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ABSTRACT
The prevalence of obesity has risen to its highest values over the last two decades. While many 
studies have either shown brain or microbiome connections to obesity, few have attempted to 
analyze the brain-gut-microbiome relationship in a large cohort adjusting for cofounders. 
Therefore, we aim to explore the connection of the brain-gut-microbiome axis to obesity control-
ling for such cofounders as sex, race, and diet. Whole brain resting state functional MRI was 
acquired, and connectivity and brain network properties were calculated. Fecal samples were 
obtained from 287 obese and non-obese participants (males n = 99, females n = 198) for 16s 
rRNA profiling and fecal metabolites, along with a validated dietary questionnaire. Obesity was 
associated with alterations in the brain’s reward network (nucleus accumbens, brainstem). Microbial 
diversity (p = .03) and composition (p = .03) differed by obesity independent of sex, race, or diet. 
Obesity was associated with an increase in Prevotella/Bacteroides (P/B) ratio and a decrease in fecal 
tryptophan (p = .02). P/B ratio was positively correlated to nucleus accumbens centrality (p = .03) 
and negatively correlated to fecal tryptophan (p = .004). Being Hispanic, eating a standard American 
diet, having a high Prevotella/Bacteroides ratio, and a high nucleus accumbens centrality were all 
independent risk factors for obesity. There are obesity-related signatures in the BGM-axis indepen-
dent of sex, race, and diet. Race, diet, P/B ratio and increased nucleus accumbens centrality were 
independent risk factors for obesity. P/B ratio was inversely related to fecal tryptophan, a metabolite 
related to serotonin biosynthesis, and positively related to nucleus accumbens centrality, a region 
central to the brain’s reward center. These findings may expand the field of therapies for obesity 
through novel pathways directed at the BGM axis.
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Introduction

Over the past 40 years, the global prevalence of 
obesity has increased dramatically to epidemic pro-
portions, along with its associated health-related 
costs and risks, such as insulin resistance, type 
two diabetes, and cardiovascular disease.1 Studies 
aiming to determine the causes of obesity have 
demonstrated multifactorial contributors, includ-
ing the influence of the environment, lifestyle and 
genetics, but especially dietary factors.2 The stan-
dard American diet, characterized by highly 

processed foods and dietary intake of saturated 
fats and low fiber, represents a growing health risk 
contributing to obesity.3 As diet is a reflection of 
one facet of socioeconomic determinants of health 
along with race, susceptibility to obesity is also 
influenced by race and ethnicity.4 In the United 
States, Hispanic adults (32.6%) experience 
the second highest prevalence of obesity next to 
non-Hispanic Blacks (38.4%), compared to non- 
Hispanic White adults (28.6%).5 While these dis-
parities are influenced by socioeconomic 
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disadvantages that intertwine with lifestyle and 
dietary factors, clinically and biologically modifi-
able risk factors involved in the development of 
obesity need to be investigated.

A plausible mechanism that can connect diet 
and life-style with obesity may be found within 
the brain-gut microbiome (BGM) axis, which is 
based on the concept that bidirectional signaling 
exists between the gut microbiome and the 
brain.6 Preclinical studies suggest that the micro-
biota is able to communicate with the brain 
through the release of neuroactive metabolites 
and thus manipulate host feeding behaviors (i.e. 
appetite, food preferences, etc.).7 For example, in 
a resting-state functional magnetic resonance 
imaging (fMRI) study with healthy participants, 
tryptophan-derived indoles produced by the 
microbiota were shown to influence hedonic 
food intake by acting on the network metrics 
of key regions within the brain’s reward 
network.8 Since the BGM axis is involved in 
regulating host metabolism, energy expenditure, 
and ingestive behaviors, perturbations anywhere 
along the axis can contribute to metabolic dis-
eases, such as obesity.6,7 To our knowledge, 
there are very few if any obesity studies that 
apply a systems-biology approach to understand 
pathophysiological differences in the bidirec-
tional BGM axis that may contextualize obesity 
while controlling for race and diet.

In order to accurately explore the effects of obesity 
on the BGM system, race, lifestyle, and dietary factors 
must be systematically accounted for, as these factors 
can influence the prevalence of obesity, even in groups 
with shared geography.2 Dietary intake varies with 
race along with corresponding differences in fecal 
bacteria and metabolites.9 In addition, diet creates 
interpersonal variations in microbiome composition, 
with a study reporting diet to influence 57% of total 
microbiome structural variations, compared to only 
12% by genetic differences.10–12 Failing to disentangle 
the effects of diet, race, and obesity when studying the 
BGM axis prevents generalizable conclusions to be 
made on what aspects the BGM differences observed 
may contribute to increased risk for obesity.13

In order to characterize obesity-associated sig-
natures in the BGM system, we explored inter-
actions in the gut microbiome, metabolites, and 
brain network metrics using resting-state fMRI 

connectivity, while systematically adjusting for 
race and diet. We propose that a specific BGM 
signature exists independent of diet and race 
that is associated to obesity.

Materials and methods

Study participants

The study included 287 right-handed participants 
(99 males and 198 females), without any significant 
medical or psychiatric conditions. Participants 
were excluded for the following: pregnant or lactat-
ing, substance use, abdominal surgery, tobacco 
dependence (half a pack or more daily), extreme 
strenuous exercise (>8 h of continuous exercise per 
week), current or past psychiatric illness and major 
medical or neurological conditions, similar to our 
previous study.14 Participants taking medications 
that interfere with the central nervous system or 
regular use of analgesic drugs were excluded.14 

Because of the effect of handedness on brain signa-
tures and brain function related to laterality, only 
right-handed participants were included to exclude 
this as a cofounder.15 Included participants were 
also required to not have taken antibiotics for at 
least 3 months before enrolling in the study, similar 
to previously published works.14 Since female sex 
hormones, such as estrogen are known to affect 
brain structure and function, we used females who 
were premenopausal and who were scanned during 
the follicular phase of their menstrual cycles as 
determined by self-report of their last day of the 
cycle.14 Participants with hypertension, diabetes, 
metabolic syndrome or eating disorders were 
excluded to minimize confounding effects. We 
used body mass index (BMI) cutoffs to define our 
groups: Individuals with BMI < 30 were normal, 
and BMI ≥ 30 were considered obese. No partici-
pants exceeded 400 lbs due to magnetic resonance 
imaging (MRI) scanning weight limits. Participants 
underwent MRI scans, anthropometrics (height, 
body weight, and waist–hip ratio measurements, 
body mass index), and fresh stool samples for 16s 
ribosomal RNA gene sequencing and metabolite 
analysis were collected. Race and ethnicity were 
combined into a single category by making 
Hispanic a separate race category along with 
White, African American, Asian, and other.
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Diet questionnaires:

All participants underwent two surveys for their 
diet: Diet History Questionnaire (DHQ) III and 
the UCLA Diet Checklist. The DHQ-III is 
a validated food frequency questionnaire devel-
oped by the National Institute of Health to mea-
sure the frequency and portion size of foods 
consumed over a year.16 Diet*Calc software was 
used to analyze and interpret the raw DHQ-III 
data and determine nutrient and food group 
intake estimates. The Diet Checklist is 
a questionnaire developed by our institution 
and used in our previously published works.14 

It is intended to represent the diet that best 
reflects what participants consume on a regular 
basis.14 The specific diets incorporated into this 
checklist are summarized in supplemental Table 
S1. This Diet Checklist was then internally vali-
dated against the standardized DHQ-III.14 For 
data analysis, we combined standard American 
and modified American diet as one category. 
Mediterranean, vegan, vegetarian, and gluten- 
free were each their own individual categories, 
and all other diets were combined as “other” for 
analysis, similar to our previous work.14

Microbiome: 16S rRNA gene sequencing and 
analysis

Within 1 week of the participant’s brain MRI scan, 
stool samples were collected and stored at −80°C 
before 16S rRNA sequencing. DNA extraction was 
performed with the fecal samples using PowerSoil 
DNA Isolation Kit (MO BIO Laboratories, 
Carlsbad, CA) with bead beating following the 
manufacturers protocol. Using 515 F and 806 R 
primers, the V4 hypervariable region of the 16S 
rRNA gene were amplified. The PCR products 
were purified using the ZR-96 DNA Clean & 
Concentrator-5 Kit (Zymo Research, Irvine, CA) 
and subsequently sequenced with the Illumina 
HiSeq 2500 platform. Processing of base pair 
reads using QIIME v1.9.1 with default parameters 
and taxonomic sequences were assigned using 
closed reference operational taxonomic unit 
(OTU) picking in QIIME against the Greengenes 
database pre-clustered at 97% identity. If the OTUs 
were present in less than 10% of samples, they were 

removed. The median depth was 104,124 reads per 
sample with a standard deviation of 73,192 and 
a minimum read of 32,304.

Enterotypes

Bacterial enterotypes were created based on the 
same methodology as previously published.17 The 
following packages were used in R: cluster, 
clusterSim, and ade4. Samples were clustered 
based on their relative abundances using a Jensen- 
Shannon distance metric and the Partitioning 
Around Medoids clustering algorithm. The optimal 
number of enterotypes was assessed using the 
Calinski-Harabasz index. The optimal number of 
enterotypes was validated using the Silhouette 
coefficients.18 A step-by-step tutorial can be found 
on the following site: https://enterotype.embl.de/ 
enterotypes.html.

Fecal metabolites

Using the same fecal samples as the 16S sequencing, 
samples were aliquoted under liquid nitrogen and 
then shipped to Metabolon. They were processed 
and analyzed as a single batch on Metabolon’s 
global metabolomics and bioinformatics platform. 
Using established protocols, data was curated by 
mass spectroscopy as previously reported.19 We 
specifically analyzed tryptophan-derived metabo-
lites, due to their relevance in the BGM axis using 
the scaled imputed data from Metabolon.

Brain MRI: acquisition

Whole brain structural and resting state functional 
connectivity data was collected using a 3.0 T 
Siemens Prisma MRI scanner (Siemens, Erlangen, 
Germany). Detailed information on the standar-
dized acquisition protocols, quality control mea-
sures, and image preprocessing are provided in 
previously published studies.14,20–25

Structural MRI acquisition:
High resolution T1-weighted images were 
acquired: echo time/repetition time (TE/ 
TR) = 3.26 ms/2200 ms, field of view26 = 220 × 
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220 mm, slice thickness = 1 mm, 176 slices, 256 × 
256 voxel matrix, and voxel size = 0.86 × 0.86 × 
1 mm.14

Resting-state functional MRI acquisition:
Whole brain resting state scans were acquired 
with eyes closed and an echo planar sequence 
with the following parameters: TE/TR = 28 ms/ 
2000 ms, flip angle = 77°, scan duration = 10 
m6s, FOV = 220 mm, slices = 40, and slice 
thickness = 4.0 mm.14

Preprocessing of MRI images

Participants MRI images were preprocessed in 
a similar manner as to our previous work.14 In 
summary, preprocessing and quality control of 
functional images was done using SPM-12 software 
(Welcome Department of Cognitive Neurology, 
London, UK). The first two volumes were discarded 
to account for the approach toward steady-state 
magnetization.25 Slice timing correction was per-
formed first, followed by rigid-body motion correc-
tion with six realignment parameters.14 If motion 
was detected above 2 mm translation or 2° rotation, 
the scan, along with the paired structural image, 
were discarded.14 To robustly account for the 
effects of motion, root mean squared (RMS)27 rea-
lignment estimates were calculated as robust mea-
sures of motion using publicly available MATLAB 
code from GitHub.14,28 Any participant with a RMS 
value greater than 0.25 was not included in the 
analysis.14,28 Each T1 image was then segmented 
and normalized to a template brain in Montreal 
Neurological Institute27 template space.14 Each par-
ticipant’s T1 normalization parameters were then 
applied to that participant’s resting state images, 
resulting in an MNI space normalized resting 
state image.14 Complete detail is provided in pre-
vious published works.14

Brain MRI: structural image parcellation

T1-image segmentation and cortical and subcorti-
cal regional parcellation were conducted using the 
Schaefer 400 atlas,29 the Harvard-Oxford subcorti-
cal atlas,30,31 and the Ascending Arousal Network 
atlas.14,32 This parcellation results in the labeling of 

430 regions, 400 cortical structures, 14 bilateral 
subcortical structures, bilateral cerebellum, and 14 
brainstem nuclei.14,33

Brain MRI: resting-state functional brain 
connectivity matrix construction

Matrix construction was performed similarly to our 
previous work.14 Briefly, all pre-processed, normal-
ized images were entered into the CONN-fMRI 
functional connectivity toolbox version 1734 and 
further corrected for noise using the automatic 
component-based noise correction (aCompCor) 
method to remove physiological noise without 
regressing out the global signal.14,35 Confounds 
for the six motion parameters with their first- 
order temporal derivatives, along with confounds 
emerging from white matter and cerebral spinal 
fluid, and root mean squared27 values of the 
detrended realignment estimates,27 were removed 
using regression.14 Connectivity matrices, contain-
ing all parcellated regions in the Schaefer,29 

Harvard-Oxford Subcortical,30,36–38 and 
Ascending Arousal Network27,32 atlases, were then 
constructed. The final outputs for each participant 
consisted of a connectivity matrix between the 430 
parcellated regions and was indexed by Fisher 
transformed Z correlation coefficients between 
each region of interest.14

Brain MRI: computing resting-state network metrics

The Graph Theory toolbox (GTG) (www.nitrc.org/ 
projects/metalab_gtg) and in-house MATLAB 
scripts were used to calculate and analyze the 
brain network properties and organization from 
the participant-specific resting-state functional 
brain networks for the brain. Network measures 
based on graph theory were investigated due to 
the emphasis on an integrated system versus on 
individual brain regions. Furthermore, we focused 
on measures of centrality, which are parameter-free 
methods that provide important insights about the 
level and quality of connectivity in specific regions. 
Mapping of both brain connectivity architecture 
allows for specificity and prediction of the func-
tional roles of the brain regions. Brain regions 
with high centrality are highly influential, commu-
nicate with many other regions, facilitate functional 
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integration, and play a key role in network resili-
ence to insult.39 The three main indices of centrality 
were computed for the purposes of this project: 1) 
Degree strength (DS) reflects the number of other 
regions a brain region interacts with functionally 
(local prominence), 2) Betweenness Centrality (BC) 
reflects the ability of a region to influence informa-
tion flow (signaling) between two other regions, 
and 3) Eigenvector Centrality (EC), where higher 
values indicate the region is directly connected to 
other highly connection regions reflective of the 
global (vs. local) prominence of a region.

Statistical analysis

The Kruskal–Wallis test was used for continuous 
variables and chi-squared test for categorical vari-
ables when analyzing baseline demographic char-
acteristics differences. Medians were reported with 
their corresponding interquartile ranges. We calcu-
lated beta diversity using DEICODE plugin in 
QIIME 2, which accounts for sparse compositional 
nature of microbiome data with a robust Aitchison 
analysis. This method has been shown to yield 
higher discriminatory power compared to other 
common metrics, such as UniFrac or Bray- 
Curtis.40 Differences in beta diversity was calcu-
lated using the R package ‘adonis’ which imple-
ments a permutational analysis of variance. Alpha 
diversity was calculated in QIIME using OTU-level 
data rarefied to 32,303 sequences and significance 
was determined using Faith’s phylogenetic diversity 
(Faith’s PD), Chao1, and Shannon index by analysis 
of variance. Association of microbial genera were 
evaluated using DESeq2 in R, which uses an empiri-
cal Bayesian approach to minimize dispersion and 
fit non-rarified count data to a negative binomial 
model. Differential abundance p-values were con-
verted to q-values to adjust for multiple hypothesis 
testing (<0.05 for significance). For metabolite and 
brain analyses (resting state functional connectivity 
measures of centrality for all 430 brain parcella-
tions), data were first normalized and then analyzed 
using a generalized linear model (GLM) in R. Only 
results surviving FDR correction were reported.

Significant findings from fMRI, metabolite, 16S 
microbiome, and clinical data were combined into 
one dataset, and spearman correlations between 
datapoints were performed using the Hmisc and 

corrplot packages in R. All p-values were adjusted 
for multiple hypothesis testing using false discovery 
rate correction. Correlation networks were then 
visualized using Circos plots.41

Results

Population demographics

The study cohort included 287 participants and 
consisted of obese (n = 81; median BMI = 33.6 
[IQR 31.9–36.6]) and non-obese individuals (n = 
216; median BMI = 23.9 [IQR 21.5–26.2]) 
(p <.001). The median age of the obese cohort was 
significantly older, which was 32 years for the obese 
group and 26 years for the non-obese group 
(p <.001; Table 1). The majority of the participants 
were female (n = 198) and non-Hispanic White 
(n = 110), followed by Hispanic (n = 92), Asian 
(n = 65), Black (n = 24), and Native American 
(n = 6). There were significant differences in race 
by obesity (p < .001), with Hispanics (53.1%) repre-
senting the majority in the obese and non-Hispanic 

Table 1. Population characteristics.
Normal/Overweight 

(n = 216)
Obese 

(n = 81) p-value

Age (yr) (median, IQR) 26 [21–34] 32 [26–41.5] <0.001

Gender (n, %)
Female (n = 198) 139 (64.4%) 59 (72.8%) 0.17
Male (n = 99) 77 (35.6%) 22 (27.2%)

Race (n, %)
Asian (n = 65) 60 (27.8%) 5 (6.2%) <0.001
Black (n = 24) 11 (5.1%) 13 (16.1%)
Hispanic (n = 92) 49 (22.7%) 43 (53.1%)
Indian (n = 6) 6 (2.8%) 0 (0.0%)
Non-Hispanic White 
(n = 110)

90 (41.7%) 20 (24.7%)

BMI (median, IQR) 23.9 [21.5–26.2] 33.6 [31.9– 
36.6]

<0.001

Diet Category (n, %)
Standard American 
(n = 196)

129 (59.7%) 67 (82.7%) 0.037

Vegetarian (n = 30) 25 (11.6%) 5 (6.2%)
Vegan (n = 4) 3 (1.4%) 1 (1.2%)
Mediterranean (n = 23) 20 (9.3%) 3 (3.7%)
Gluten Free (n = 6) 4 (1.9%) 2 (2.5%)
Other (n = 38) 35 (16.2%) 3 (3.7%)

Prevotella/Bacteroides Ratio Tertiles (n, %)
Low (n = 98) 84 (38.9%) 14 (17.3%) 0.002
Mid (n = 98) 66 (30.6%) 32 (39.5%)
High (n = 101) 66 (30.6%) 35 (43.2%)

Participant characteristics by obesity status. Continuous variables are pre-
sented as median with their respective interquartile range (IQR). 
Percentages listed are percent of the total number of normal/overweight 
or obese participants. BMI: Body mass index. Bolded p-values are signifi-
cant p-values (p-values<0.05). Significance of categorical data was deter-
mined by chi-squared test and significance of continuous variables was 
determined by Kruskal–Wallis test.
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Whites (41.7%) as the largest group in the non- 
obese cohort. There were significant differences 
based on diet in the obese and non-obese groups 
(p = .037), with more individuals on a standard 
American diet (82.7%) in the obese group as com-
pared to the non-obese group (59.7%). Three 
microbiome enterotypes were identified. These 
three enterotypes were based on their differences 
in their relative abundances of Prevotella and 
Bacteroides. Therefore, a Prevotella/Bacteroides (P/ 
B) ratio was created as an index for the enterotype 
clusters. Participants with the highest tertile with 
regard to the P/B ratio were more likely to be obese 
(p = .002).

Microbial differences based on race

In order to identify the independent effects of race 
on microbial diversity, samples were stratified by 
race and analyses were performed using the 16S 
rRNA sequence data while adjusting for covariates, 
such as obesity, diet, and sex. Overall, microbial 
composition, as determined by beta-diversity, 
showed highly significant differences across sam-
ples stratified by race (p < .001; Fig. S1A). Post-hoc 
pairwise testing showed that there were beta diver-
sity differences between Asians and Blacks (p = 
.013), Asians and Hispanics (p = .017), and Asian 
and NHW (p = .013). There were no significant 
differences between Black and Indians (p = .073), 
Black and NHW (p = .073), and Hispanics and 
NHW (p = .073) (Supplemental Table S2). When 
comparing species evenness as measured by the 
abundance of organisms across species (Shannon 
index), there were also differences across race (p = 
.004) (Fig. S1B). Post-hoc pairwise testing showed 
that NHW had higher Shannon index as compared 
to Asians (p = .004). There were no other signifi-
cant pair-wise difference in regard to the Shannon 
index. (Supplemental Table S2).

Microbial differences based on diet

Because the majority of participants were on 
a standard American diet, we dichotomized the 
group into two categories: those who were on 
a standard American diet versus those who were 
not. Observed differences in diet between the obese 
and non-obese cohorts prompted us to compare 

microbiome differences based on standard 
American diet, while adjusting for obesity, race, 
and sex. There were observable taxonomic differ-
ences in the relative abundance of genera based on 
diet (standard American diet vs. nonstandard 
American diet) and several taxa significantly 
increased or decreased in association with standard 
American diet (Fig. S2A, B). Differential abundance 
testing demonstrated that 12 genera differed 
between individuals based on diet (q-values < 
0.05) (Fig. S2B). After adjusting for race and obesity 
effects, microbial composition was associated with 
standard American diet (p =.048; Fig. S2C). 
However, no statistical differences in Shannon 
index based on diet were observed (p =.14) 
(Fig. S2D).

Microbiome differences based on obesity, adjusting 
for race, diet, and sex

When adjusting for the effects of race, diet, and sex 
on the microbiome, there were observed differences 
in genera associated solely with the effects of obe-
sity, which was defined as a BMI ≥ 30. Of note, 
increased Prevotella (q-value = 0.004) and 
decreased Bacteroides (q-value = 0.03) were asso-
ciated with obesity (Figure 1a, b). After adjusting 
for covariates, there were significant differences in 
overall microbial composition with obesity (p =.03; 
Figure 1c). When examining alpha diversity com-
parisons using the Shannon index across obesity, 
race-specific differences were observed (p =.03; 
Figure 1d). Post-hoc pairwise testing showed that 
Asian without obesity had lower Shannon index 
than NHW without obesity (p =.03). No other 
pairwise comparison were significant after adjust-
ing for false discovery rate. There was also no sig-
nificant interaction between race and obesity on 
Shannon index (p = .19).

Enterotype-based differences in microbiome 
diversity and composition that correlates with BMI

Three distinct microbial profiles were observed 
in the samples that were driven by either 
a relatively high abundance of the genera 
Prevotella (Enterotype A), Bacteroides 
(Enterotype C), or a mixed population 
(Enterotype B) after adjusting for covariates, 
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such as race, diet, obesity, and sex (Fig. S3A). 
The number of differentially abundant genera 
for each comparison were as follows: 21 genera 
between enterotypes A and B, 55 genera between 
enterotype A and C, and 50 genera between 
enterotype B and C (q-values < 0.05) (Fig. S3B- 
D). The relative abundance of Prevotella corre-
lated positively with enterotype A and 
B compared to enterotype C (q-value < 0.001). 
However, increases in Bacteroides correlated 
negatively with enterotype A and B, compared 
to enterotype C (q-value < 0.001). When com-
paring enterotype A and B, Prevotella (q-value < 
0.001) was more highly enriched and Bacteroides 
(q-value < 0.001) was less abundant in 

enterotype A. Adjusting for covariates, such as 
race, diet, obesity, and sex, the microbial profile 
differed significantly between the three observed 
enterotypes (p < .001; Fig. S3E). Post-hoc pair-
wise testing showed that all enterotypes were 
different from each other (A vs B (p <.001), 
A vs C (p <.001), B vs C (p <.001)). 
Differences in Shannon index between the three 
enterotypes were also observed, with enterotype 
B demonstrating the highest alpha diversity 
(p <.001; Fig. S3F). Post-hoc pairwise testing 
showed that all enterotypes also were different 
from each other by Shannon index (A vs B (p < 
.001), A vs C (p = .01), B vs C (p <.001). As 
mentioned previously, because the enterotypes 

Figure 1. Microbiome diversity and composition varies with obesity. (a) Taxonomic summary plots showing relative abundance of 
all genera (minimum of 1% relative abundance) grouped by obesity, adjusting for sex, race and diet. (b) Log2 fold changes for genera 
with differential abundance between obese vs. non-obese in DESeq2 models (q < 0.05), adjusting for race and diet. (c) Principal 
coordinate analysis plot of the microbiome based on obesity encircled by 99% confidence interval ellipses, adjusting for sex, race and 
diet. (d) Box plot of microbial diversity by Shannon index (measure of richness and evenness) grouped by obesity and stratified by race, 
adjusting for race, diet, and sex.
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were based on differences between Prevotella and 
Bacteroides, a P/B ratio was created as an index 
measurement for the enterotype clusters.

Upon examining the relationship between P/B 
ratio and obesity, P/B ratio was significantly 
different between the obese and non-obese 
groups (p =.007) (Figure 2). In a linear regres-
sion model adjusting for sex, race, and diet, P/B 
ratio was positively correlated to BMI (coef = 
0.44, p =.01).

Fecal tryptophan levels differ with obesity

After adjusting for sex, race, standard American 
diet, and false discovery rate, fecal tryptophan 
levels were significantly lower with obesity 
(p =.02). In a linear regression model adjusting 
for sex, race, and diet, fecal tryptophan was also 
negatively correlated with P/B ratio (coef = 
−0.03, p =.004) (Figure 2d).

Brain region network metric measures differ with 
obesity

After adjusting for the covariates sex, race, diet, and 
false discovery rate, obesity was positively asso-
ciated with left nucleus accumbens (p =.04) eigen-
vector centrality, and negatively associated with 
brainstem (p =.04) betweenness centrality 
(Figure 3). No other centrality measurements for 
the nucleus accumbens or brainstem were signifi-
cantly associated with obesity (p >.05). A positive 
correlation was also seen between P/B ratio and left 
nucleus accumbens eigenvector centrality from our 
linear regression model adjusting for sex, race, and 
diet (coef =2.3E-5, p =.03) (Figure 3c). There was 
no linear relationship between brainstem between-
ness centrality and P/B ratio (p =.25). We then 
evaluated if there was an interaction effect between 
race and obesity on P/B ratio and nucleus accum-
bens eigenvector centrality adjusting for sex and 
diet using GLM (i.e., ~ sex + diet + race*obesity). 

Figure 2. Obesity is associated with elevated Prevotella/Bacteroides (P/B) ratio and lower fecal tryptophan. (a) Boxplot of Prevotella/ 
Bacteroides ratio grouped by obese and non-obese. (b) Linear regression between BMI and P/B ratio. (c) Boxplot of fecal tryptophan 
levels grouped by obese and non-obese. (d) Linear regression between tryptophan and P/B ratio. All p-value listed are adjusted for 
race, diet, and sex.
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Because NHW and Hispanics made the vast major-
ity of the sample population, we focused this model 
to only those races in order to minimize over- 
parameterization. In this model, there was no sig-
nificant interaction effect of race and obesity on P/B 
ratio (p =.98) or nucleus accumbens centrality 
(p =.17) after adjusting for sex and diet.

P/B ratio and nucleus accumbens centrality are 
independent risk factors for obesity

We then performed logistic regression to examine 
the effects of sex, race, diet, P/B ratio, and nucleus 
accumbens centrality on obesity. Nucleus accum-
bens activity and P/B ratio were split into tertiles. 
Sex did not affect the risk of having obesity (p =.33). 
However, being Hispanic (p <.001), eating a standard 
American diet (p =.003), having a high P/B ratio 
(p =.02) and high nucleus accumbens centrality 

(p =.002) were all independent risk factors for obe-
sity. There was no interaction effect between high 
nucleus accumbens and high P/B ratio on obesity 
(p =.22) (Table 2). Spearman correlations of the 
significant brain regions, clinical data, and 16S 
sequencing are summarized in the Circos plot seen 

Figure 3. Changes in brain measures by obesity and Prevotella/Bacteroides (P/B) ratio. (a) Brain network metric (Eigenvector 
Centrality; EC) levels of the left nucleus accumbens by obesity. P-value listed is adjusted for sex, race and diet and false discover 
rate. (b) Brain network metric (Betweenness Centrality; BC) levels of the brainstem by obesity. P-value listed is adjusted for sex, race and 
diet and false discover rate. (c) Linear regression between the left nucleus accumbens and P/B ratio adjusting for sex, race and diet. (d) 
Linear regression between the brainstem and P/B ratio adjusting for race, diet, and sex.

Table 2. Odds of having obesity by Prevotella/Bacteroides ratio 
and nucleus accumbens centrality.

Variable OR 95% CI p-value

Male 0.69 −0.06–1.44 0.33
Standard American Diet 3.35 2.55–4.14 0.003

Hispanic 4.67 3.97–5.38 <0.001
High P/B Ratio 2.64 1.83–3.46 0.02

High Nacc 3.52 2.74–4.31 0.002
High P/B Ratio*High Nacc 0.23 −2.16–2.62 0.22

Output of a logistic regression model for obesity. Eigenvector centrality (EC) 
of the left nucleus accumbens and the log(Prevotella/Bacteroides) ratio 
were separated into tertiles and the presence of the highest tertile was 
used in the model (High Nacc and High P/B Ratio, respectively). The model 
was adjusted for other covariates (i.e., obesity ~ sex + diet + race + High P/ 
B ratio + High Nacc + High P/B ratio*High Nacc). The odds ratio (OR) for 
having obesity is reported along with their respective 95% confidence 
interval (CI). Significant p values are bolded (p < 0.05).
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in Figure 4. From the Circos plot, after adjusting for 
multiple hypothesis testing, we see that, overall, 
there are significant interactions between BMI and 
the BGM axis. BMI had significant interactions with 
P/B ratio, nucleus accumbens centrality, fecal tryp-
tophan, and several genera. Furthermore, P/B ratio, 
nucleus accumbens centrality, and fecal tryptophan 
all had significant interactions with each other.

Discussion

Although there has been an increasing focus on 
exploring the disease processes underlying obesity 
by examining the gut microbiome and brain, there 
are few studies that utilize an integrative approach 
to understand the interactions within the BGM axis 
in obesity, and even fewer that do so while adjust-
ing for known confounding factors that impact the 
BGM axis. In this study, we demonstrated that race 
and diet have independent effects on microbiome 
diversity regardless of obesity state, and subse-
quently characterized the BGM axis changes 

associated with obesity while adjusting for these 
demonstrated covariates. These finding are of 
great interest given the increasing efforts to under-
stand the pathophysiology of obesity for the devel-
opment of novel therapies and regimens.

Previous initiatives to characterize the micro-
biome in various ethnic and geographical popula-
tions have reported pronounced differences in 
microbial communities.42 However, many of these 
studies compare groups across geographical bor-
ders, which introduces broad differences in envir-
onmental and lifestyle factors that confound the 
findings. The findings from the few studies that 
compare ethnicity within a country support results 
from our study. In a Canadian study that compared 
the gut microbiomes of Caucasian and South Asian 
infants, differences were observed in alpha diversity 
(Shannon index) and beta diversity (Bray-Curtis 
dissimilarities) between the two races, which is 
consistent with our findings of alpha and beta 
diversity differences based on race.43 We found 
that Asians have the lowest alpha diversity by 

Figure 4. Circos plot of all datasets. Red lines indicate positive correlations and blue lines indicate negative correlations (False 
discovery rate cutoff = 0.10). Bacteria to Bacteria associations were excluded from this plot for easier viewing. Nacc: Nucleus 
accumbens; BMI: Body mass index. P/B: Prevotella/Bacteroides. The strength of the correlations can be found in supplemental table S3.
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Shannon index and that it is significantly lower 
than Whites (p <.004). This is in agreement with 
the findings of an United States-based study, which 
also reported that Asian-Pacific Islanders had sig-
nificantly lower Shannon diversity compared to 
Caucasians and Hispanics.44

In prior research, long-term dietary habits 
influence gut microbiota composition, notably 
when comparing fiber versus protein-based 
diets. Our study showed that there were several 
taxonomic changes associated with a standard 
American diet, which is a low-fiber diet that is 
high in refined carbohydrates, fatty meats, and 
saturated fats. Of note, individuals on standard 
American diet were found to have decreased 
Lachnospira, which has been positively asso-
ciated with vegetarian diets and negatively asso-
ciated with higher meat and cholesterol intake.45 

Ruminococcus has also been shown to have cor-
relations with a protein-rich diet, and we simi-
larly saw increases in this genus with those 
individuals on the standard American diet.45 In 
addition, we observed that decreased Bacteroides 
and increased Prevotella abundance were also 
associated with a standard American diet. 
Prevotella-rich microbiomes are associated with 
insulin resistance through the production of 
branched chained amino acids, especially in 
those on a high-fat diet, such as a standard 
American diet, and potentially contributes to 
the increased risk of developing insulin resis-
tance in obese individuals.46

Although there have been many preclinical 
and clinical studies that have aimed to charac-
terize the obese microbiome, these results have 
shown inconsistencies. While initial studies in 
mice demonstrated that the microbiota of obese 
mice is enriched in Firmicutes and reduced in 
Bacteroidetes relative to that of lean mice, stu-
dies in humans have demonstrated similar 
findings,47 no associations,48 or contradictory 
results.49 Later, meta-analyses demonstrated 
that these associations were either very small or 
non-existent.50,51 In addition to comparing 
broad taxonomic groups, instead of genera or 
species, these previous studies failed to account 
for interpersonal variations that exist in the 
microbiome due to confounding factors, with 
the most prominent factors being diet and race.

In our study, we were able to account for 
these covariates and observed significant taxo-
nomic changes at the genus level associated 
with obesity, including enrichments in 
Prevotella and decreases in Bacteroides, which 
is also supported by previous studies.52 

Interestingly, while Prevotella and Bacteroides 
are closely related functionally and are able to 
individually dominate the gut microbiome, they 
are rarely found together in high relative abun-
dance and seem to exhibit a co-exclusionary 
relationship.53 In vitro studies have shown that 
Prevotella copri, which belongs to the genus 
Prevotella, is able to stimulate pro-inflammatory 
cytokines such as IL-6, IL-23, and IL-17, and 
perpetuate an inflammatory environment.54 

Mice that are colonized with P. copri also experi-
ence exacerbated colitis and overall more epithe-
lial damage due to inflammation.55 Obesity is 
considered a chronic low-grade inflammatory 
disease with elevated circulating pro- 
inflammatory cytokines, which may be main-
tained by a pro-inflammatory Prevotella-driven 
microbiome.56 This inflammatory state in obe-
sity is also seen in relation to microbial gene 
richness, as individuals with lower diversity 
tend to carry genes associated with oxidative 
stress.57

Our data also shows an inverse relationship 
between fecal tryptophan and obesity, a finding 
that is consistent in prior research.58 Tryptophan 
is directly related to the biosynthesis of impor-
tant neurotransmitters, such as serotonin and 
melatonin and several studies, have shown 
a negative correlation between tryptophan levels 
and obesity.58,59 The proposed mechanism by 
which this occurs is the shunting of dietary 
tryptophan toward pro-inflammatory kynurenine 
metabolites, adding to the proinflammatory state 
of obesity.58,59 The changes seen in a metabolite 
that is very directly related to brain function and 
signaling, like tryptophan, emphasize the central 
nature that the BGM axis plays in obesity.

This is particularly evident when we examine the 
findings related to the brain. Our results show an 
increased relationship of eigenvector centrality of 
the nucleus accumbens to both obesity and P/B 
ratio. In children with a genetic polymorphism for 
obesity, larger nucleus accumbens volumes were 
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detected along with responsivity to food cues com-
pared to lower-obesity risk controls.60 The nucleus 
accumbens is involved in regulating the reward 
aspects of food intake and dysregulation can lead 
to addiction-like behaviors resulting in weight 
gain.61 Increased activity in reward-regions in the 
brain are also predictive of weight gain in 
adulthood.62 Eigenvector centrality reflects how 
a region is directly connected to other regions of 
high connectivity, which is reflective of its global 
importance in other networks. Because DS and BC 
of the nucleus accumbens was not associated with 
obesity, this suggests that the nucleus accumbens 
role in obesity is more reflective of its interactions 
globally throughout the brain instead of its local 
interaction or ability to influence local signaling. In 
addition to finding increased measures of centrality 
in the nucleus accumbens in our obese group, we 
also observed decreased measures of betweenness 
centrality in the brainstem. Betweenness centrality 
is measure that reflects the ability of a region to 
affect the signal of another region. This is not 
surprising as the brainstem is recognized to be 
involved in food intake modulation by receiving 
inputs from the gut through cholecystokinin and 
then sending dopaminergic projections to the 
hypothalamus.63 Lower brainstem betweenness 
centrality suggests disruptions in this homeostatic 
network conveying these signals of satiety. A study 
comparing subcortical volumes involved in food 
intake similarly found decreased brainstem 
volumes in the obese group relative to controls.64 

With DS and EC of the brainstem not being related 
to obesity suggests that the way the brainstem 
influence local signaling is more important to obe-
sity and not the number of regions it is locally or 
globally connected to. There has been some discus-
sion about the correlation between measures of 
centrality, and the assumption is that since these 
metrics are derived from the same data matrix they 
should be redundant or highly related. For exam-
ple, some studies have demonstrated that degree 
centrality is correlated with eigenvector centrality 
but not betweenness centrality. However, studies 
have also shown that these measures do have dis-
tinct functional properties and measure different 
types of information flow and connectivity that 
are associated with specific outcomes, circum-
stances, and diseases. Hence, data should be 

interpreted as such (regardless of the possible 
underlying similarities in the underlying data).65– 

68 With larger samples other measures of brain 
network metrics, such as segregation and integra-
tion, and their relationships to each other could be 
investigated, which would further highlight func-
tional properties of connectivity in these key 
regions. Since a whole brain approach may limit 
detection of significant results, future studies can 
also take a region of interest approach and use these 
measures in collaboration with other MRI modal-
ities to provide more comprehensive inferences and 
insights.

While we demonstrated that diets such as the 
standard American diet may contribute to 
a microbiome state with increased susceptibility 
to obesity, the association of the microbiome to 
an elevated BMI were also independent of diet. 
From our analysis, we see that the prevalence of 
an elevated P/B ratio and a higher level of 
nucleus accumbens centrality was independently 
associated with obesity. In our GLM model, the 
lack of an interaction effect of race and obesity 
on either P/B ratio or nucleus accumbens cen-
trality suggests that the effects of having either 
of these risk factors increases one’s risk for obe-
sity irrespective of race. This is evident in our 
logistic regression, which shows race, diet, high 
P/B ratio, and high nucleus accumbens centrality 
as independent risk factors for obesity. However, 
being Hispanic was still an independent risk 
factor for obesity irrespective of P/B ratio or 
nucleus accumbens centrality. This suggests 
that other variables relating to race outside of 
the BGM axis still play a significant role in the 
development of obesity, warranting further 
research.

While our study has several strengths includ-
ing its relatively large size of 287 participants 
with a comprehensive dataset and consideration 
of major covariates, there are also several limita-
tions, such as the cross-sectional nature of our 
study design. The self-identification method used 
for collecting racial data may also not adequately 
account for the multidimensional construct of 
race, which may contribute to within-group 
heterogeneity.69 Future studies incorporating 
metagenomic methods to detect human genetic 
variants seen with race may help account for this 
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heterogeneity.44 The utilization of 16S rRNA 
sequencing also inherently has its disadvantages 
due to its low resolution, which limits data 
interpretation in terms of species and strain 
level functional analyses.70 In future controlled 
studies, additional covariates, such as early-life 
experiences and early childhood exposure to 
antibiotics may also need to be accounted for, 
as these are both factors with demonstrated 
influence on the microbiome.71

Despite the growing health burden of obesity 
worldwide, drug development efforts and proposed 
therapeutic strategies for obesity have yielded dis-
appointing results, with many only producing 
modest reductions in weight and frequent refrac-
tory outcomes.72,73 While the health disparities 
related to obesity in the United States are frequently 
attributed to dietary factors, our data suggest there 
may be other pathophysiological factors in the 
brain and gut microbiome that affect obesity, pav-
ing the way for personalized and earlier interven-
tions in these individuals with identified obesity 
risk signatures in their BGM axis. In addition, our 
study proposes the utility of a multimodal approach 
for targeting obesity, which includes modalities that 
target the brain (i.e. cognitive-behavioral therapy, 
dietary counseling, deep brain stimulation), gut 
microbiome alterations (i.e. bariatric treatments, 
fecal microbiota transplantations, pre/post-biotics) 
, and the BGM axis (i.e. postbiotics using metabo-
lites such as tryptophan-derived compounds) 
itself.7,74–76 Additional controlled studies using 
a multi-omics approach and advanced brain ima-
ging techniques are warranted to determine the 
causal roles of the gut microbiome and specific 
brain regions in obesity.

Conclusion

In conclusion, we show that there is an obesity- 
related signatures in the BGM-axis independent of 
sex, race, and diet. Race, diet, P/B ratio and increased 
nucleus accumbens were independent risk factors 
for obesity. P/B ratio was inversely related to fecal 
tryptophan, a metabolite related to serotonin bio-
synthesis, and positively related to nucleus accum-
bens centrality, a region central to the brain’s reward 

center. Potential pharmacological targets of the 
BGM-axis such as neuromodulators or probiotics 
may be new avenues to treat obesity.
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