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Abstract

Cooperation among teams or individuals of healthcare professionals (HCPs) is one of the crucial 

factors towards patients’ survival outcome. However, it is challenging to uncover and understand 

such factors in the complex Multiteam System (MTS) communication networks representing 

daily HCP cooperation. In this paper, we present a study on MTS communication networks 

constructed with real-world cancer patients’ Electronic Health Record (EHR) access logs. We 

adopt a visual analytics workflow to extract associations between semantic characteristics of 

MTS communication networks and the patients’ survival outcomes. The workflow consists of 

a neural network learning phase to classify the data based on the chosen input and output 

attributes, a dimensionality reduction and optimization phase to produce a simplified set of results 

for examination, and finally an interpreting phase conducted by the user through an interactive 

visualization interface. We provide the insights found using this workflow with two case studies 

and an expert interview.
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1 INTRODUCTION

Electronic health records (EHRs) serve a central role in connecting virtual care teams, 

which are defined as groups of healthcare professionals (HCPs) who provide care 

to the same patients, work at different times and locations, and support their work 

with technology-mediated communication. Through EHRs, virtual care teams develop a 

distributed communication system for encoding, storing, and retrieving patient information, 

which can be examined as a communication network representing the information sharing 

among HCPs or the interactions between HCPs and the patients’ EHRs. Understanding 

this communication network and factors influencing its effectiveness (e.g., patients’ survival 

outcome) is crucial for the practice of virtual care teams.

Although the new communication system built upon EHRs is rapidly changing the way 

HCPs collaborate, research on the optimization of effective communication and information 

processing in such an ecosystem has been limited [11, 36]. In critical domains such as 

cancer care delivery, there’s still little research on the relationship between the cancer 

care team composition, function, and effectiveness [31, 35]. Network analysis has been 

successfully applied to understand how interactions and communication occur in teams, 

and to design more effective communication networks [14, 15, 26]. However, as the 

communication networks become much more complex, it is ineffective to manually inspect 

the network structures and statistics. Machine learning (ML) models are able to achieve 

efficient and outstanding performance in complex network predictions [38], but the lack of 

interpretability of these black-box models limits their integration in critical domains such as 

cancer care delivery.

In this paper, we present a study on communication networks constructed from real-world 

cancer patients’ EHR access logs. To understand and promote effective communication and 

teamwork in cancer care team systems, we first construct a communication network from 

the access log data, encoding the connections between HCPs and each patient’s EHR. After 

extracting attributes from patients and the communication network, we employ a visual 

analytics workflow [23], which supports interpretable machine learning based network 

analysis to determine the association of MTS communication structures and patient survival. 

This paper presents our preliminary findings from applying this workflow to studying cancer 

care multiteam systems (MTS) of breast, colorectal and lung cancer patients using EHR 

data. Specifically, our contributions include:

• A new method for the construction of the MTS communication networks, which 

represents the interactions between HCPs and patients’ EHR data.

• Application of a visual analytics workflow which enables interpretable machine 

learning on the communication network analysis.

• Interpretable insights found on the associations between the communication 

network structure, patient basic information, and patients’ survival outcome.
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Our contributions of this work include: the MTS communication network construction, and 

the interpretable associations found to be related to the patient survival outcome. patients of 

four cancer sites (breast, colon, lung, and rectum/rectosigmoid) using EHR data.

2 RELATED WORKS

Following the growing availability of healthcare data, we have seen the development of 

visual analytics methods and systems to support clinical research [8, 29, 33], decision 

making [2, 13], and studying disease progressions [9, 16]. Furthermore, machine learning 

has shown its promise for EHR data analysis. Tree-based methods [4, 6, 28, 32] are wildly 

used for predictive analysis. Recurrent neural network (RNN) based methods such as LSTM 

[21] are designed for temporal classification and can thus be used to make predictions 

on clinical data in terms of event sequences or time series. While deep learning methods 

like RNN are able to provide high prediction performance, these methods typically need 

large amounts of training records. More recently, there is a strong interest in developing 

interpretable machine learning to support clinical data analysis [5, 12, 19, 20, 25, 34]. 

Notably, RetainVis [17] introduced an interpretable and interactive visual analytics tool for 

EHR data modeling.

Our work focuses on the construction of communication networks from EHR access logs 

and the interpretable machine learning based network analysis. Therefore, in the rest of this 

section, we especially review previous works on constructing networks from EHR data and 

employing machine learning in network analysis.

Network Construction from EHR Data.

Previous studies have applied various network construction methods to examine interactions 

among HCPs. One commonly adopted method is to construct patient-sharing networks using 

claims or administrative data [1, 10, 18, 27] and EHR access logs [30], where HCPs are 

connected based on shared patient record access or referrals. The strength of patient-sharing 

ties is measured by the number of patients to whom two physicians provided care during a 

specific period, implying stronger collaboration or information-sharing connections between 

physicians if they shared more patients. Different from previous approaches, we emphasize 

on the interactions between HCPs and EHR data, and construct the communication network 

based on such interactions.

Machine Learning in Network Analysis.

Machine learning methods in network analysis mostly focus on network representation 

learning (NRL), which aims to generate a set of low-dimensional vectors (also called 

representation) that captures important characteristics of networks, nodes, or links [38] for 

easier performing the downstream network analysis tasks, such as node classification and 

link prediction. Various NRL methods are developed for heterogeneous EHR networks [3, 

22, 37]. However, these work did not address the interpretability aspects of the learned 

representations. One commonly used method is composite variable crafting, which searches 

for a smaller set of input variables that have clear relationships to the representations 
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of interest. For instance, Gleicher [7] performed an exhaustive search for the selection 

of variables, and assigned a weight to each variable based on its relationship with 

the representations. In our study, we utilize a workflow that incorporates a machine 

learning based NRL to uncover relations of interest in MTS communication networks to 

obtain interpretable representations and analyze this representation using visualizations and 

composite variable construction.

3 DATA AND DERIVED NETWORKS

The raw data is collected from an academic medical center, and was approved by the 

institutional review board. 525 patients diagnosed with stage 2 or 3 cancer among four 

different sites (breast, colon, lung, and rectum/rectosigmoid) are included in the collection. 

For each patient, the data contains his/her basic information as well as the access logs of 

his/her EHR data. The basic information includes each patient’s demographics (e.g., age 

and sex), comorbidities, treatments and survival outcome (alive/dead). Meanwhile, the EHR 

access logs are composed of time-stamped EHR access events sampled from three months 

before to one year after the diagnosis date. During each event, one HCP (e.g., physician) 

performs an action (e.g., add prescriptions) to the patient’s EHR data.

Based on the EHR access logs, we construct communication networks for each patient 

encoding the interactions between HCPs and EHR data. We then extract the network-related 
attributes and the patient-related attributes, which will be used in the machine learning and 

visual analytics steps further described in section 4.

3.1 Network Construction

For each patient, we construct a bipartite heterogeneous communication network, the 
original network, based on the EHR access logs. The network contains two sets of nodes: the 

provider nodes representing HCPs and the action nodes representing different actions in the 

access logs; each edge in between represents that a provider had once performed an action to 

the patient’s EHR data. Different provider nodes are identified through the combinations of 

their types (e.g., physician or nurse), titles (e.g., MD or RN), residency, and specialties (e.g., 

cardiology), whereas different action nodes are identified by their names (e.g., “Medication 

note saved” and “Medication refill added”). The weight of each edge between a provider 

node and an action node is the average frequency per day the provider performs the action.

Although the original network distinguishes different providers and actions in the lowest 

level, it is difficult to align the attributes extracted from different networks because of 

these distinctions. For example, healthcare communication experts may be interested in the 

number of edges (degree) coming from each provider node. However, the provider nodes’ 

degrees in different networks cannot compare with each other, as the numbers and the 

identifications of provider nodes vary across different patients. Therefore, a higher-level 

grouping of providers and actions that is uniform across different patients is needed to 

extract attributes that are comparable between different networks.
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In our study, we group the provider nodes into 2 categories, and the action nodes into 

10 categories. The providers are categorized by their titles. We filter out titles that are 

not observed in every patient’s access logs and the ones with too few connections, and 

the remaining two titles are MD and RN. The filtering criteria is highly dependent on 

the dataset. We chose to keep MD and RN because their quantity are comparable. For 

the grouping of actions, we directly use the categories provided in the raw data, and 

keep the ones that are observed for every patient. The selected action categories and the 

corresponding example nodes in the original network are listed in Table 1, and Figure 

1 shows two examples of the original network, where the nodes are colored by the 12 

categories of providers and actions.

3.2 Attribute Selection

Here, we describe the extraction of both patient-related and network-related attributes used 

in the visual analytics workflow in section 4.

The patient-related attributes are directly extracted from each patient’s basic information. 

This includes the patient’s status (survival outcome and cancer stage), demographics (age 

and sex), treatments (whether a certain treatment is given), and comorbidities (whether a 

certain comorbidity is present). These attributes and their possible values are described in 

detail in Table 2a. These values are considered different status of a patient, which means 

larger magnitude will not be treated more importantly and will not introduce bias in the 

model.

The network-related attributes (Table 2b) are extracted from the original communication 

networks with the higher-level grouping information of the provider nodes and the action 

nodes. We first extract the size, degrees, and clustering coefficients of nodes within each 

group. For degrees and clustering coefficients, we use the summarization statistics (average, 

minimum, maximum, and standard deviation) to represent the overall attributes for each 

node group. Furthermore, the number of connected components is computed to demonstrate 

the structure of the whole original network. Finally, to portray the connections between 

each specific provider group and each action group, we compute the densities upon the 

subnetworks extracted from the original network, connecting nodes within one provider 

group and nodes of one action group. Figure 2 presents two examples of subnetworks 

extracted from each of the original networks in Figure 1. These two subnetworks both 

connect nodes of the Physician MD group with nodes of the Patient Clinical Info group. As 

there are 2 provider groups and 10 action groups, 2×10=20 densities are generated for each 

of the provider-action combinations.

4 VISUAL ANALYTICS WORKFLOW

To study the MTS communication networks, we directly employ a visual analytics workflow 

designed for extracting associations between different structural and semantic characteristics 

of the multivariate networks [23] as shown in Figure 3. This work particularly addresses the 

challenge of balancing the trade-off between machine learning model accuracy and results 
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interpretability. It enables intuitive understanding of the important factors around patients 

that affect their survival outcomes.

Step 1.

The workflow begins with the attribute selection. Based on the attributes described in 

subsection 3.2, the workflow uncovers how patients’ survival outcomes are related to their 

surrounding conditions.

Step 2.

A network representation is generated by a neural network (NN) trained to classify the 

patients’ survival outcomes based on the input attributes. We train a 4-layer Multi-Layer 

Perceptron (MLP), which is a machine learning architecture constructed by fully connected 

layers. The hidden layer neuron size are 128, 64, 64 and 2 neurons in the output layer for the 

binary classification. By learning how to classify, this NN model consequently encodes the 

relations between the survival outcome and the input attributes in the representation.

Step 3.

This step compresses the network representation’s dimension from many to one (1D 

representation) while preserving the encoded relations. This makes the remaining steps 

simpler to complete and the related results easier to interpret. This 1D representation is one 

value (e.g., 0.5) to reflect each patient’s selected attributes. This reflection is learned through 

Step 2 and compressed to 1D in this step. As shown in Figure 4-b1, a beeswarm-plot-like 

visualization presents the 1D network representation to help assess its quality by seeing how 

well the two classes are separated. The horizontal axis shows the distribution. The wider 

vertical span only means that there are more patients in that class.

Step 4.

This step evaluates and ranks each selected attribute’s contribution to the construction of the 

1D representation. Each row corresponding to one attribute shows a scatterplot where the 

x- and y-axes show the SHAP and attribute values, respectively and each dot represents one 

patient. The obtained ranks can be considered as the recommendation levels of the inclusion 

of the corresponding attributes for the composite variable construction in Step 5. To measure 

the attribute contributions, we use the SHAP (SHapley Additive exPlanations) method [24]. 

As shown in Figure 4-b1, the positive side of the 1D representation is the death class. Hence, 

for example, if instance A having age 60 and SHAP value 3.5, instance A is pushed towards 

the positive side of 1D representation by the degree of 3.5 (higher chance of death). In 

other words, the SHAP value indicates how much having a corresponding attribute value 

contributes to moving an instance toward a positive direction of the 1D representation.

Step 5.

Finally, based on the recommendation levels and interests, the analyst manually selects 

a small set of attributes and runs a composite variable construction algorithm. The 

optimized composite variable (e.g., the y-axis in Figure 4-b2) maximally resembles the 1D 
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representation (e.g., the x-axis in Figure 4-b2) and consequently is the linear combination 

of the small set of attributes that best correlates the distribution of the 1D representation. 

This composite variable provides an intuitive explanation of how it is related to the survival 

outcome. For example, in Figure 4-b2, the y-axis is a variable composed of time_span (the 

number of days from diagnosis to the last contact) and age with the weight −0.9 and +0.5 

respectively. This suggests the two attributes have opposite (sign of weights) effects on the 

survival outcome and by different degrees (magnitude of weights).

Step 6.

The UI in Figure 4 visualizes the information related to each of the previous steps. By 

interactively reviewing these pieces of information, the analyst can gain analytical insights 

based on their analysis interests.

5 CASE STUDIES

We first use the case study shown in Figure 4 to explain how we can make interpretations 

based on the analysis results.

5.1 Study 1

From Figure 5a, we can observe the attribute time_span has a trend from upper left to 

lower right. This means the higher the time_span value is, the more chance the patient 

would survive (the negative side of the 1D representation as explained in workflow Step 4), 

whereas the attribute age has the opposite effect.

We then select the two attributes to run the composite variable construction and the result 

is shown in Figure 4-b2. We first note that the correlation value between the composite 

variable and the 1D representation is positive, which means that the higher the composite 

variable value is, the larger the 1D representation value is (higher chance of death). This 

correlation can also be observed in the scatterplot that the dense area in the survival class 

(blue) located in the bottom left corner and the death class (red) located in the upper right 

corner.

In addition, we can see the sign of the weights for the two attributes matches the observation 

in Figure 5a. For example, the negative sign for time_span suggests that this attribute needs 

to be flipped to have a positive correlation so the original value of time_span is negatively 

correlated to the 1D representation value. In other words, the higher the time_span value 

is, the lower the 1D representation value is (higher chance of survival). Moreover, from the 

magnitude of the weights, we find that the attribute time_span might be more important than 

age (|−0.9| > |+0.5|) in terms of affecting the survival outcome.

Last but not least, the correlation value between this composite variable and the 1D 

representation is larger than the correlation between either time_span or age and the 1D 

representation. This means the composite variable is more related to survival outcome than 

either of time_span or age. Considering the two variables together gives more accurate 
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prediction of the patient’s chance of survival compared to only taking into account 

individual attributes.

These findings allow us to draw an assumption that when the time from diagnosis date to 

the last contact date (time_span) is shorter combined with the fact that the patient’s age 

is sufficiently high, it is more likely the patient would die. This composite variable can 

be suggesting the phenomenon that older patients tend to have more severe disease and 

comorbidities so that the contact interval for them is shorter due death. On the other hand, 

longer time_span may reflect different situations, less severe disease, fewer comorbidities, 

or disease remission after treatment so the HCPs followed up their conditions for a longer 

period of time.

5.2 Study 2

In Figure 5b, we select the two MTS communication network structural attributes to run the 

composite variable analysis. We find that the provider_size_0 is negatively correlated with 

the 1D representation and otherwise for the provider_degree_max_1. The provider_size_0 
means the number of type 0 (physician MD) providers in the patient’s treatment network. 

The provider_degree_max_1 is the largest count of access logs made among the provider 

type 1 (nurse). Therefore, the degree measure reflects more about the time they have spent 

on the EHR system and the actual work they have done in a day, whereas the size measure 

shows us the count of participating providers.

We can interpret this result as the insufficient number of physician MDs in a treatment 

team (provider_size_0) might potentially be harmful to the patient’s survival rate when the 

nurses in this treatment network spend more time on the system (provider_degree_max_1). 

A potential interpretation may be a situation that the nurses’ workload is too much or they 

are obligated to be spending too much time documenting or reviewing information in the 

EHR.

6 EXPERT INTERVIEW

To further validate our interpretations, we conducted an informal interview with an expert in 

the medical field. The expert (E1) is a Professor of the Department of Internal Medicine 

and the Chief of Division of General Internal Medicine, Geriatrics and Bioethics. E1 

conceptualized this study and the interview was conducted through a video conference 

setup, where the case studies were presented.

E1 commented “The age attribute having a positive correlation with survival is consistent 

with the research and literature using other statistical methods.” E1 was surprised that cancer 

stage is not one of the top contributing factors, as extensive research has shown cancer 

stage is a risk factor of patient survival. E1 added that we need to incorporate cancer type 

(i.e., breast, colorectal, lung) and that additional analysis of access log data with HCPs 

individually identified by a study ID and actual EHR access dates (i.e. no random date 

shifts) is needed.
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Finally, E1 noted that the analysis terms such as 1D representation and SHAP value are not 

very intuitive for HCPs and health researchers to understand at first glance. Hence, we tried 

to use more paragraphs to explain the terms and how to interpret them in this paper.

7 DISCUSSION AND FUTURE WORKS

Our work constructs the MTS communication networks with unified provider and action 

types across patients. Although this grouping allows us to analyze different patients with the 

same set of attribute semantics, it lose the detailed information within each group. These 

details might hold non-negligible contribution to the patients’ survival outcomes. Owing 

to the same concern, we filter out the provider titles that are not pervasive in all patients’ 

access logs or does not have the balanced amount of records compared to other provider 

titles. This prevents the analysis process from being biased by the data imbalance. Yet, 

those providers categories are still part of the communication. This work overlooks the 

effects from these filtered providers on patients. For extracting network-related attributes, 

we select size, degrees, and clustering coefficients of nodes within each group. These 

network measures statistically brief the MTS networks. We manually pick these based on the 

observation of the network characteristics. However, if users find other network measures 

important to be included, this analysis workflow is flexible to adjust to different sets of 

measures of interests.

The preliminary results show composite variables combing the network-related and patient-

related attributes. The results explain the importance between different attributes and the 

composite contribution to the patients’ survival outcomes. For future works, we plan to 

collect a more comprehensive access log data to avoid the information loss from filtering 

and to consult more experts in order to evaluate the hypotheses in actual clinical practice.

8 CONCLUSION

We present the application of a visual analytics workflow to the MTS communication 

network to explore the associations between the patients’ surrounding conditions and cancer 

patients’ survival outcomes. The workflow generates expressive as well as interpretable 

analytical results, which were evaluated by a medical expert. Considering also the 

characteristics of patients’ treatment teams communication networks, the results match the 

observation in clinical practices on the age attribute, but not suggest the same importance of 

the cancer stage attribute as the previous studies. This different importance suggested by the 

workflow introduces new opportunities to examine the existing research literature with the 

considerations of MTS communication networks constructed with different focuses. With 

our promising and interpretable results, this work potentially contributes to a wide range of 

applications that involve analyses of large, complex health record data.
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Figure 1: 
Examples of the original network, with nodes colored by the higher-level categories. Here 

we sample one network of an alive patient (a) and the other of a dead patient (b).
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Figure 2: 
Examples of the subnetworks extracted from the original networks in Figure 1. Each 

subnetwork contains nodes of only one provider group (e.g., Physician MD) and one action 

group (e.g., Patient Clinical Info).
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Figure 3: 
The visual analytics workflow for understanding the relations in the MTS communication 

networks.
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Figure 4: 
The visual interface for facilitating interactive analysis using the workflow in Figure 3. (a) 

Relating to Step 4, this view visualizes the input attributes’ contributions to the 1D network 

representation. (b) The composite variables generated in Step 5 are shown as a list of 

scatterplots. (c) Other auxiliary information is displayed, including the prediction accuracy 

of NNs trained for Step 2 and legends used across the views.
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Figure 5: 
Exploration results in two case studies.
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Table 1:

The selected categories used for grouping providers and actions in the original network.

Name Example Node

Patient Clinical Info Report with patient data viewed

Patient Demographics Edit Chart activity accessed

Clinical Notes Clinical note viewed

Problems Allergies activity accessed

Orders Order placed

Flowsheets Health Trends report viewed

Medications Medication taking status modified

Documents Annotated image printed

Reporting Patient History Report accessed

Workflow New user record created
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Table 2:

Selected input and output attributes from the EHR networks.

Attribute Values

Survival Outcome 0-Dead, 1-Alive

Stage 0-Stage 2, 1-Stage 3

Time Span number of days from diagnosis to last contact

Access Log Span number of days from first to last access log

Age age at diagnosis

Sex 0-Male, 1-Female

Treatment Given 0-not given, 1-given

Systemic and Surgery 0-no systemic or surgery, 1-systemic or surgery

Treatment Summary Chemotherapy, Immunotherapy, Hormone, and Radiation: 0-not given, 1-given

Comorbidities 38 comorbidities: 0-not present, 1-present

(a) Patient-related attributes and values

Attribute Values

Size Size of each node group

Degree Mean, minimum, maximum, and standard deviation of degrees in each node group

Clustering Coefficient Mean, minimum, maximum, and standard deviation of clustering coefficients in each node group

Connected Components Number of connected components

Density Density of each subnetwork between a provider group and an action group

(b) Network-related attributes and values.
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