% in EMPA-REG

OUTCOME (Figure 4). Superiority to placebo was shown in the

original report of DAPA-CKD, DAPA-HF and EMPA-REG OUT-

COME (Table 1 and Figure 4).

The probability of reducing the rates of the primary outcome and

mortality, across all possible thresholds of HR, is shown in Figure S3.

3.3 | Quality of data extraction

HRs estimated with the Cox regression and the Bayesian modelling,

both using data extracted from Kaplan-Meier curves, are shown in

Table 1 and Figure S4. Their comparison indicated a virtually complete

overlap in each trial, as expected using weakly informative priors. The

comparison between the Cox and the original report showed a high

quality of data extraction, as the two estimates were almost identical

across trials: the smallest and largest ratios between the Cox and the

reported HR were 0.93 (primary outcome in the SOLOIST-WHF trial)

and 1.04 (all-cause mortality in the DECLARE-TIMI-58 trial;

Figure S4); for the same studies, there were also the largest and

smallest differences between the Cox and reported HR: –0.05 (0.66

vs. 0.71) and +0.04 (0.97 vs. 0.93), respectively (Table 1).

TABLE 1 Reported and estimated hazard ratios

Class, outcome Randomized controlled trial Cox PH regression Bayesian modelling Original report

GLP-1RAs

Primary outcome AMPLITUDE-O 0.73 (0.58, 0.91) 0.73 (0.58, 0.92) 0.73 (0.58, 0.92)

ELIXA 1.02 (0.88, 1.17) 1.02 (0.89, 1.17) 1.02 (0.89, 1.17)

EXSCEL 0.92 (0.84, 1.02) 0.92 (0.84, 1.02) 0.91 (0.83, 1.00)

HARMONY outcomes 0.78 (0.68, 0.90) 0.78 (0.68, 0.90) 0.78 (0.68, 0.90)

LEADER 0.86 (0.78, 0.96) 0.87 (0.78, 0.97) 0.87 (0.78, 0.97)

PIONEER-6 0.79 (0.57, 1.11) 0.80 (0.56, 1.10) 0.79 (0.57, 1.11)

REWIND 0.88 (0.79, 0.99) 0.88 (0.79, 0.99) 0.88 (0.79, 0.99)

SUSTAIN-6 0.74 (0.57, 0.95) 0.74 (0.57, 0.94) 0.74 (0.58, 0.95)

All-cause mortality EXSCEL 0.88 (0.78, 1.00) 0.89 (0.79, 1.00) 0.86 (0.77, 0.97)

LEADER 0.85 (0.74, 0.97) 0.85 (0.74, 0.97) 0.85 (0.74, 0.97)

REWIND 0.88 (0.79, 1.00) 0.89 (0.79, 0.99) 0.90 (0.80, 1.01)

SGLT2is

Primary outcome CANVAS program 0.82 (0.72, 0.92) 0.82 (0.73, 0.93) 0.86 (0.75, 0.97)

CREDENCE 0.69 (0.59, 0.82) 0.70 (0.59, 0.82) 0.70 (0.59, 0.82)

DAPA-CKD 0.64 (0.52, 0.79) 0.64 (0.52, 0.79) 0.64 (0.52, 0.79)

DAPA-HF 0.76 (0.64, 0.91) 0.76 (0.63, 0.91) 0.75 (0.63, 0.90)

DECLARE-TIMI-58 0.94 (0.85, 1.04) 0.94 (0.84, 1.04) 0.93 (0.84, 1.03)

EMPA-REG OUTCOME 0.85 (0.73, 0.98) 0.85 (0.73, 0.98) 0.86 (0.74, 0.99)

EMPEROR reduced 0.72 (0.59, 0.86) 0.72 (0.59, 0.86) 0.72 (0.60, 0.87)

SCORED 0.83 (0.71, 0.97) 0.83 (0.71, 0.97) 0.84 (0.72, 0.99)

SOLOIST-WHF 0.66 (0.53, 0.81) 0.66 (0.53, 0.81) 0.71 (0.56, 0.89)

VERTIS CV 0.95 (0.83, 1.08) 0.95 (0.83, 1.09) 0.97 (0.85, 1.11)

All-cause mortality CANVAS program 0.85 (0.73, 0.99) 0.85 (0.73, 0.99) 0.87 (0.74, 1.01)

CREDENCE 0.82 (0.67, 1.00) 0.82 (0.66, 1.01) 0.83 (0.68, 1.02)

DAPA-CKD 0.74 (0.55, 0.98) 0.74 (0.54, 0.98) 0.74 (0.56, 0.98)

DAPA-HF 0.78 (0.63, 0.98) 0.79 (0.63, 0.98) 0.78 (0.63, 0.97)

DECLARE-TIMI-58 0.97 (0.86, 1.10) 0.97 (0.85, 1.10) 0.93 (0.82, 1.04)

EMPA-REG OUTCOME 0.67 (0.55, 0.80) 0.67 (0.56, 0.81) 0.68 (0.57, 0.82)

Note: Within each drug class, trials are sorted by outcome and alphabetically.

Cox PH and Bayesian modelling based on individual-level data extracted from the original study publication (Kaplan-Meier curve). The Bayesian estimation

is mean and 95% credible interval of the posterior distribution.

GLP-1RA, glucagon-like peptide receptor agonists; PH, proportional hazards; SGLT2is, sodium-glucose co-transporter-2 inhibitors.
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4 | DISCUSSION

Using data from trials investigating GLP-1RAs and SGLT2is, we esti-

mated the treatment effect with a Bayesian survival model and quan-

tified the probability for the active treatment of being not only

statistically but also clinically superior to placebo, defined using the

same threshold suggested by the FDA to claim non-inferiority. While

most trials showed ‘superiority’ of the active treatment in the original

published report, the probability of clinical superiority varied signifi-

cantly: in studies with GLP-1RAs, from a minimum of 0% to a maxi-

mum of 69% for the primary outcome and from 0% to 8% for

mortality; in those with SGLT2is, from 0% to 96% for the primary out-

come and from 0% to 93% for mortality, although probabilities were

on average greater for SGLT2is than for GLP-1RAs.

Virtually all trials investigating the efficacy or safety of medical

products, devices, or strategies have been designed within a

frequentist approach. Frequentist methods have several limitations,

including the impossibility of interpreting the treatment effect in

terms of probability statements and the complexities of testing more

than one primary hypothesis (the null hypothesis of no difference

vs. the alternative hypothesis of a difference).8 Notwithstanding

efforts to discriminate statistically from clinically significant results

and avoid the equivalence between no evidence and evidence of no

effect,15 trial results are still commonly interpreted, defined, popular-

ized and evoked in a dichotomous way: either ‘positive’ or ‘negative’
(the trial ‘showed’ or the trial ‘failed to show’ are other common defi-

nitions).16 In most, if not all, cases, the criteria to separate these two

worlds are a specific P-value (almost universally P < 0.05) or an upper

bound of the confidence interval lower than 1. Besides the ease of

recalling the results, there are no other advantages of such a binary

interpretation while its negative scientific implications are well-

known.17 Particularly in the context of trials for drug approval, esti-

mating a treatment effect is a matter of quantifying a magnitude

rather than testing a hypothesis: the latter approach would indeed dis-

card a hypothetical treatment showing an HR of 0.68 (95% CI:

0.46-1.01) in favour of another showing an HR of 0.95 (95% CI:

0.92-0.98), yet the magnitude of the effect is potentially much larger

in the former study. Using a real example from our study, the reported

HR for the primary outcome in PIONEER-6 was 0.79 (95% CI:

0.57-1.11), indicating non-inferiority but not superiority, while in

HARMONY Outcomes it was 0.78 (95% CI: 0.68-0.90), indicating

superiority; however, the probabilities of being clinically superior to

the placebo were 43% and 41% and of resulting in any reduction

(i.e. HR <1) 92% and 100%, respectively; these figures indicate a much

greater similarity between the two treatment effects than what is

suggested by the dichotomous interpretation of the results.

A Bayesian approach helps to circumvent some limitations of the

frequentist, hypothesis-testing approach.6-9 Rather than classifying

the results in two alternatives, Bayesian estimates encompass the

continuous spectrum of the magnitude of effect and permit a more

nuanced and natural, probabilistic interpretation of the results. As an

example, the 95% credible interval represents the probability within

which lies, with a 95% probability, the treatment effect; such an

interpretation is not possible when considering the frequentist 95%

confidence interval. Estimating the probability of a treatment effect

across varying thresholds gives deeper insights into the treatment

effect and better aligns with a context-specific, personalized approach

to glucose-lowering therapies, if compared with the results obtained

within the frequentist framework. Thresholds, for example, may differ

between patients and change in the same patient over time: instead

of a 23% reduction (HR 0.77), a smaller reduction in the rate of MACE

may be also considered clinically meaningful. Moreover, although sev-

eral factors are simultaneously considered, label indications from reg-

ulatory agencies and clinical recommendations on glucose-lowering

medications in subjects with type 2 diabetes are mainly based on the

available evidence centred on dichotomous interpretations of the

results.18,19 The large differences in the clinical superiority observed

within and between GLP-1RAs and SGLT2is across the investigated

outcomes underline the limitations of the current decisional frame-

works leading to their approval, call into question the within-class

equivalence in most of the current clinical guidelines, and may better

inform future indications, clinical recommendations and therapeutic

decisions.

Notably, the estimated probabilities of clinical superiority for the

primary outcomes were consistently greater in trials with SGLT2is

investigating kidney or heart failure compared with atherothrombotic

outcomes; this was true also for mortality, with the exception of the

EMPA-REG OUTCOME trial, which showed the clinical superiority of

empagliflozin. Probabilities of clinical superiority for GLP-1RAs were

generally lower or much lower: except in HARMONY Outcomes,

PIONEER-6, SUSTAIN-6 and AMPLITUDE-O, the highest probability

in all remaining trials was only 8%, for both the primary outcome and

mortality. While current guidance acknowledges the different target

population and the divergent effects of the GLP-1RAs and SGLT2is,18

reflecting their distinct pharmacodynamics,1 our findings robustly

show also clinically relevant differences among GLP-1RAs, with

albiglutide, efpeglenatide and semaglutide more likely to confer clini-

cally significant cardiovascular benefits than other GLP-1RAs. The

heterogeneous results across trials, however, are related not only to

the pharmacological differences between and within GLP-1RAs and

SGLT2is but may also reflect differences in the designs and character-

istics of the subjects included in the trials. This is particularly impor-

tant when trial-specific results are interpreted on the absolute risk

reduction (rather than HR) scale, as the risk of outcomes varied across

trials. Moreover, while initial RCTs with SGLT2is mainly investigated

MACE, more recent ones – based on the primary positive results –

have expanded or changed the outcomes, focusing prevalently on kid-

ney and heart failure events.

A Bayesian approach requires the inclusion in the statistical model

of a prior probability for the treatment effect, which represents the

belief about the distribution of its possible values before data collec-

tion; this information is then combined with the treatment effect

observed in trial data (likelihood) to obtain the final results (posterior

distributions).14 Previous information may be completely subjective or

derived from previous evidence, for example from single trials or

meta-analyses. Incorporating prior information has been considered a
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main limitation of the Bayesian methods, as the results may be largely

influenced by the prior.20 In line with the main goal of this analysis,

we used weakly informative priors, which have a small impact com-

pared with the trial data on the final HR estimate, as confirmed by the

virtually identical Bayesian and reported HR estimates.

Differences between the HR calculated with the frequentist Cox

regression or the Bayesian survival analysis from the extracted data

and the HR reported in the original study were somewhat higher in

two trials: SOLOIST-WHF and DECLARE-TIMI-58. As in both studies

the Cox and Bayesian estimates were identical, the process of data

extraction rather than the Bayesian statistical modelling may have

contributed to the small discrepancies (further details are reported in

Appendix S1).

To date, the uptake of Bayesian methods in clinical trials has been

limited. This is partly related to the limited availability of software to

conduct Bayesian analysis and partly to the apparently less applicable

nature of the Bayesian results compared with the binary frequentist

interpretation (evidence that an intervention ‘improves’ vs. ‘does not
improve’) and the necessary nature of a health care label decision

(yes/no).17 However, a Bayesian approach to the analysis of clinical

trials is not the solution to all (frequentist) problems and frequentist

metrics may complement Bayesian estimates. One direction is to

focus on the absolute effect, such as comparison of absolute event

rates in the competing arms. This provides simple but powerful infor-

mation, as a very large reduction (e.g. HR 0.4) results in a very small

absolute rate difference if the outcome is rare. A further metric is the

restricted mean survival time, which is the time of the outcome post-

ponement because of the treatment during a specified time interval:21

for non-inferiority trials with low event rates, short duration, or large

non-inferiority margin, restricted mean survival time has better power

than the common proportional hazard method.22,23 Another direction

is to move beyond single estimates or to derive metrics from the p-

value to enhance the interpretation of results and enable comparisons

among trials.24 In this vein, the p-value function yields the magnitude

of the effect across different p-values,25 and the resulting curve looks

similar to, but is conceptually very different from, the Bayesian poste-

rior distribution.26 Useful metrics derived from the p-value include the

S-value25 and the counter-null value.27 All these metrics have been

retrospectively estimated in CVOTs with GLP-1RAs and

SGLT2is,21,24,28 showing, for example, how small treatment effects

from these trials are likely to be on the absolute scale (with most

drugs postponing the outcome by only a few days over the course of

the trial period), and how similar some of the treatment effects are

that straddle the threshold for statistical significance. While such

studies caution against the over-reliance on single metrics to estimate

or interpret treatment effects, future trials should proactively report

this complementary information and more frequently consider Bayes-

ian approaches to treatment effect estimate.5,6,9

The results of randomized controlled trials investigating the

safety and efficacy of GLP-1RAs and SGLT2is have led to the

approval of several therapies and to an unprecedented growth in

the number of available treatments for type 2 diabetes; directly or

indirectly, the 2008 FDA regulatory requirement has been a strong

influence on the design and implementation of such trials. Further

consideration, however, is required if the goal is to claim not only

non-inferiority of these medications but also their clinical superior-

ity, as the recommended characteristics and current interpretation

of the non-inferiority trials bias the comparison in favour of the

medication under investigation for approval. Using the margin of 1.3

suggested by the FDA to declare non-inferiority, we showed that

the evidence for clinical superiority is modest or null for some treat-

ments and more robust for others, with remarkable differences

across outcomes as well as between and within GLP-1RAs and

SGLT2is. In view of the drawbacks that have so far characterized

the design and interpretation of non-inferiority trials, changes in the

recommendations on their design and complementary analytical

approaches may help generate more informative and actionable evi-

dence for health care professionals and patients.29-31
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