Ln-type estimators for the estimation of the population mean of a sensitive study variable using auxiliary information

Muhammad Nouman Qureshi ${ }^{\text {a, * }}$, Yousaf Faizan ${ }^{\text {b }}$, Amrutha Shetty ${ }^{\mathrm{c}}$, Marwan H. Ahelali ${ }^{\text {d }}$, Muhammad Hanif ${ }^{\mathrm{e}}$, Osama Abdulaziz Alamri ${ }^{\mathrm{d}}$
${ }^{\text {a }}$ School of Statistics, University of Minnesota, Twin Cities, USA
${ }^{\mathrm{b}}$ Department of Data Science, Harrisburg University of Science and Technology, USA
${ }^{\text {c }}$ College of Science and Engineering, University of Minnesota, Twin Cities, USA
${ }^{\text {d }}$ Statistics Department, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
${ }^{\mathrm{e}}$ Department of Statistics, National College of Business Administration and Economics, Lahore, Pakistan

ARTICLE INFO

Keywords:

Randomized response technique
Auxiliary information
Sensitive study variable
Ln-type estimators
Mean squared error

Abstract

In this article, we offered two ln-type estimators for the population mean estimation of a sensitive study variable by using the auxiliary information under the design of basic probability sampling. The Taylor and log series were used to derive the expressions of mean square error and bias up to the first order. Improved classes of proposed estimators are obtained by using conventional parameters associated with the supplementary variable to obtained precise estimates. Mathematical comparisons of the estimators have been made with the usual mean and ratio estimators using theoretical equations of mean square error. A simulation study is conducted for the evaluation of proposed estimator's implementation using four artificial populations generated through R-software with different choices of mean vectors and variance-covariance matrices. The demonstration of proposed \ln-type estimators was implemented through the real data application.

1. Introduction

In many real-life surveys, the main problem arises when our concerned variable is confidential in direct and natural observation is not possible. The answer may not be true but fabricated or even the rejection by the respondent whenever a sensitive question is asked of the respondent. To reduce the response error problem [1], first gave the used the randomized response technique (RRT) which supports interrogators to trustworthy information from sensitive questions while sustaining the respondent secrecy. The RRT permits the respondent to mark the real response by providing a knotted response, where there is a facility for researchers to decode at a comprehensive level (and not on an individual level). Many other researchers modified, extended, and improved the RRTs in different ways. Before the last decade, various authors assessed the average of the confidential variable without having the auxiliary data which includes [2-6]; and [7].

The use of supplementary information in sample surveys is very effectual for the substantial decline in the equation of MSE of the estimators, in particular, for the situation of high correlation between the support and interest variables. Nowadays, researchers usually might be inclined to get information on many variables (which may be connected with the main variable of variable) rather

[^0]than just the main variable of interest. The variables collected along with the variable of main study to obtain precise estimates are known as the auxiliary variables. Various examples of auxiliary information along with the sensitive survey variable have been described in the literature. For instance, in business surveys, the purchase order (Y) is considered the confidential variable for enterprises, and the supporting variable (X) may be the revenue of each enterprise. Illegal income is a confidential study variable (Y) whereas household expenditures, savings, or bills may be considered non-sensitive auxiliary variables. The use of drugs is known as a sensitive variable (Y) while gender or age is may be treated as the assisting variable (X).

Several authors have provided numerous ratio and product type estimators when both auxiliary and research variables are readily observable. . These comprise [8-15] and many more. For the estimation of quantitative sensitive variables, traditional ratio, linear regression and regression-cum-ratio type estimators were respectively proposed by Refs. [16,17]; and [18]. Later on, [19-28]; and [29] have proposed numerous estimators using different $R R M$.

In this article, we have provided two generalized \ln-type estimators for the estimation of population mean for a sensitive variable in the context of the non-sensitive auxiliary variable under SRS design. The sampling procedure, basic notations, formulas, and some significant estimators are given in Section 2. We derive the expressions of approximate MSE and bias of the proposed estimators using well-known log and Taylor expansions in Section 3 and we got some new cases of the proposed estimators using different choices of the scalar constants. The proposed estimators are compared against the existing estimators mathematically in Section 4 to identify the ideal conditions. An extensive study of simulation is managed in Section 5 to judge the application of proposed ln-type estimators for the scrambled responses estimation. Real data application is also used in Section 6 to validate the findings obtained from simulation study. Comments and closing remarks are presented in Section 7.

2. Methodology, Notations and Associated Estimators

Let Y be the primary variable of the study, which is sensitive and cannot observe directly whereas X is the supporting variable correlated with the concerned study variable. Consider a finite population, say P, which involves of N distinct units, $P=\left(\mathrm{P}_{1}, \mathrm{P}_{2} \cdots \mathrm{P}_{\mathrm{N}}\right)$ and numbered from 1 to N units. Let ' S ' be a scrambling variable with mean zero and constant variance and assumed to be independent from Y an X. The reported response is indicated by Z obtained by the model $Z=Y+S$ given by Ref. [30]. As the mean, μ_{s} is zero, we have $\mu_{z}=\mu_{y}$. Let y_{i}, z_{i} and x_{i} are the observed values of Y, Z and X respectively. Assume that the pairs of $\left(z_{i} x_{i}\right)(i=1,2, \ldots, n)$ values are taken from n units chosen from N population units using the scheme of simple random sampling without replacement (SRSWOR).

The population means and variances for Y, Z, X and S are respectively denoted by:
$\mu_{y}=(1 / N) \sum_{j=1}^{N} y_{j}, \mu_{z}=(1 / N) \sum_{j=1}^{N} z_{j}, \quad \mu_{x}=(1 / N) \sum_{j=1}^{N} x_{j}$ and $\mu_{s}=(1 / N) \sum_{j=1}^{N} S_{j} . \quad \sigma_{y}^{2}=(N-1)^{-1} \sum_{j=1}^{N}\left(y_{j}-\mu_{y}\right)^{2}, \quad \sigma_{z}^{2}=$ $(N-1)^{-1} \sum_{j=1}^{N}\left(z_{j}-\mu_{z}\right)^{2}, \sigma_{x}^{2}=(N-1)^{-1} \sum_{j=1}^{N}\left(x_{j}-\mu_{x}\right)^{2}$ and $\sigma_{s}^{2}=(N-1)^{-1} \sum_{j=1}^{N}\left(s_{j}-\mu_{s}\right)^{2}$.

Similarly, the sample means and variances for y, z, x and sare respectively denoted by:
$\bar{y}=(1 / n) \sum_{j=1}^{n} y_{j} \bar{z}=(1 / n) \sum_{j=1}^{n} z_{j}, \bar{x}=(1 / n) \sum_{j=1}^{n} x_{j}$ and $\bar{s}=(1 / n) \sum_{j=1}^{n} s_{j}$.

$$
s_{y}^{2}=(n-1)^{-1} \sum_{j=1}^{n}\left(y_{j}-\bar{y}\right)^{2}, s_{z}^{2}=(n-1)^{-1} \sum_{j=1}^{n}\left(z_{j}-\bar{z}\right)^{2}, s_{x}^{2}=(n-1)^{-1} \sum_{j=1}^{n}\left(x_{j}-\bar{x}\right)^{2} \text { and } s_{s}^{2}=(n-1)^{-1} \sum_{j=1}^{n}\left(s_{j}-\bar{s}\right)^{2}
$$

Let $C_{y}\left(=\sigma_{y} / \mu_{y}\right), C_{z}\left(=C_{y}+\sigma_{s} / \mu_{y}\right)$, and $C_{x}\left(=\sigma_{x} / \mu_{x}\right)$ be the coefficients of variation of the subscripts and $\rho_{z x}=\rho_{y x} / \sqrt{1+\left(\sigma_{s}^{2} / \sigma_{y}^{2}\right)}$ and $\sigma_{z x}=(N-1)^{-1} \sum_{j=1}^{N}\left(z_{j}-\mu_{z}\right)\left(x_{i}-\mu_{x}\right)$ be the coefficient of correlation and covariance between the subscripts respectively.

The relative sampling errors are defined to derive the mathematical expressions of MSE and the bias of the proposed estimators as

$$
\xi_{z}=\frac{\bar{z}}{\mu_{y}}-1, \quad \xi_{x}=\frac{\bar{x}}{\mu_{x}}-1, \xi_{x}^{\prime}=\frac{s_{x}^{2}}{\sigma_{x}^{2}}-1, \quad \text { and } \quad \xi_{z x}=\frac{s_{z x}}{\sigma_{z x}}-1
$$

We have

$$
\begin{align*}
& E\left(\xi_{z}\right)=E\left(\xi_{x}\right)=E\left(\xi_{z x}\right)=E\left(\xi_{x}^{\prime}\right)=0, \\
& E\left(\xi_{z}^{2}\right)=\theta C_{z}^{2}, E\left(\xi_{x}^{2}\right)=\theta C_{x}^{2}, E\left(\xi_{x}^{/ 2}\right)=\theta \delta_{04}^{*}, E\left(\xi_{z} \xi_{x}\right)=\theta \rho_{z x} C_{z} C_{x}, E\left(\xi_{z} \xi_{x}^{\prime}\right)=\theta \lambda_{12} C_{x}, \tag{1}\\
& E\left(\xi_{x} \xi_{x}^{\xi}\right)=\theta \lambda_{03} C_{x}, H_{z x}=\rho_{z x}\left(C_{z} / C_{x}\right), \beta_{z x}=\sigma_{z x} / \sigma_{x}^{2}, f=n / N, \theta=n^{-1}-N^{-1}, \\
& \lambda_{p q}=\frac{\mu_{p q}}{\mu_{20}^{p / 2} \mu_{02}^{q / 2}}, \delta_{p q}^{*}=\left(\lambda_{p q}-1\right), \mu_{p q}=(N-1)^{-1} \sum_{i=1}^{N}\left(z_{i}-\mu_{z}\right)^{p}\left(x_{i}-\mu_{x}\right)^{q} .
\end{align*}
$$

where μ_{20} and μ_{02} be the second order moments and $\lambda_{p q}$ is the momens ratio.
i. The fundamental approximation for estimating the population mean of a sensitive study variable is defined in Eq. (2) by the sample mean as

$$
\begin{equation*}
\widehat{\mu}_{y}=n^{-1} \sum_{j=1}^{n} z_{j}=\bar{z} . \tag{2}
\end{equation*}
$$

Eq. (2) is the variance of $\widehat{\mu}_{y}$ is

$$
\begin{equation*}
\operatorname{MSE}\left(\widehat{\mu}_{y}\right)=\theta \mu_{y}^{2} C_{z}^{2} \tag{3}
\end{equation*}
$$

ii. Classical ratio estimator for estimating the population mean of sensitive study variable using auxiliary data suggested by Ref. [16] is defined in Eq. (4) as

$$
\begin{equation*}
\widehat{\mu}_{r}=\bar{z}\left(\frac{\mu_{x}}{\bar{x}}\right) . \tag{4}
\end{equation*}
$$

The expressions of approximate bias and MSE of $\widehat{\mu}_{r}$ are respectively mentioned in Eq. (5) and Eq. (6)

$$
\begin{equation*}
\operatorname{Bias}\left(\widehat{\mu}_{r}\right) \approx \theta \mu_{y} C_{x}^{2}\left(1-H_{z x}\right) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{MSE}\left(\widehat{\mu}_{r}\right) \approx \theta \mu_{y}^{2}\left(C_{z}^{2}+C_{x}^{2}\left(1-2 H_{z x}\right)\right) \tag{6}
\end{equation*}
$$

iii. For estimating the population mean of a confidential variable, the Ln-type modified ratio estimator is defined in Eq. (7) as

$$
\begin{equation*}
\widehat{\mu}_{l r}=\ln \left(\frac{\alpha \sigma_{x}^{2}+\delta}{\alpha s_{x}^{2}+\delta}\right)^{\bar{z}} \tag{7}
\end{equation*}
$$

The approximate bias and MSE of $\widehat{\mu}_{l r}$ are expressed in Eq. (8) and Eq. (9) respectively

$$
\begin{equation*}
\operatorname{Bias}\left(\widehat{\mu}_{l r}\right) \approx-\mu_{y}\left(1+\theta \psi_{j}\left(0.5 \psi_{j} \delta_{04}^{*}+\lambda_{12} C_{x}\right)\right) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{MSE}\left(\widehat{\mu}_{I r}\right) \approx \mu_{y}^{2}\left(1+2 \theta \psi_{j}\left(\psi_{j} \delta_{04}^{*}+\lambda_{12} C_{x}\right)\right) \tag{9}
\end{equation*}
$$

iv. Ln-type regression-cum-modified ratio estimator for the population mean estimation of sensitive study variable is given in Eq. (10)

$$
\begin{equation*}
\widehat{\mu}_{I R}=\ln \left(\frac{\alpha \sigma_{x}^{2}+\delta}{\alpha s_{x}^{2}+\delta}\right)^{\left(\bar{t}+\frac{b_{x}\left(\mu_{\left.\mu_{x}-\bar{x}\right)}\right.}{\mu_{x}}\right)} . \tag{10}
\end{equation*}
$$

The final expression of approximate bias and MSE of $\widehat{\mu}_{I R}$ are mentioned in Eq. (11) and Eq. (12)

$$
\begin{equation*}
\operatorname{Bias}\left(\widehat{\mu}_{I R}\right) \approx \mu_{y}\left(1+0.5 \theta \psi_{j}\left(2 \lambda_{12}-\mu_{y}^{-1} \lambda_{03} \beta_{z x}\right) \psi_{j} \delta_{04}^{*}\right) \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{MSE}\left(\widehat{\mu}_{I R}\right) \approx \mu_{y}^{2}\left(1-2 \theta \psi_{j} \mu_{y}^{-1} C_{x}\left(\mu_{y} \lambda_{12}-\lambda_{03} \beta_{z x}\right)\right) \tag{12}
\end{equation*}
$$

3. Proposed In-type Estimators

The \ln-function and its properties are very effective to obtain the precise estimates of the estimators in survey sampling [31]. In this article, we have improved ratio and regression-cum-ratio type estimators (named as PE-I and PE-II) using ln-function for mean estimation of confidential variable using concomitant variable under SRS design. We applied \ln-function on the auxiliary variable of proposed estimators, PE-I and PE-II, defined as

$$
\begin{equation*}
\widehat{\mu}_{p i}^{1}=\ln \left(\frac{\alpha \sigma_{x}^{2}+\delta}{\alpha s_{x}^{2}+\delta}+3\right)^{\bar{z} / 3} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\widehat{\mu}_{p i}^{2}=\ln \left(\frac{\alpha \sigma_{x}^{2}+\delta}{\alpha s_{x}^{2}+\delta}+3\right)^{\left(\bar{i}+\frac{b_{x x}\left(\mu_{x}-\bar{x}\right)}{\mu_{x}}\right) / 3} \tag{14}
\end{equation*}
$$

3.1. The derivation for approximate bias and MSE of PE-I $\left(t_{p i}^{1}\right)$

We re-write Eq. (13) in term of errors to get the MSE and the bias of the PE-I $\left(t_{p i}^{1}\right)$ as

$$
\begin{equation*}
t_{p i}^{1}=\ln \left[\frac{\alpha \sigma_{x}^{2}+\delta}{\alpha \sigma_{x}^{2}\left(1+\xi_{x}^{\prime}\right)+\delta}+3\right]^{\frac{\mu_{y}\left(1+\xi_{z}\right)}{3}} \tag{15}
\end{equation*}
$$

On simplification of Eq. (15), we have

$$
\begin{equation*}
t_{p i}^{1}=\frac{\mu_{y}\left(1+\xi_{z}\right)}{3} \ln \left[\left\{1+\frac{\alpha \sigma_{x}^{2} \xi_{x}^{\prime}}{\alpha \sigma_{x}^{2}+\delta}\right\}^{-1}+3\right] . \tag{16}
\end{equation*}
$$

Expanding and simplifying Taylor series up to first-order in Eq. (16), we have

$$
\begin{equation*}
t_{p i}^{1} \cong \frac{\mu_{y}\left(1+\xi_{z}\right)}{3} \ln \left(4-\psi_{j} \xi_{x}^{\prime}\right) \tag{17}
\end{equation*}
$$

where $\psi_{j}=\alpha \sigma_{x}^{2} /\left(\alpha \sigma_{x}^{2}+\delta\right)$. .
Applying ln-function on Eq. (17), we have

$$
\begin{equation*}
t_{p i}^{1} \cong \frac{\mu_{y}\left(1+\xi_{z}\right)}{3}\left[\gamma+\ln \left\{1-\frac{\psi_{j} \xi_{x}^{\prime}}{4}\right\}\right] . \tag{18}
\end{equation*}
$$

where $\ln 4=\gamma$.
Note that $\ln \left(1-\frac{\xi_{x}}{4}\right)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}\left(-\frac{\xi_{x}}{4}\right)^{n} \cdot\left|\xi_{x}^{\prime}\right|<1$. So, we have

$$
\ln \left(1-\frac{\psi_{j} \xi_{x}^{\prime}}{4}\right)=-\frac{\psi_{j} \xi_{x}^{\prime}}{4}-\frac{\psi_{j}^{2} \xi_{x}^{2}}{32} .
$$

Using expression given in Eq. (18), we have

$$
\begin{equation*}
t_{p i}^{1} \cong \frac{\mu_{y}\left(1+\xi_{z}\right)}{3}\left[\gamma-\frac{\psi_{j} \xi_{x}^{\prime}}{4}-\frac{\psi_{j}^{2} \xi_{x}^{/ 2}}{32}\right] \tag{19}
\end{equation*}
$$

On simplification of Eq. (19), we have

$$
\begin{equation*}
\left(t_{p i}^{1}-\mu_{y}\right) \cong \frac{\mu_{y}}{3}\left[(\gamma-3)+\gamma \xi_{z}-\frac{\psi_{j} \xi_{x}^{\prime}}{4}-\frac{\psi^{2}}{32} \xi_{x}^{2}-\frac{\psi_{j} \xi_{x}^{\prime} \xi_{z}}{4}\right] \tag{20}
\end{equation*}
$$

Using the notation given in Eq. (1), we get the approximate bias of PE-I ($t_{p i}^{1}$) by applying expectations on both sides of Eq. (20) and summarized it in Eq. (21)

$$
\begin{equation*}
\operatorname{Bias}\left(t_{p i}^{1}\right) \cong \frac{\mu_{y}}{3}\left[(\gamma-3)-0.03125 \theta \psi_{j}\left\{\psi_{j} \delta_{04}^{*}+8 \lambda_{12} C_{x}\right\}\right] \tag{21}
\end{equation*}
$$

To get the MSE of PE-I $\left(t_{p i}^{1}\right)$, squaring on Eq. (20) and recalling the terms up to the first-order, we get

$$
\begin{equation*}
\left(t_{p i}^{1}-\mu_{y}\right)^{2} \cong \frac{\mu_{y}^{2}}{9}\left[(\gamma-3)^{2}+\frac{\psi_{j}^{2}}{16} \xi_{x}^{/ 2}+\gamma^{2} \xi_{z}^{2}-(\gamma-3) \frac{\psi_{j}^{2}}{16} \xi_{x}^{2}-(\gamma-3) \frac{\psi_{j}}{2} \xi_{z} \xi_{x}^{\prime}-\frac{\psi_{j}}{2} \gamma \xi_{z} \xi_{x}^{\prime}\right] . \tag{22}
\end{equation*}
$$

The approximate MSE of the PE-I ($t_{p i}^{1}$) given in Eq. (23) is obtained by applying the expectations on both sides of Eq. (22) as

$$
\begin{equation*}
\operatorname{MSE}\left(t_{p i}^{1}\right) \cong \frac{\mu_{y}^{2}}{9}\left[(\gamma-3)^{2}+\theta\left\{\gamma^{2} C_{z}^{2}-\frac{\psi_{j}}{16}\left\{8(2 \gamma-3) \lambda_{12} C_{x}+\psi_{j}(\gamma-2) \delta_{04}^{*}\right\}\right\}\right] \tag{23}
\end{equation*}
$$

3.2. The derivation for approximate MSE and bias of PE-II $\left(t_{p i}^{2}\right)$

We re-write Eq. (14) in term of errors to get the bias and MSE of the PE-II $\left(t_{p i}^{2}\right)$ as

$$
\begin{equation*}
t_{p i}^{2}=\ln \left(\frac{\alpha \sigma_{x}^{2}+\delta}{\alpha \sigma_{x}^{2}\left(1+\xi_{x}^{/}\right)+\delta}+3\right)^{\frac{1}{3}}\left[\mu_{y}\left(1+\xi_{z}\right)+\frac{\sigma_{x}\left(1+\xi_{x}\right)}{\sigma_{x}^{2}\left(1+\xi_{x}\right)}\left(-\xi_{x}\right)\right] . \tag{24}
\end{equation*}
$$

Simplifying and expanding Taylor series on Eq. (24) and recalling the terms up to first-order, we have

$$
\begin{equation*}
t_{p i}^{2} \cong \frac{1}{3}\left[\mu_{y}\left(1+\xi_{z}\right)+\beta_{z x}\left(1+\xi_{2}\right)\left(1-\xi_{1}\right)\left(-\xi_{x}\right)\right] \ln \left(4-\psi_{j} \xi_{x}^{\prime}\right) . \tag{25}
\end{equation*}
$$

On solving Eq. (25), we get

$$
\begin{equation*}
t_{p i}^{2} \cong \frac{1}{3}\left[\mu_{y}\left(1+\xi_{z}\right)-\beta_{z x} \xi_{x}-\beta_{z x}\left(\xi_{x} \xi_{2}-\xi_{x} \xi_{1}\right)\right]\left[\gamma+\ln \left\{1-\frac{\psi_{j} \xi_{x}^{\prime}}{4}\right\}\right] . \tag{26}
\end{equation*}
$$

Applying ln-expansion on Eq. (26), we get

$$
\begin{equation*}
t_{p i}^{2} \cong \frac{1}{3}\left[\mu_{y}\left(1+\xi_{z}\right)-\beta_{z x} \xi_{x}-\beta_{z x}\left(\xi_{1} \xi_{x}-\xi_{2} \xi_{x}\right)\right]\left[\gamma-\frac{\psi_{j} \xi_{x}^{\prime}}{4}-\frac{\psi_{j}^{2} \xi_{x}^{2}}{32}\right] . \tag{27}
\end{equation*}
$$

On simplification of Eq. (27), we have

$$
\left(t_{p i}^{2}-\mu_{y}\right) \cong \frac{\mu_{y}}{3}\left[\begin{array}{l}
(\gamma-3)-0.25 \psi_{j} \xi_{x}^{/}-\frac{\psi_{j}^{2}}{32} \xi_{x}^{/ 2}+\gamma \xi_{z}-0.25 \psi_{j} \xi_{z} \xi_{x}^{\prime} \tag{28}\\
-\gamma \mu_{y}^{-1} \beta_{z x} \xi_{x}+0.25 \mu_{y}^{-1} \beta_{z x} \psi_{j} \xi_{x} \xi_{x}^{\prime}-\gamma \mu_{y}^{-1} \beta_{z x}\left(\xi_{x} \xi_{2}-\xi_{x} \xi_{1}\right)
\end{array}\right]
$$

Using the notation given in Eq. (1), we get the approximate bias of PE-II ($t_{p i}^{2}$), stated in Eq. (29), by applying expectations on both sides of Eq. (28).

$$
\begin{equation*}
\operatorname{Bias}\left(t_{p i}^{2}\right) \cong \frac{\mu_{y}}{3}\left[(\gamma-3)-\theta\left(0.25 \mu_{y}^{-1} \beta_{z x}\left\{4 \gamma\left(\mu_{12} \mu_{11}^{-1}-\mu_{03} \mu_{02}^{-1}\right)-\psi_{j} \lambda_{03} C_{x}\right\}-0.03125 \psi_{j}\left\{\psi_{j} \delta_{04}^{*}+8 \lambda_{12} C_{x}\right\}\right)\right] \tag{29}
\end{equation*}
$$

By squaring on Eq. (28) and keeping the terms up to the first order, we get the MSE of PE-II $\left(t_{p i}^{2}\right)$ as

$$
\left(t_{p i}^{2}-\mu_{y}\right)^{2} \cong \frac{\mu_{y}^{2}}{9}\left[\begin{array}{l}
(\gamma-3)-0.25 \psi_{j} \xi_{x}^{\prime}-0.03125 \psi_{j}^{2} \xi_{x}^{/ 2}+\gamma \xi_{z}-0.25 \psi_{j} \xi_{z} \xi_{x}^{\prime} \tag{30}\\
-\mu_{y}^{-1} \beta_{z x} \gamma \xi_{x}+0.25 \mu_{y}^{-1} \beta_{z x} \psi_{j} \xi_{x} \xi_{x}-\mu_{y}^{-1} \gamma \beta_{z x}\left(\left(\xi_{x} \xi_{z x}-\xi_{x} \xi_{x}\right)\right)
\end{array}\right]^{2}
$$

Simplifying and taking expectation on Eq. (30), we have the MSE of PE-II ($t_{p i}^{1}$), given in Eq. (31) as

$$
\begin{equation*}
\operatorname{MSE}\left(t_{p i}^{2}\right) \cong \frac{\mu_{y}^{2}}{9}\left[(\gamma-3)^{2}+\frac{\theta}{16}\left\{\left(\psi_{j}^{2} \delta_{04}^{*}+16 \gamma^{2} K_{0}+\mu_{y}^{-1}(\gamma-3) K_{1}\right)\right\}\right], \tag{31}
\end{equation*}
$$

where
$K_{0}=\left(C_{z}^{2}+\mu_{y}^{-2} C_{x}\left\{\beta_{z x} C_{x}\left(\beta_{z x}-2 \mu_{y} H_{z x}\right)+0.5 \psi_{j} \mu_{y} \gamma\left(\beta_{z x} \lambda_{03}-\mu_{y} \lambda_{12}\right)\right\}\right)$.
and
$K_{1}=\left(8\left\{\beta_{z x} \lambda_{03}-\mu_{y} \lambda_{12}\right\}-\mu_{y} C_{x}\right) \psi_{j} C_{x}-\gamma \beta_{z x}\left(\mu_{12} \mu_{11}^{-1}-\mu_{03} \mu_{02}^{-1}\right)$.
Note that, we may obtain many special cases of the proposed ln-type estimators by setting different choices of α and δ such as coefficient of kurtosis $\left(\beta_{1}(x)\right.$), coefficient of skewness $\left(\beta_{1}(x)\right)$, and coefficient of variation $\left(C_{x}\right)$ of the auxiliary variable. The classes of proposed \ln-type ratio and regression-cum-ratio estimators are presented in Table-1 and Table-2 respectively.

4. Mathematical Comparisons

In this part, we have made some mathematical comparisons of EP-I and PE-II with the unbiased mean estimator and classical ratio estimator.

Table 1
Proposed Class of Estimator-I on Various Choices of α and δ.

Estimators	α	δ	Estimators	α
$t_{p 1}^{1}=\ln \left(\frac{\sigma_{x}^{2}}{s_{x}^{2}}+3\right)^{\bar{z} / 3}$	1	0	$t_{p 2}^{1}=\ln \left(\frac{\sigma_{x}^{2}+C_{x}}{s_{x}^{2}+C_{x}}+3\right)^{\bar{z} / 3}$	1
$t_{p 3}^{1}=\ln \left(\frac{\sigma_{x}^{2}+\beta_{1}(x)}{s_{x}^{2}+\beta_{1}(x)}+3\right)^{\bar{z} / 3}$	1	$\beta_{1}(x)$	$t_{p 4}^{1}=\ln \left(\frac{\sigma_{x}^{2}+\beta_{2}(x)}{s_{x}^{2}+\beta_{2}(x)}+3\right)^{\bar{z} / 3}$	C_{x}
$t_{p 5}^{1}=\ln \left(\frac{\beta_{1}(x) \sigma_{x}^{2}+\beta_{2}(x)}{\beta_{1}(x) s_{x}^{2}+\beta_{2}(x)}+3\right)^{\bar{z} / 3}$	$\beta_{1}(x)$	$\beta_{2}(x)$	$t_{p 6}^{1}=\ln \left(\frac{\beta_{2}(x) \sigma_{x}^{2}+\beta_{1}(x)}{\beta_{2}(x) s_{x}^{2}+\beta_{1}(x)}+3\right)^{\bar{z} / 3}$	$\beta_{2}(x)$
$t_{p 7}^{1}=\ln \left(\frac{\beta_{1}(x) \sigma_{x}^{2}+C_{x}}{\beta_{1}(x) s_{x}^{2}+C_{x}}+3\right)^{\bar{z} / 3}$	$\beta_{1}(x)$	C_{x}	$t_{p 8}^{1}=\ln \left(\frac{\beta_{2}(x) \sigma_{x}^{2}+C_{x}}{\beta_{2}(x) s_{x}^{2}+C_{x}}+3\right)^{\bar{z} / 3}$	$\beta_{2}(x)$
$t_{p 9}^{1}=\ln \left(\frac{C_{x} \sigma_{x}^{2}+\beta_{1}(x)}{C_{x} s_{x}^{2}+\beta_{1}(x)}+3\right)^{\bar{z} / 3}$	C_{x}	$\beta_{1}(x)$	$t_{p 10}^{1}=\ln \left(\frac{C_{x} \sigma_{x}^{2}+\beta_{2}(x)}{C_{x} s_{x}^{2}+\beta_{2}(x)}+3\right)^{\bar{z} / 3}$	$\beta_{2}(x)$

Table 2
Proposed Class of Estimator-II on Various Choices of α and δ.

Estimators	α	δ	Estimators	α	δ
$t_{p 1}^{1}=\ln \left(\frac{\sigma_{x}^{2}}{s_{x}^{2}}+3\right)^{\left(\bar{z}+\frac{b_{z x}\left(\mu_{x}-\bar{x}\right)}{\mu_{x}}\right) / 3}$	1	0	$t_{p 2}^{1}=\ln \left(\frac{\sigma_{x}^{2}+C_{x}}{s_{x}^{2}+C_{x}}+3\right)^{\left(\bar{z}+\frac{b_{z x}\left(\mu_{x}-\bar{x}\right)}{\mu_{x}}\right) / 3}$	1	C_{x}
$t_{p 3}^{1}=\ln \left(\frac{\sigma_{x}^{2}+\beta_{1}(x)}{s_{x}^{2}+\beta_{1}(x)}+3\right)^{\left(\bar{z}+\frac{b_{z x}\left(\mu_{x}-\bar{x}\right)}{\mu_{x}}\right) / 3}$	1	$\beta_{1}(x)$	$t_{p 4}^{1}=\ln \left(\frac{\sigma_{x}^{2}+\beta_{2}(x)}{s_{x}^{2}+\beta_{2}(x)}+3\right)^{\left(\bar{z}+\frac{b_{z x}\left(\mu_{x}-\bar{x}\right)}{\mu_{x}}\right) / 3}$	1	$\beta_{2}(x)$
$t_{p 5}^{1}=\ln \left(\frac{\beta_{1}(x) \sigma_{x}^{2}+\beta_{2}(x)}{\beta_{1}(x) s_{x}^{2}+\beta_{2}(x)}+3\right)\left(\frac{b_{z x}\left(\mu_{x}-\bar{x}\right)}{\mu_{x}}\right) / 3$	$\beta_{1}(x)$	$\beta_{2}(x)$	$t_{p 6}^{1}=\ln \left(\frac{\beta_{2}(x) \sigma_{x}^{2}+\beta_{1}(x)}{\beta_{2}(x) s_{x}^{2}+\beta_{1}(x)}+3\right)^{\left(\bar{z}+\frac{b_{z x}\left(\mu_{x}-\bar{x}\right)}{\mu_{x}}\right) / 3}$	$\beta_{2}(x)$	$\beta_{1}(x)$
$t_{p 7}^{1}=\ln \left(\frac{\beta_{1}(x) \sigma_{x}^{2}+C_{x}}{\beta_{1}(x) s_{x}^{2}+C_{x}}+3\right)^{\left(\bar{z}+\frac{b_{z x}\left(\mu_{x}-\bar{x}\right)}{\mu_{x}}\right) / 3}$	$\beta_{1}(x)$	C_{x}	$t_{p 8}^{1}=\ln \left(\frac{\beta_{2}(x) \sigma_{x}^{2}+C_{x}}{\beta_{2}(x) s_{x}^{2}+C_{x}}+3\right)^{\left(\bar{z}+\frac{b_{z x}\left(\mu_{x}-\bar{x}\right)}{\mu_{x}}\right) / 3}$	$\beta_{2}(x)$	C_{x}
$t_{p 9}^{1}=\ln \left(\frac{C_{x} \sigma_{x}^{2}+\beta_{1}(x)}{C_{x} s_{x}^{2}+\beta_{1}(x)}+3\right)^{\left(\bar{z}+\frac{b_{z x}\left(\mu_{x}-\bar{x}\right)}{\mu_{x}}\right) / 3}$	C^{x}	$\beta_{1}(x)$	$t_{p 10}^{1}=\ln \left(\frac{C_{x} \sigma_{x}^{2}+\beta_{2}(x)}{C_{x} s_{x}^{2}+\beta_{2}(x)}+3\right)^{\left(\bar{z}+\frac{b_{z x}\left(\mu_{x}-\bar{x}\right)}{\mu_{x}}\right) / 3}$	C_{x}	$\beta_{2}(x)$

- The PE-I performs more efficiently than the unbiased mean estimator if

$$
\begin{aligned}
& \operatorname{MSE}\left(t_{p i}^{1}\right)<\operatorname{MSE}\left(\widehat{\mu}_{y}\right) \\
& \frac{\mu_{y}^{2}}{9}\left[(\gamma-3)^{2}+\theta\left\{\gamma^{2} C_{z}^{2}-\frac{\psi_{j}}{16}\left\{8(2 \gamma-3) \lambda_{12} C_{x}+\psi_{j}(\gamma-2) \delta_{04}^{*}\right\}\right\}\right]<\theta \mu_{y}^{2} C_{z}^{2}
\end{aligned}
$$

which implies

$$
\frac{\theta}{9}\left[\theta^{-1} A_{1}+A_{2}\right]<\theta C_{z}^{2}
$$

Or,

$$
A_{1}<\theta\left(9 C_{z}^{2}-A_{2}\right)
$$

where $A_{1}=(\gamma-3)^{2}, A_{2}=\left\{\gamma^{2} C_{z}^{2}-\frac{\psi_{j}}{16}\left\{8(2 \gamma-3) \lambda_{12} C_{x}+\psi_{j}(\gamma-2) \delta_{04}^{*}\right\}\right\} .$.

- The PE-II performs more efficiently than the unbiased mean estimator if

$$
\begin{aligned}
& \operatorname{MSE}\left(t_{p i}^{2}\right)<\operatorname{MSE}\left(\widehat{\mu}_{y}\right) \\
& \frac{\mu_{y}^{2}}{9}\left[(\gamma-3)^{2}+\frac{\theta}{16}\left\{\left(\psi_{j}^{2} \delta_{04}^{*}+16 \gamma^{2} K_{0}+\mu_{y}^{-1}(\gamma-3) K_{1}\right)\right\}\right]<\theta \mu_{y}^{2} C_{z}^{2} .
\end{aligned}
$$

which implies

$$
\frac{\theta}{9}\left[\theta^{-1} A_{1}+A_{3}\right]<\theta C_{z}^{2}
$$

Or,

$$
A_{1}<\theta\left(9 C_{z}^{2}-A_{3}\right)
$$

where $A_{3}=\frac{1}{16}\left\{\left(\psi_{j}^{2} \delta_{04}^{*}+16 \gamma^{2} K_{0}+\mu_{y}^{-1}(\gamma-3) K_{1}\right)\right\}$. .

- The PE-I performs more efficiently than the classical ratio estimator if

$$
\begin{aligned}
& \operatorname{MSE}\left(t_{p i}^{1}\right)<\operatorname{MSE}\left(\widehat{\mu}_{r}\right) \\
& \frac{\mu_{y}^{2}}{9}\left[(\gamma-3)^{2}+\theta\left\{\gamma^{2} C_{z}^{2}-\frac{\psi_{j}}{16}\left\{8(2 \gamma-3) \lambda_{12} C_{x}+\psi_{j}(\gamma-2) \delta_{04}^{*}\right\}\right\}\right]<\theta \mu_{y}^{2}\left(C_{z}^{2}+C_{x}^{2}\left(1-2 H_{z x}\right)\right)
\end{aligned}
$$

which implies

$$
\frac{\theta \mu_{y}^{2}}{9}\left[\theta^{-1} A_{1}+A_{2}\right]<\theta \mu_{y}^{2}\left(C_{z}^{2}+C_{x}^{2}\left(1-2 H_{z x}\right)\right)
$$

Or,

$$
A_{1}<\theta\left[9\left(C_{z}^{2}+C_{x}^{2}\left(1-2 H_{z x}\right)\right)-A_{2}\right] .
$$

- The PE-II performs more efficiently than the classical ratio estimator if

$$
\begin{aligned}
& \operatorname{MSE}\left(t_{p i}^{2}\right)<\operatorname{MSE}\left(\widehat{\mu}_{r}\right) \\
& \frac{\mu_{y}^{2}}{9}\left[(\gamma-3)^{2}+\frac{\theta}{16}\left\{\left(\psi_{j}^{2} \delta_{04}^{*}+16 \gamma^{2} K_{0}+\mu_{y}^{-1}(\gamma-3) K_{1}\right)\right\}\right]<\theta \mu_{y}^{2}\left(C_{z}^{2}+C_{x}^{2}\left(1-2 H_{z x}\right)\right)
\end{aligned}
$$

which implies

$$
\frac{\theta \mu_{y}^{2}}{9}\left[\theta^{-1} A_{1}+A_{3}\right]<\theta \mu_{y}^{2}\left(C_{z}^{2}+C_{x}^{2}\left(1-2 H_{z x}\right)\right)
$$

Or,

$$
A_{1}<\theta\left[9\left(C_{z}^{2}+C_{x}^{2}\left(1-2 H_{z x}\right)\right)-A_{3}\right] .
$$

5. Simulation Study

An extensive study of simulation is conducted in this section to judge the application of the PE-I and PE-II over the existing estimators. Four different bi-variate populations of size 1000 are generated using R software and the 300 -sample size is taken from each population.

The means, variances, covariance and correlation coefficient of simulated populations are.

Population 1. :

$$
\mu_{y}=2, \quad \mu_{x}=2, \quad \sigma_{y}^{2}=9, \quad \sigma_{x}^{2}=4, \quad \sigma_{y x}=1.9 \text { and } \rho_{y x}=0.3209
$$

Population 2. :

$$
\mu_{y}=2, \quad \mu_{x}=2, \quad \sigma_{y}^{2}=9, \quad \sigma_{x}^{2}=4, \quad \sigma_{y x}=3.2 \text { and } \rho_{y x}=0.5154
$$

Population 3. :

$$
\mu_{y}=16, \mu_{x}=5, \sigma_{y}^{2}=9, \sigma_{x}^{2}=5, \sigma_{y x}=6.25 \text { and } \rho_{y x}=0.7203
$$

Population 4. :

$$
\mu_{y}=2, \mu_{x}=2, \sigma_{y}^{2}=6, \sigma_{x}^{2}=2, \sigma_{y x}=3.00 \text { and } \rho_{y x}=0.8684
$$

To calculate the MSE's and PRE's of all the estimators taken into consideration in this study, the following processes have been coded in the R language.
> Step 1: we generated the populations (I-IV) and computed the population totals and the parameters associated with the auxiliary variable x.
$>$ Step 2: The reported response Z is obtained by using additive $R R M$.
> Step 3: Different sample sizes are chosen from each population to produce the samples by operating SRSWOR and the values of all the estimators are computed.

- Step 4: The practice in Step-1 to Step-3 is iterated 20,000 times and the scores of MSE's and PRE's are reported in Tables 3-6. The formulae of percentage relative efficiency and mean square error are respectively given by

$$
\operatorname{MSE}\left(t_{p i}^{j}\right)=\frac{1}{R} \sum_{k=1}^{R}\left(t_{p i}^{j}-\mu_{y}\right)^{2}
$$

and

$$
\begin{aligned}
& \operatorname{PRE}\left(t_{p i}^{j}\right)=\frac{\operatorname{var}\left(\widehat{\mu}_{y}\right)}{\operatorname{MSE}\left(t_{p i}^{j}\right)} \times 100 . \\
& \text { where } \begin{array}{l}
j=1 \text { and } 2 . \\
i=1,2, \ldots, 10 .
\end{array}
\end{aligned}
$$

5.1. Results and discussion

The results of PRE and MSE show that the PE-I and EP-II are more proficient than the usual mean per unit and traditional ratio estimators for all populations at different levels of correlation. The MSEs of PE-I and EP-II are found to be least and the PREs of the PE-I and PE-II are higher than the competing estimators. It is also noticed that the class of PE-II perform slightly better than the class of PE-I as shown in Tables 3-6. The provided estimator $t_{P 6}^{2}$ outperforms all other estimators taken into consideration in this paper.

6. Real Data Illustration

To support the theoretical findings obtained in Section 4, we compared the MSEs of the PE-I and PE-II with the competing estimators using real data taken from Ref. [32]; which was recently used by Ref. [24]. The sensitive variable (y) is the reported percent of alumni who donate while the non-sensitive concomitant variable (x) is the student to faculty ratio. We considered the scrambling variable to be normal with zero mean and variance equal to $1 / 2$. To assess the performance of the intended estimators, four distinct sample sizes are chosen. The population parameters are

$$
\begin{aligned}
& N=777, \bar{Y}=22.74, \bar{X}=14.08 \\
& S_{y}=12.39, S_{x}=3.95, \sigma_{Y X}=19.7641, \text { and } \rho_{y x}=0.40
\end{aligned}
$$

The MSE (empirical and theoretical) and the PRE of all the estimators are respectively given in Tables 7-10.

6.1. Results and discussion

In real data application, the results summarized in Table-7 to Table-10 clearly show that the classes of PE-I and PE-II are useful than the challenging estimators even for the moderate correlation. The findings of MSE of proposed classes of estimators found to be relatively smaller than the competing estimators. We also observed that the small differences among the MSE of the sub-cases of the PEI and PE-II. As the size of the sample increases, the PRE of all the estimators' increases, while the MSE decreases, which is the expected finding. Consequently, the ln-type proposed estimators and their sub-cases performed excellent over the unbiased mean estimator and the classical ratio estimator.

Table-3
The amount of MSE and PRE of all the estimators for Population-I.

Estimators	MSE		PRE	Estimators	MSE		PRE
	Empirical	Theoretical			Empirical	Theoretical	
t_{y}	1.11287	1.12542	100.0000	t_{r}	1.03370	1.01300	102.1626
$t_{l r}$	0.47388	0.56282	234.8401	$t_{l R}$	0.34238	0.36374	311.4612
$t_{P 1}^{1}$	0.24095	0.25299	461.8530	$t_{P 1}^{2}$	0.24082	0.28360	462.1079
$t_{P 2}^{1}$	0.24034	0.25968	463.0385	$t_{P 2}^{2}$	0.24020	0.28760	463.2977
$t_{P 3}^{1}$	0.24083	0.33989	462.0905	$t_{P 3}^{2}$	0.24070	0.32967	462.3462
$t_{P 4}^{1}$	0.23862	0.29333	466.3626	$t_{P 4}^{2}$	0.23848	0.26569	466.6370
$t_{P 5}^{1}$	0.23762	0.30853	468.3212	$t_{P 5}^{2}$	0.23748	0.28218	468.6147
$t_{P 6}^{1}$	0.24091	0.25632	461.9314	$t_{P 6}^{2}$	0.24078	0.30915	462.1865
$t_{P 7}^{1}$	0.23813	0.27736	467.3252	$t_{P 7}^{2}$	0.23749	0.24077	467.6059
$t_{P 8}^{1}$	0.24073	0.26820	462.2761	$t_{P 8}^{2}$	0.24060	0.28251	462.5324
$t_{P 9}^{1}$	0.24067	0.31667	462.4008	$t_{P 9}^{2}$	0.24053	0.26737	462.6576
$t_{P 10}^{1}$	0.23797	0.23939	467.6465	$t_{P 10}^{2}$	0.23782	0.24530	467.8298

Table-4
The amount of MSE and PRE of all the estimators for Population-II.

Estimators	MSE		PRE	Estimators	MSE		PRE
	Empirical	Theoretical			Empirical	Theoretical	
t_{y}	0.15284	0.15777	100.0000	t_{r}	0.10394	0.10416	115.2854
$t_{l r}$	0.06702	0.06641	256.7463	$t_{\text {IR }}$	0.06402	0.06344	289.6880
$t_{P 1}^{1}$	0.03281	0.03594	465.7814	$t_{P 1}^{2}$	0.03253	0.03301	469.7702
$t_{P 2}^{1}$	0.03275	0.03887	466.6389	$t_{P 2}^{2}$	0.03247	0.03512	470.6822
$t_{P 3}^{1}$	0.03280	0.03345	465.8739	$t_{P 3}^{2}$	0.03252	0.04165	469.8683
$t_{P 4}^{1}$	0.03270	0.03474	467.3420	$t_{P 4}^{2}$	0.03242	0.03703	471.4385
$t_{P 5}^{1}$	0.03264	0.03322	468.2390	$t_{P 5}^{2}$	0.03235	0.03248	472.4433
$t_{P 6}^{1}$	0.03281	0.03478	465.8137	$t_{P 6}^{2}$	0.03253	0.03393	469.8045
$t_{P 7}^{1}$	0.03265	0.03283	468.0730	$t_{P 7}^{2}$	0.03232	0.03237	472.4478
$t_{P 8}^{1}$	0.03278	0.03476	466.1418	$t_{P 8}^{2}$	0.03250	0.03849	470.1525
$t_{P 9}^{1}$	0.03280	0.03438	465.8695	$t_{P 9}^{2}$	0.03252	0.03282	469.8636
$t_{P 10}^{1}$	0.03270	0.03314	467.3063	$t_{P 10}^{2}$	0.03242	0.03674	471.3999

Table-5
The amount of MSE and PRE of all the estimators for Population-III.

Estimators	MSE		PRE	Estimators	MSE		PRE
	Empirical	Theoretical			Empirical	Theoretical	
t_{y}	0.11418	0.11442	100.0000	t_{r}	0.08796	0.08664	125.7644
$t_{l r}$	0.04796	0.04583	305.7644	$t_{\text {IR }}$	0.03753	0.03653	451.1286
$t_{P 1}^{1}$	0.02490	0.02626	458.4785	$t_{P 1}^{2}$	0.02379	0.02453	479.9086
$t_{P 2}^{1}$	0.02476	0.02845	460.9957	$t_{P 2}^{2}$	0.02366	0.02981	482.5722
$t_{P 3}^{1}$	0.02491	0.03104	458.2442	$t_{P 3}^{2}$	0.02380	0.02444	479.6604
$t_{P 4}^{1}$	0.02462	0.02594	463.6576	$t_{P 4}^{2}$	0.02352	0.02506	485.3800
$t_{P 5}^{1}$	0.02435	0.02703	468.8736	$t_{P 5}^{2}$	0.02326	0.02676	490.8329
$t_{P 6}^{1}$	0.02490	0.02657	458.4012	$t_{P 6}^{2}$	0.02379	0.02624	479.8267
$t_{P 7}^{1}$	0.02428	0.02843	470.2852	$t_{P 7}^{2}$	0.02319	0.02487	492.2833
$t_{P 8}^{1}$	0.02485	0.02586	459.4876	$t_{P 8}^{2}$	0.02374	0.02743	480.9771
$t_{P 9}^{1}$	0.02491	0.03108	458.2286	$t_{P 9}^{2}$	0.02380	0.02506	479.6439
$t_{P 10}^{1}$	0.02461	0.03293	463.8146	$t_{P 10}$	0.02351	0.02813	485.5452

Table-6
The amount of MSE and PRE of all the estimators for Population-IV.

Estimators	MSE		PRE	Estimators	MSE		PRE
	Empirical	Theoretical			Empirical	Theoretical	
t_{y}	0.10497	0.10645	100.0000	t_{r}	0.07658	0.07734	131.5597
$t_{l r}$	0.04158	0.04234	331.5597	$t_{l R}$	0.02449	0.02563	470.6578
$t_{P 1}^{1}$	0.00770	0.00777	453.9538	$t_{P 1}^{2}$	0.00621	0.00648	562.3705
$t_{P 2}^{1}$	0.00761	0.00850	459.5673	$t_{P 2}^{2}$	0.00613	0.00613	570.1274
$t_{P 3}^{1}$	0.00771	0.00931	453.1928	$t_{P 3}^{2}$	0.00623	0.00625	561.3087
$t_{P 4}^{1}$	0.00752	0.00773	464.8337	$t_{P 4}^{2}$	0.00605	0.00613	577.1654
$t_{P 5}^{1}$	0.00746	0.01015	468.5021	$t_{P 5}^{2}$	0.00601	0.00619	581.4913
$t_{P 6}^{1}$	0.00770	0.00881	453.7065	$t_{P 6}^{2}$	0.00622	0.00634	562.0257
$t_{P 7}^{1}$	0.00745	0.01212	468.9507	$t_{P 7}^{2}$	0.00601	0.00605	581.5144
$t_{P 8}^{1}$	0.00766	0.00813	456.3927	$t_{P 8}^{2}$	0.00618	0.00619	565.7593
$t_{P 9}^{1}$	0.00772	0.00916	452.8598	$t_{P 9}^{2}$	0.00623	0.00626	560.8436
$t_{P 10}^{1}$	0.00750	0.01076	465.7566	$t_{P 10}^{2}$	0.00604	0.00606	578.3438

7. Conclusion

The major objective of this research is to offer enhanced \ln-type estimators for mean estimation of confidential variable using concomitant variable. We have used some known parameters of the auxiliary variable to get the sub-families of the ln-type estimators. We derived the properties of the proposed estimators using well-known Taylor and log expansions. We applied proposed estimators to four artificial datasets generated by R-software using different parameters. The simulation results showed that the ln-type estimators and their sub-cases are more efficient than the challenging estimators considered in this paper. Real data application also evident that the \ln-type estimators are very effective and beneficial. It is notice that the ln-type estimators can be relatively distinctive for the

Table 7
The MSE and PRE of all the Estimators for sample size 50.

Estimators	MSE		PRE	Estimators	MSE		PRE
	Empirical	Theoretical			Empirical	Theoretical	
t_{y}	1.22600	1.18782	100.0000	t_{r}	1.02303	1.01155	116.4263
$t_{l r}$	0.91404	0.93435	124.2390	$t_{\text {IR }}$	0.88574	0.87645	132.5742
$t_{P 1}^{1}$	0.71740	0.71557	379.6944	$t_{P 1}^{2}$	0.76566	0.76588	388.7605
$t_{P 2}^{1}$	0.77092	0.77067	382.8534	$t_{P 2}^{2}$	0.75921	0.75929	387.3749
$t_{P 3}^{1}$	0.77362	0.77345	381.5183	$t_{P 3}^{2}$	0.76192	0.76184	384.1085
$t_{P 4}^{1}$	0.78006	0.78023	378.3697	$t_{P 4}^{2}$	0.76840	0.76878	376.5688
$t_{P 5}^{1}$	0.79535	0.79519	371.0961	$t_{P 5}^{2}$	0.78379	0.78329	366.4319
$t_{P 6}^{1}$	0.81690	0.81672	361.3041	$t_{P 6}^{2}$	0.80547	0.80557	348.1788
$t_{P 7}^{1}$	0.74383	0.74312	396.7997	$t_{P 7}^{2}$	0.73192	0.73187	403.2523
$t_{P 8}^{1}$	0.85890	0.85846	343.6376	$t_{P 8}^{2}$	0.84770	0.84723	391.8799
$t_{P 9}^{1}$	0.76492	0.76433	385.8582	$t_{P 9}^{2}$	0.75316	0.75394	395.5562
$t_{P 10}^{1}$	0.78723	0.78701	374.9246	$t_{P 10}^{2}$	0.77562	0.77595	380.5363

Table 8
The MSE and PRE of all the Estimators for sample size 100.

Estimators	MSE		PRE	Estimators	MSE		PRE
	Empirical	Theoretical			Empirical	Theoretical	
t_{y}	1.01540	1.04591	100.0000	t_{r}	0.86714	0.87450	212.2612
$t_{l r}$	0.800404	0.79834	214.7016	$t_{\text {IR }}$	0.76404	0.77834	219.7643
$t_{P 1}^{1}$	0.34492	0.34458	380.7635	$t_{P 1}^{2}$	0.33966	0.33958	386.6599
$t_{P 2}^{1}$	0.34231	0.34311	383.6753	$t_{P 2}^{2}$	0.33705	0.33715	389.6590
$t_{P 3}^{1}$	0.34526	0.34536	380.2709	$t_{P 3}^{2}$	0.34011	0.34012	386.1527
$t_{P 4}^{1}$	0.34925	0.34810	380.1389	$t_{P 4}^{2}$	0.34023	0.34018	386.0167
$t_{P 5}^{1}$	0.33374	0.33728	393.5473	$t_{P 5}^{2}$	0.32847	0.32866	399.8311
$t_{P 6}^{1}$	0.33756	0.33644	389.0669	$t_{P 6}^{2}$	0.33231	0.33243	395.2137
$t_{P 7}^{1}$	0.54114	0.54454	342.6985	$t_{P 7}^{2}$	0.30571	0.30539	445.1591
$t_{P 8}^{1}$	0.33429	0.33484	389.0945	$t_{P 8}^{2}$	0.44892	0.44893	392.5522
$t_{P 9}^{1}$	0.34664	0.34427	378.8776	$t_{P 9}^{2}$	0.34138	0.34104	384.7178
$t_{P 10}^{1}$	0.34711	0.34125	378.3647	$t_{P 10}^{2}$	0.34184	0.34197	384.1897

Table 9
The MSE and PRE of all the Estimators for sample size 200.

Estimators	MSE		PRE	Estimators	MSE		PRE
	Empirical	Theoretical			Empirical	Theoretical	
t_{y}	0.96490	0.95500	100.0000	t_{r}	0.85771	0.85600	215.7492
$t_{l r}$	0.77001	0.78070	217.0621	$t_{\text {IR }}$	0.74001	0.73995	225.0892
$t_{P 1}^{1}$	0.19870	0.19510	390.6741	$t_{P 1}^{2}$	0.14179	0.14075	398.1814
$t_{P 2}^{1}$	0.14451	0.14011	393.0699	$t_{P 2}^{2}$	0.14091	0.14115	400.6609
$t_{P 3}^{1}$	0.14363	0.14771	389.9659	$t_{P 3}^{2}$	0.14205	0.14024	397.4486
$t_{P 4}^{1}$	0.14477	0.14107	387.7855	$t_{P 4}^{2}$	0.14286	0.14340	395.1924
$t_{P 5}^{1}$	0.14559	0.14559	417.3989	$t_{P 5}^{2}$	0.13257	0.13568	425.8553
$t_{P 6}^{1}$	0.13526	0.13444	392.8806	$t_{P 6}^{2}$	0.14098	0.14924	400.4650
$t_{P 7}^{1}$	0.14370	0.14147	347.4461	$t_{P 7}^{2}$	0.15971	0.15707	353.5049
$t_{P 8}^{1}$	0.14549	0.14510	382.2253	$t_{P 8}^{2}$	0.14497	0.14351	389.4403
$t_{P 9}^{1}$	0.14250	0.14014	388.0242	$t_{P 9}^{2}$	0.14277	0.14741	395.4394
$t_{P 10}^{1}$	0.14886	0.14155	379.2553	$t_{P 10}^{2}$	0.14612	0.14211	386.3684

positive relationship between the benchmark and concerned variables. Moreover, the PRE increases by the increase of the sample sizes. We executed many estimators with different aspects and found the best results by adding 3 in the ratio component and divided the whole estimator by 3 as suggested by Ref. [31]. Thus, based on above-mentioned findings, we may infer that the ln-type estimators performed well and recommend for the precise estimation of scrambled responses.

In this research, we used $l n$-type ratio and regression-cum-ratio estimators for the estimation of finite population mean of confidential variable in the presence of an auxiliary variable using additive $R R M$. In the upcoming work, this study could be extended using different $R R M$ s using multi-auxiliary variables under different sampling designs.

Table 10
The MSE and PRE of all the Estimators for sample size 400.

Estimators	MSE		PRE	Estimators	MSE		PRE
	Empirical	Theoretical			Empirical	Theoretical	
t_{y}	0.88994	0.87782	100.0000	t_{r}	0.74265	0.73550	226.4263
$t_{l r}$	0.65965	0.66550	233.4263	$t_{\text {IR }}$	0.55404	0.54415	239.2390
$t_{P 1}^{1}$	0.04993	0.04757	481.0170	$t_{P 1}^{2}$	0.04566	0.14501	489.1589
$t_{P 2}^{1}$	0.04985	0.04276	483.4387	$t_{P 2}^{2}$	0.04880	0.04364	491.6956
$t_{P 3}^{1}$	0.04953	0.04665	481.6467	$t_{P 3}^{2}$	0.04849	0.04906	489.8183
$t_{P 4}^{1}$	0.04977	0.04750	480.8557	$t_{P 4}^{2}$	0.04872	0.04991	488.9899
$t_{P 5}^{1}$	0.04987	0.04393	478.7858	$t_{P 5}^{2}$	0.04883	0.04709	486.8225
$t_{P 6}^{1}$	0.05014	0.05017	435.2535	$t_{P 6}^{2}$	0.04910	0.04646	441.3994
$t_{P 7}^{1}$	0.05665	0.05122	407.1072	$t_{P 7}^{2}$	0.05563	0.04724	416.5423
$t_{P 8}^{1}$	0.05550	0.05132	483.1818	$t_{P 8}^{2}$	0.04560	0.04172	491.8799
$t_{P 9}^{1}$	0.04957	0.04413	480.4532	$t_{P 9}^{2}$	0.04852	0.04732	491.4264
$t_{P 10}^{1}$	0.04992	0.04970	491.6956	$t_{P 10}^{2}$	0.04888	0.04780	488.5684

Data availability

The authors confirm that the data supporting the findings of this study are available within the article [and/or] its supplementary materials.

CRediT authorship contribution statement

Muhammad Nouman Qureshi: Writing - review \& editing, Validation, Supervision, Software, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. Yousaf Faizan: Writing - original draft, Investigation, Funding acquisition, Formal analysis, Data curation, Conceptualization. Amrutha Shetty: Software, Investigation, Formal analysis, Data curation. Marwan H. Ahelali: Visualization, Validation, Resources, Methodology, Funding acquisition, Formal analysis. Muhammad Hanif: Writing review \& editing, Visualization, Validation, Supervision, Project administration, Methodology, Investigation, Conceptualization. Osama Abdulaziz Alamri: Visualization, Resources, Methodology, Investigation, Funding acquisition, Formal analysis.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The authors express their gratitude to the Editor in Chief and the anonymous referees for their valuable feedback, which has greatly contributed to enhancing the manuscript.

References

[1] S.L. Warner, Randomized response: a survey technique for eliminating evasive answer bias, J. Am. Stat. Assoc. 60 (309) (1965) 63-69.
[2] B.H. Eichhorn, L.S. Hayre, Scrambled randomized response methods for obtaining sensitive quantitative data, J. Stat. Plann. Inference 7 (4) (1983) $307-316$.
[3] B.G. Greenberg, R.R. Kuebler, J.R. Abernathy, D.G. Horvitz, Application of the randomized response techniques in obtaining quantitative data, J. Am. Stat. Assoc. 66 (334) (1971) 243-250.
[4] S.N. Gupta, B.C. Gupta, S. Singh, Estimation of sensitivity level of personal interview survey questions, J. Stat. Plann. Inference 100 (2) (2002) $239-247$.
[5] S. Gupta, J. Shabbir, Sensitivity estimation for personal interview survey questions, Statistica64 (2004) 643-653.
[6] A. Saha, A randomized response technique for quantitative data under unequal probability sampling, J. Stat. Theory Pract. 2 (4) (2008) 589-596.
[7] S. Gupta, J. Shabbir, S. Sehra, Mean and sensitivity estimation in optional randomized response models, J. Stat. Plann. Inference 140 (10) (2010) $2870-2874$.
[8] W.G. Cochran, The estimation of the yields of cereal experiments by sampling for the ratio gain to total produce, Journal of Agricultural Society 30 (1940) 262-275.
[9] S. Bahl, R.K. Tuteja, Ratio and product type exponential estimator, Information and Optimization Sciences 12 (1991) 159-163.
[10] M. Samiuddin, M. Hanif, Estimation of population mean in single- and two-phase sampling with or without additional information, Pak. J. Statist. 23 (2) (2007) 99-118.
[11] C. Kadilar, H. Cingi, Improvement in variance estimation using auxiliary information, Hacettepe Journal of Mathematics and Statistics 35 (1) (2006) 111-115.
[12] Y. Turgut, H. Cingi, New generalized estimators for the population variance using auxiliary information, Hacettepe Journal of Mathematics and Statistics 37 (2) (2008) 177-184.
[13] N. Koyuncu, C. Kadilar, Efficient estimators for the population mean, Hacettepe Journal of Mathematics and Statistics 38 (2) (2009) 217-225.
[14] J. Shabbir, S. Gupta, On estimating finite population mean in simple and stratified random sampling, Commun. Stat. Theor. Methods 40 (2) (2010) 199-212.
[15] M.N. Qureshi, N. Riaz, M. Hanif, Generalized estimator for the estimation of rare and clustered population variance in adaptive cluster sampling, J. Stat. Comput. Simulat. 89 (11) (2019) 2084-2101.
[16] R. Sousa, J. Shabbir, P.C. Real, S. Gupta, Ratio estimation of the mean of a sensitive variable in the presence of auxiliary information, Journal of Statistical Theory and Practice 4 (3) (2010) 495-507.
[17] G. Diana, P.F. Perri, A class of estimators for quantitative sensitive data, Stat. Pap. 52 (2011) 633-650.
[18] S. Gupta, J. Shabbir, R. Sousa, P. Corte-Real, Estimation of the mean of a sensitive variable in the presence of auxiliary information, Commun. Stat. Theor. Methods 41 (13-14) (2012) 2394-2404.
[19] N. Koyuncu, S. Gupta, R. Sousa, Exponential type estimators of the mean of a sensitive variable in the presence of non-sensitive auxiliary information, Commun. Stat. Simulat. Comput. 43 (7) (2014) 1583-1594.
[20] G. Kalucha, S. Gupta, B.K. Dass, Ratio estimation of finite population mean using optional randomized response models, Journal of Statistical Theory and Practice 9 (3) (2015) 633-645.
[21] N. Ozgul, H. Cingi, New improved estimators of population mean in partial additive randomized response models, Hacettepe Journal of Mathematics and Statistics 46 (2) (2017) 1-14.
[22] L.K. Grover, A. Kaur, An efficient scrambled estimator of population mean of quantitative sensitive variable using general linear transformation of non-sensitive auxiliary variable, Communications in Mathematics and Statistics 7 (4) (2018) 401-415.
[23] U. Shahzad, P.F. Perri, M. Hanif, A new class of ratio-type estimators for improving mean estimation of nonsensitiveandsensitivevariablesbyusingsupplementaryinformation, Commun. Stat. Simulat. Comput. 48 (9) (2019) $2566-2585$.
[24] S. Gupta, B. Aloraini, M.N. Qureshi, S. Khalil, Variance estimation using Randomized response technique, REVSTAT - Statistical Journal 18 (2) (2020) $165-176$.
[25] S. Bhushan, A. Kumar, New efficient logarithmic estimators using multi-auxiliary information under ranked set sampling, Concurrency Comput. Pract. Ex. (2022), e7337, https://doi.org/10.1002/cpe. 7337.
[26] U. Shahzad, I. Ahmad, M. Hanif, N.H. Al- Noor, Estimation of coefficient of variationusinglinearmomentsandcalibrationapproachfornonsensitiveandsensitivevariables, Concurrencyandcomputationpracticeandexperience 34 (2022) 18.
[27] S. Bhushan, A. Kumar, M.T. Akhtar, S.A. Lone, Logarithmic type predictive estimators under simple random sampling, AIMS Mathematics 7 (7) (2022) 11992-12010.
[28] A.M. Alomair, U. Shahzad, Neutrosophic mean estimation of sensitive and non-sensitive variables with robust hartley-ross-type estimators, Axioms 12 (2023) 578.
[29] S. Bhushan, A. Kumar, S. Shukla, Impact assessment of correlated measurement errors using logarithmic-type estimators, Statistics (2023), https://doi.org/ 10.1080/02331888.2023.2260915.
[30] K.H. Pollock, Y. Beck, A comparison of three randomized response models for quantitative data, J. Am. Stat. Assoc. 71 (356) (1976) $884-886$.
[31] H.O. Cekim, C. Kadilar, In-type estimators for the population variance in stratified random sampling, Commun. Stat. Simulat. Comput. 49 (7) (2020) 1665-1677.
[32] G. James, D. Witten, T. Hastie, R. Tibshirani, An Introduction to Statistical Learning with Applications in R, Springer, New York, 2013.

[^0]: * Corresponding author.

 E-mail addresses: qures089@umn.edu (M.N. Qureshi), yfaizan@my.harrisburgu.edu (Y. Faizan), jayar040@umn.edu (A. Shetty), malhilaly@ut. edu.sa (M. H. Ahelali), drhanif@ncbae.edu.pk (M. Hanif), oalmughamisi@ut.edu.sa (O.A. Alamri).
 https://doi.org/10.1016/j.heliyon.2023.e23066
 Received 1 August 2023; Received in revised form 8 November 2023; Accepted 25 November 2023
 Available online 1 December 2023
 2405-8440/© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

