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Abstract: In Public Safety Networks (PSNs), the conservation of on-scene device energy is critical to
ensure long term connectivity to first responders. Due to the limited transmit power, this connectivity
can be ensured by enabling continuous cooperation among on-scene devices through multipath
routing. In this paper, we present a Reinforcement Learning (RL) and Unmanned Aerial Vehicle-
(UAV) aided multipath routing scheme for PSNs. The aim is to increase network lifetime by improving
the Energy Efficiency (EE) of the PSN. First, network configurations are generated by using different
clustering schemes. The RL is then applied to configure the routing topology that considers both the
immediate energy cost and the total distance cost of the transmission path. The performance of these
schemes are analyzed in terms of throughput, energy consumption, number of dead nodes, delay,
packet delivery ratio, number of cluster head changes, number of control packets, and EE. The results
showed an improvement of approximately 42% in EE of the clustering scheme when compared with
non-clustering schemes. Furthermore, the impact of UAV trajectory and the number of UAVs are
jointly analyzed by considering various trajectory scenarios around the disaster area. The EE can
be further improved by 27% using Two UAVs on Opposite Axis of the building and moving in the
Opposite directions (TUOAO) when compared to a single UAV scheme. The result showed that
although the number of control packets in both the single and two UAV scenarios are comparable,
the total number of CH changes are significantly different.

Keywords: clustering; d2d communication; disasters; energy conservation; network lifetime; public
safety networks; reinforcement learning

1. Introduction

Man-made disasters such as terrorism can result in both the loss of life and critical infras-
tructure. It is estimated that an underdeveloped country like Pakistan incurred direct losses
of 127 billion dollars in the last 17 years or so due to terrorism [1]. In addition, the attacks like
Army Public School (APS) Peshawar, in which 150 students lost their lives, left a huge social
and psychological impact on society [2]. This event has resulted in the complete overhaul
of the security infrastructure and caused indirect losses to the economy. Numerous other
terrorist incidents such as on the Pakistan Navy Ship (PNS) Mehran, and General Headquarter
(GHQ) are examples in which terrorists attacked a building, took hostages, and/or destroyed
critical infrastructure. In these scenarios, to disrupt coordination, communication/cellular
infrastructure is often taken out either by the authorities or terrorists. The on-scene devices
carried by the trapped victims are unable to communicate to first responders or law enforce-
ment agencies. The information (location and number of victims, audio, video, and images)
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captured by on-scene available devices can provide timely information to first responders for
carrying out a coordinated rescue operation [3,4].

In these situations, a Device to Device (D2D) network provides an alternative method
of communication and connectivity among devices [5,6]. The D2D network along with
the presence of an Unmanned Aerial Vehicle (UAV) can ensure the information collected
by the devices to reach the Command Center (CC). This situation is depicted in Figure 1.
Since the transmission power of the devices are limited, it may be possible that some of
the devices are unable to reach the UAV. It therefore becomes imperative to cluster the
devices. Clustering is a process in which the network is divided into small substructures
called clusters, based on node degree, mobility, weights, etc., [7]. This small substructure
consists of Cluster Members (CMs) and a Cluster Head (CH). In the network, the CMs
communicate with their respective CHs to forward their data to the UAV. The CHs can also
rely on each other in forwarding data to the UAV and subsequently to the CC.

Figure 1. Disaster-affected region.

Multiple clustering techniques are studied in the literature based on different applica-
tions [8–20]. For example, the Link Cluster Algorithm (LCA) introduces the concept of a
Gateway (GW) node to provide better connectivity among neighboring CHs [8]. However,
this scheme is unstable due to numerous ID exchanges between nodes. The Least Cluster
Change (LCC) [9] reduces the cost of re-clustering, which gives stability to the clusters.
In [10], the authors proposed a new underlay clustering-based D2D network for the partial
and disconnected network. It forms dynamic clusters using adhoc base stations or mobile
devices. In [11], low frame-sized beacons signals are broadcasted by CHs to decrease
signaling overhead. CMs are declared based on the SINR values. The α-Stability Structure
Clustering algorithm (α-SSCA) is proposed in [12] in which CH is selected based on a score
function calculated by the exchange of hello messages between neighboring nodes. The
concept of quasi clusters, a special cluster within a cluster, are introduced in [13] to help in
reducing transmission power resulting in a longer network lifetime.

In [15], the authors proposed a new clustering scheme in which first clusters are
formed by dividing the area into multiple small partitions and then selecting the CH in
those partitions. These will be selected based on energy. To prolong network lifetime and
to avoid a blind spot issue in the scheme, re-clustering is performed when the energy of
the existing CH reaches a certain threshold. This scheme suffer from scalability issues. In
our earlier work [16], we compared different basic clustering schemes such as Clustering
without GW (CG), Clustering with GW (CWG), and No Clustering (NC) in terms of
throughput and energy. Simulation results show that the performance of CWG is best in
terms of throughput and energy.
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Another important clustering technique is called the K mean clustering, which is
mostly used in Wireless Sensor Networks (WSNs). In [17], K means and LEACH-C are
combined to prolong the lifetime of the network. At the start, the K mean algorithm is
used to form clusters, then LEACH-C is applied to each cluster. The method reduces the
overhead and increases the packet success rate. In [18], the authors have used the K means
L layer algorithm, which results in a decreased number of clusters enhancing network
lifetime. In [19], an energy-efficient K mean clustering protocol is proposed to optimize
packet size based on the channel conditions. This approach reduces energy consumption
and increases the overall network lifetime. In [20], an optimum value of K is obtained using
the elbow method and afterwards, clustering will be applied using the K mean algorithm.
Simulations show that after running the elbow method on different points, there comes a
point where gain gained by increasing K will drop. This is the optimum value of K.

In the absence of a cellular network, relaying critical data from the devices to the CC is
another important concern. Several routing protocols/algorithms exist in the literature for
multi-hop/multi-user networks. An emergency routing technique based on body-to-body
networks, known as an Optimized Routing Approach for Critical and Emergency Networks
(ORACE-NET) is proposed in [21]. It establishes temporary network connectivity for relief
works in disaster-affected areas. The results show that ORACE-NET performs better in
terms of energy consumption and throughput. Considering network size, different routing
schemes perform differently. Interference Aware Routing (IAR), Shortest Path Routing
(SPR), and Broadcast Routing (BR) are tested in [22] to find the shortest emergency route in
a disaster scenario. The simulation results show that the BR has the highest packet success
ratio for small networks, while IAR performs better for large networks. In [23], the authors
applied Simultaneous Wireless Information and Power Transfer (SWIPT) on CHs to achieve
better performance in a disaster-affected region.

Once the devices are clustered, the UAV position and trajectory plays a crucial role in
determining the Energy Efficiency (EE) of the network. Mainly, in the disaster situation the
UAV acts as a relay node for on-scene devices [24–33]. For UAV deployment in PSN, the
authors in [27] discovered the optimal altitude for a UAV that maximizes coverage. In [29],
authors proposed a UAV-assisted solution to establish energy-efficient connectivity in a
disaster-affected region in the presence of Critical Nodes (CNs). In [30], authors proposed
a D2D-based solution using UAVs that can reduce the response time significantly. In [31],
authors used Reinforcement Learning (RL) technique to deploy UAVs in a disaster scenario
to maximize total user coverage. In [32], the intelligent placement of UAVs as temporary
aerial base stations is discussed for public safety communications. In [34], authors proposed
a UAV-assisted vehicular communication framework using Software Defined Networking
(SDN) to reduce the processing cost of vehicles. UAV will act as a flying relay and helps in
forwarding data to a Mobile Edge Computing (MEC) server. This algorithm reduces the
average system cost by half. In [35], the authors proposed a new cellular network for UAVs
to support a high data rate. Three transmission modes of UAV with a network, UAVs, and
devices i.e., U2N, U2U, and U2D are studied. Authors in [36] proposed a multi agent deep
RL-based UAV framework assisted by MEC in which UAVs will assist users on the ground.
Results showed considerable gain in terms of fairness and energy consumption. In this
paper [37], the authors used UAVs in a disaster environment to extract information from
its one-hop devices using wireless power transfer technique. The graph traversal method
is used to reduce the energy cost of the UAV to one third of the total energy.

In [38], authors reviewed and discussed different UAV-Aided Wireless Sensor Net-
works (UAWSNs). The advantage of these networks is increased coverage and maximum
energy consumption at the cost of variable paths and mobility issues resulting in cover-
age problems in these networks. In [39–46], different UAV WSN-structured routing (flat,
cluster-based, tree-based, and location-based) protocols are proposed. Authors in [47] used
UAV communication to provide rescue operations in disaster-affected areas. UAVs are
spread over the entire area to provide network coverage. Gateway UAVs are further used to
deliver the information to the main network. In this work, the aim is to maximize the data
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rate while considering battery consumption. To address the problem of gateway UAV se-
lection, authors in [48] proposed a gateway UAV selection algorithm named Battery-Aware
Multi Arm Bandit (BA-MAB). They have also explored the use of machine learning. Two
kinds of UAVs are present in this work: Access UAVs and gateway UAVs. The objective is
to maximize the data rate while consuming minimum energy.

In [49], authors used drones for surveillance and data collection in buildings. Sensors
are used by the drones to navigate the buildings to identify and pinpoint the problems.
Deep RL is applied along with curriculum learning and neural networks.

Existing work on UAV and clustering mainly focuses on optimizing data collection
in WSNs. However, as demonstrated from the above literature, PSN is another important
use of UAVs and clustering simultaneously. The energy dynamics of on-scene devices in a
disaster scenario is highly dynamic compared to other uses, which amplifies the complexity
of ensuring end-to-end connectivity. Therefore, in this paper:

• We first analyze the impact of different clustering schemes and a UAV presence on the
performance of multihop routing in a disaster scenario. We then present a RL approach
to ensure end-to-end connectivity and improve Energy Efficeincy (EE) of PSNs.

• We consider the mobility of UAVs around the disaster area. Multiple UAV trajectories
are devised in order to improve the coverage of clusters in the disaster area while
ensuring EE.

This paper is organized as follows: In Section 2, the detailed system model is presented.
Section 2.1 presents network throughput and delay, Section 2.2 presents the energy model,
and the problem formulation is presented in Section 2.3. In Section 3, routing methods
are discussed in detail with clustering, route discovery, routing, and control overhead
in Sections 3.1–3.4 respectively. Section 4 provides a comparison of clustering schemes
with respect to energy and throughput. Sections 4.1 and 4.2 discuss reinforcement-based
routing and combined RL and UAVs trajectory optimization. In the end, Section 5 gives
the conclusion and future directions.

2. System Model

We consider a man-made disaster scenario in which terrorists attack a large building.
It is assumed that the normal cellular/wireless infrastructure is either blocked by security
forces or destroyed by the terrorists. We further assume the presence of some on-scene
devices (from here on called nodes) held by the trapped victims. If provided with an
adequate emergency communication network, the information carried by these nodes can
yield great insight for the law enforcement agencies. However, it may not be possible for the
emergency communication network to provide coverage to all the nodes simultaneously.
In this situation, the nodes can cooperatively communicate with each other to form a D2D
multi-hop network. To simplify communication between multiple nodes, the devices can
form clusters assisted through the D2D network. The UAV and CC are deployed outside
the building perimeter to collect the information from these clusters. The clusters within
range of CC communicate directly with the CC and the clusters outside the range of the CC
communicate with the CC through a UAV. This situation is depicted in Figure 2, in which
the UAV (acting as a relay) is placed outside the building to connect the nodes with the CC
used by law enforcement agencies. To protect the CC from an ambush by the terrorists, the
CC is deployed slightly away from the building. The symbols are mentioned in Table 1.
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Table 1. Table of symbols.

Name Symbol Name Symbol

Number of nodes N Number of clusters i
Cluster radius Rmax CH Tx radius Tmax

K value K Average distance of each K Wk
Distance d Transmissions T

Reward function Rw Learning rate V
Discount factor γ Path loss PL

Carrier frequency fc Number of walls nw
Number of floors n f Floor loss Fl

Throughput r Path ρ
Routing matrix H Packet size L

Energy Efficiency EE Delay δ
Transmitting power Pt Bandwidth B

Noise power No Packet size L
Beta β Alpha α

Figure 3 shows a two-tier network with N nodes that are randomly distributed in
100 m × 100 m. The nodes are divided into i clusters and the set of nodes in each cluster
is denoted by Ni, where i = {1, . . . , I}. Considering a limitation on the transmit power
of on-scene devices, the maximum distance between CH and its CM is restricted to Rmax.
Whereas, a CH in this network can communicate with the other CHs over a maximum
distance denoted by Tmax. The pathloss [50] between links separated by distance d is
calculated from:

PL(d) = 20× log10(d) + 46.4 + 20× log10( fc/5) + 12× nw + 17 + 4(n f − 1) (1)

where the path loss exponent is assumed to be 2, fc is the carrier frequency, nw is the
number of walls (taken as 1), and n f is the number of floors (taken as 0) as we assume that
the devices are on the same floor.

Figure 2. Disaster hit area with Unmanned Aerial Vehicle (UAV) and Command Center (CC).
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Figure 3. Two-tier graph.

2.1. Network Throughput and Delay

In this scenario, the total network throughput (r) is the sum of throughput from each
CM to the CC. Given dmn represents the link distance between m and n, then the throughput
is defined as:

rmn = B log2

(
1 +

Pt

NoPL(dmn)

)
. (2)

The CHs in the network can cooperate with each other to forward their data to the
UAV or CC. Since a CM in cluster i (si ∈ Ni) takes multiple hops to reach CC, we define a
routing matrix for each CM, denoted by Hi,si . It is assumed that the routing matrix remains
the same for some time horizon and also remains the same for all the nodes in a cluster.
Therefore, the routing matrix is defined as Hi,si = (hmn) ∈ R(K+1)×(K+2), where hmn
denotes the status of the connection between m and n, m ∈ {si, CH1, . . . , CHI, UAV, CC}
and n ∈ {CH1, . . . , CHI, UAV, CC}, and hmn = 1 (hmn = 0) indicates the presence (absence)
of path between the nodes m and n. For example, if the 2nd node in the 1st cluster forward
their data to CC through CH3 and UAV, then the routing matrix for such a configuration
can be written as:

H1,2 =


1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

. (3)

The first entry h11 = 1 indicates the link between the 2nd node and 1st CH, h23 = 1
indicates the link condition between CH1 and CH3, h34 = 1 connects CH3 to the UAV, and
h45 = 1 successfully terminates the information at CC.

Let ζ̂i,si defines the throughput for all the possible paths from the node in si, then the
throughput on the paths defined by the routing matrix Hi,si can be written as
ζ̂i,si = (rmnhmn) ∈ R(K+1)×(K+2). Since a node takes multiple hops to reach CC, we as-
sume that the minimum throughput in all the multi-hop links is the throughput of the
node. Let λi,si be the minimum value of ζ̂i,si , then the sum throughput of all the nodes can
be written as:

ζ = ∑
i∈I

∑
si

λi,si . (4)

The number of hops can be directly computed from the rank of Hi,si denoted by
℘i,si . Using λi,si , packet size L, and transmission rate , the end-to-end delay (ignoring
propagation delay) of a node indexed by si in cluster i can be calculated as:

δi,si = ∑
m

∑
n

Lhmn

rmn
, (5)
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whereas, the sum end-to-end delay of all nodes in the network are given as:

∆ = ∑
i∈I

∑
si

δi,si . (6)

2.2. Energy Model

Assuming that all the nodes transmit with constant power Pt, the transmission energy
Etx(i, si) of CM (indexed by si of cluster i) can be written as:

Etx(i, si) =
LPt

rsi i
. (7)

Assuming, a CM has an initial energy Einitial(i, si), then the residual energy of the
node after T transmissions becomes:

Eres(i, si) = Einitial(i, si)−∑
T

Etx(i, si). (8)

Since a CH forwards data of all the CMs, the transmission energy of ith CH becomes:

Eres(i) = Einitial(i)−∑
T

∑
si

Etx(i), (9)

where, Einitial(i) is the initial energy of CH, and

Etx(i) = ∑
n

LPthin
rin

. (10)

The total energy consumption in the networks after T transmissions can now be
written as:

Etot = ∑
i∈I

∑
si

Etx(i, si) + ∑
i∈I

Etx(i). (11)

2.3. Problem Formulation

The objective in this work is to maximize throughput, however, maximizing through-
put can lead to higher energy consumption. Since the devices have limited energy, the
higher energy consumption can lead to dead nodes in the network and subsequently
network singularities. Therefore in this paper, we aim to increase EE. Based on the sum
throughput and energy calculations (4) and (11) in the previous subsections, we can define
the EE as:

EE =
ζ

Etot
=

∑
i∈I

∑
si

λi,si

∑
i∈I

∑
si

Etx(i, si) + ∑
i∈I

Etx(i)
. (12)

The objective function can now be written as:

max
Hi,si

EE

s.t. Eres(i) > 0

Rmax ≤ 30m.

(13)

In the following we present an intelligent routing technique based on RL to maximize
the EE.
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3. Reinforcement Learning-Based Routing

To achieve the above objective function, we define a routing methodology which
involves three steps. In the first step, the devices form clusters to decrease the transmission
energy. In the second step, route discovery takes place and end-to-end paths are found.
Note that routing discovery is dependent on the type of underlying clustering schemes as
different clustering schemes generate different network configurations or end-to-end paths.
In the last step, based on routing discovery we apply RL to determine transmission paths
to improve the EE of the network.

As discussed earlier, clustering can impact route discovery, therefore, to optimize the
route discovery we compare the performance of different clustering schemes.

3.1. Clustering

In this paper, we consider two types of clustering schemes: (1) Clustering-energy
which is a distributed clustering scheme and (2) clustering-K mean which is a centralized
clustering scheme.

3.1.1. Clustering-Energy

In this scheme, we assume that the nodes have no prior information about the energy
and distance of other nodes. Initially, a node will check its Eres, and based on its level
decides about its current status as either CH or CM. If the node energy is 100 times above
the energy threshold, then it will immediately declare itself as a CH. Otherwise, it will wait
for a small interval equivalent to a single transmission round (for other nodes to declare
themselves as CH) and then declares itself as a CH. If the node declares itself as a CH
then it will broadcast its CH Identification (ID) and Eres information. This CH ID will be
selected randomly between 0 and Imax. This broadcast is limited by the Txrange = 30 m.
The nodes which receive this broadcast will compare their own Eres with the received
information. If the Eres of the node is higher compared to that of the current CH, it will
declare itself as a CH and broadcast its own Eres and CH ID. On receiving this broadcast,
the node that has previously declared itself as a CH will change its status to CM and send
an association request to the new CH. All the other nodes except CH which receive this
association request will change their CH. On the other hand, if the Eres of the receiving
node is lower than the CH, then they will send an association request to the CH and change
their status as member nodes.

Afterwards, the CH will broadcast its cluster ID at Range = 1.5× Txrange. All the CHs
that receive this broadcast will forward it until all the CHs receive this ID. If some CH have
selected the same ID before, then this will resolve the issue because this broadcast and each
CH will now have a unique CH-ID. The process of re-clustering will start when the Eres of
the CH reaches the energy threshold value. At that point the CH will broadcast a CH dead
message. Nodes that receive this message will start the CH selection process.

We observe the nodes falling in the overlapping zones of two clusters can act as a GW
node. This will provide an added degree of freedom in route discovery. Therefore, based
on the above procedure, we derive another scheme called clustering-energy-GW. The only
difference is that the GW nodes are formed if a member node receives the broadcast of two
or more CHs. The node will set and broadcast its status as a GW node. These schemes are
easy to implement and need no central authority, however, this is achieved at a higher cost
of cluster formation and CH selection.

3.1.2. Clustering-Kmean

K mean clustering is an unsupervised machine learning algorithm to cluster nodes in
the network. From a network perspective, it is a centralized scheme and requires distance
information of all the nodes. This algorithm comprises of two key steps. In the first step,
K centres are placed randomly in the given geographic area and all nodes must associate
themselves with the closest centre. In the next step, the mean of each centre with the
nodes is calculated and these new means then become new centres. These same steps are
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repeated until the criterion function (Cr) becomes minimum. We can find this function by
the formula:

Cr =
I

∑
i=1

∑
di

|xdi
− xi|. (14)

Here (xdi
− xi) gives the average distance of nodes with point xi in cluster i. In the

end, the node which is closest to the respective centre will then become a CH and all other
nodes will become member nodes of the cluster. Performance of K mean clustering mostly
depends on the ideal K value. An elbow [20] algorithm is used to identify the optimum
value of K.

The above discussed scheme can be modified by incorporating the GW nodes. The
chances of GW nodes in this clustering are very rare and the new scheme is called the
clustering-K mean-GW. These schemes have a low maintenance cost although a central
authority is needed in this case. The comparison of all these schemes are shown in Table 2.
All the schemes which are discussed in Table 2 are modified by us.

Table 2. Comparison between clustering schemes. GW: Gateway.

Scheme Name Clustering Type Clustering Overlapping Gate Way Location Awareness

Clustering-energy Energy based High No Not required
Clustering-energy-GW Energy based High Yes Not required

Clustering-k mean K mean Low No Required
Clustering-k mean-GW K mean Low Yes Required

3.2. Route Discovery

After clustering, CHs will have complete information about its clusters. In this special
scenario, nodes only need to communicate with the temporary CC, so CHs can keep the
routing table for CC. To find this routing table, the CH will start the route discovery process
with the destination always set as a CC in which the UAV can also act as a relay. Initially,
the CH will broadcast the Route Request (RREQ), and the CHs that receives this RREQ
will reply with a Route Reply (RREP). The routing tables are maintained at the CHs. If a
packet is transmitted successfully, then acknowledgment will be received. If this is not the
case, then it will re-transmit the packet. With three consecutive packet re-transmissions,
the respective CH will start the route discovery again and if the problem persists, then the
CH will declare the destination inaccessible. The route discovery process is again initiated
after every 250 transmissions and the same steps are repeated.

3.3. Routing

For routing, the node that needs to transmit will forward its packet to its respective
CH. The CH will then forward this packet to the destination based on its routing table Hi,si .

In this paper, we apply RL to update the entries of the routing table to improve EE.
Similar to [51], we use a linear functional approximation for the cost function. The proposed
cost function is defined as:

Cost = β

(
α

(
dmn

max(dmn)

)
+ (1− α)

( dn(UAV/CC)

max(dn(UAV/CC))

))
+ (1− β)

( Emn

max(Emn)

)
(15)

where, α is the weighting factor for shortest distance to the UAV and the next hop and
β is the weighting factor to provide a balance between the distance and energy, and m
and n are sender and receiver respectively. dmn is the distance between m and n while
max(dmn) is the maximum distance between m and n. Similarly Emn is the transmission
energy between m and n while max(Emn) is the maximum energy cost for the next hop.
The above cost function consists of two sections, the distance and energy. This cost is only
checked at a CH. The distance is balanced by α which considers the weight of the next
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hop and the corresponding distance of the next hop to UAV/CC. Choosing a minimum
distance path to the UAV/CC can cause significant load balancing issues. The energy
consumption of forwarding CHs in such a path will also increase significantly. On the
contrary, only choosing the minimum distance path for the next hop may not always be
feasible as it can increase the number of hops or the distance to the UAV. The value of α
finds the tradeoff in terms of distance which is subsequently used by the parameter β to
manage the tradeoff among immediate energy expenditure in the next hop and distance.
For example, if a CH has connectivity to multiple CHs through which it can forward its
data. The scaling factor β is proportionate to the immediate energy cost of the next hop
and distance cost of different routes. The terms max(Emn), max(dmn) and max(dnUAV/CC)
normalize the energy and distance of all the possible routing paths in the next hop.

Once the costs are calculated in the current epoch, the routing is carried out. All
the steps will remain the same except after the cost function RL is applied by using the
equation given below:

RLmn = (1− γ)RL
′
mn + γ(Rwmn + V(max(RLm′n′ )). (16)

Here RL
′
mn is the previous value of RLmn, Rwmn is the reward obtained from com-

munication which in this case is 0 for an unsuccessful transmission and 1 for a successful
transmission, γ is the discount factor varying between 0 ≤ γ ≤ 1 which tells us how much
importance we want to give to the current rewards, and V is the learning rate varying
between 0 ≤ V ≤ 1 that tells us to what extent these RL values are updated after each
iteration. max(RLm′n′ ) is the maximum calculated cost for the next hop. (1− γ)RL

′
mn

takes a weight of the old RL
′
mn value and then by adding the learned value which is the

combination of Rwmn and current max(RLm′n′ ). This means an action is taken after looking
at the old, current, and future rewards as shown in Algorithm 1.

Algorithm 1: Reinforcement Learning Algorithm.
Input: N = 1, 2, ..., i // Number of nodes
m & n // sender & receiver
Rwmn // Reward function
γ ∈ [0, 1] // Discount factor
V ∈ [0, 1] // Learning rate
Output: RLmn
Initialize Rwmn=1
while RL is not converged do

Start in state s ∈ N
while s is CH do

max(RLm′n′ ) // Maximum calculated cost for the next hop
Rwmn // Current reward
RL

′
mn // Previous RL value

RL(mn)←− (1−V).RL
′
mn + γ.(Rwmn + V(max(RLm′n′ )) RL

′
mn ←− RLmn

end
end

3.4. Control Overhead

This subsection summarizes the cost of control overhead in clustering and non-
clustering schemes. The control overhead in the above schemes can be categorized as
a beacon message overhead, clustering overhead, and routing overhead.

• Beacon messages overhead: These beacon messages are sent by the nodes to find the
information about their respective neighbors. The number of beacon messages sent
are dependent on the number of nodes, N, in the environment. The nodes which are
in its vicinity will reply. These beacon messages are resent after every 10 s to renew
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the neighbor’s information. Since there is no mobility in our scenario the neighbor
change is only possible due to DNs.

• Clustering overhead: To calculate the clustering overhead, we categorize the cluster-
ing schemes as centralized and decentralized schemes. The schemes that employ K
mean clustering are centralized schemes because they require the location information
of all the nodes. We assume that after the exchange of beacon messages, location
information of all the nodes is forwarded/relayed to the CC. The CC performs K
mean clustering and inform the nodes about their clusters and CHs. Here, we do not
consider the overhead of passing location information to CC and K mean information
back to the nodes from CC. This approximate overhead can be readily found from the
achievable capacity [52]. The schemes that employ clustering energy are distributed
schemes. The clustering overhead is calculated when a node broadcasts control pack-
ets to declare itself as the CH. The receiving nodes will reply accordingly as discussed
in Section 3.1.1. These control packets depend on the number of clusters i and the
number of CMs in each cluster.

• Routing overhead: Once the CHs are formed, this step includes the amount of control
overhead involved in the discovery of neighboring CHs and the routing path. It is
assumed that the routing tables are only maintained at the CHs, which will reduce the
overall routing overhead. For route discovery, the CHs will send the control packets
to the neighboring CHs which will then forward the control packets all the way to the
CC. The CC will confirm the routing path for each CH through a reverse response as
discussed in Section 3.2.

4. Performance Analysis

For simulations, we consider an area of 100× 100 m2 with N = 100 nodes is considered
as shown in Figure 4 with the UAV placed at the edge and CC placed further away for
safety reasons. The UAV and CC are static and their placement allows a limited number of
nodes in their transmission range. These nodes (GW and CH) are consequently used to
reach the UAV and CC in a multi-hop manner resulting in rapid depletion of their battery.

Figure 4. Topology of the network in NS-3.

In Figure 4, the blue color is used for CC, the yellow color is used for UAV, the black
color is used for CHs, the green color is used for GWs, the red is used for CMs, and the
white color is used for Dead Nodes (DNs). The white nodes are not active and unable to
communicate due to low or no Einitial . This topology is obtained after running NS-3-based
simulations for several rounds. The simulation parameters are shown in Table 3.



Sensors 2021, 21, 4121 12 of 22

Table 3. Simulation parameters.

Parameter Values

Number of Devices (N) 100
Network Grid 100 m × 100 m
CC Placement (120, 35) m

UAV Placement (Initial) (100, 0, 10) m
Size of Data Packet (L) 1024 bytes

Header Size 40 bytes
Initial Power Level 0 to 1 J

ETx 50 nJ/bit
ERx 50 nJ/bit

Threshold 4.35 mJ
Cluster Range, Rmax 30 m
CH Tx Range, Tmax 45 m

Distance b/w UAV and CC 60 m
Max Transmissions in a Round (NTx) 5

Imax 1024
α 0.5
β 0.5

Discount Factor (γ) 0.8
Learning Rate (V) 0.4

For a fair comparison, we include the results of non-clustering schemes based on
Dijkstra [53] along with schemes discussed in Section 3.1. To get a better insight into
the schemes performance, we assigned random energy varying between 0 and 1 J to all
the nodes. Figure 5 shows the number of DNs where the total number of DNs is very
high because nodes have random Einitial and they die quickly. The figure shows that both
Dijkstra-based schemes had the highest number of DNs. This is approximately 57% higher
compared to clustering-energy at 250 s, respectively.
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Figure 5. Number of dead nodes.

Figure 6 shows the residual energy of different schemes. As expected, the Dijkstra-
based scheme had the lowest residual energy at 250 s. The Dijkstra-based scheme consumed
61% higher energy as compared with clustering-K mean-GW at 250 s. Figure 7 shows the
throughput of all the schemes. Until 90 s, Dijkstra with UAV shows the highest throughput,
but after 90 s its curve starts to saturate due to the increasing number of DNs. Clustering-
energy-GW has the highest throughput after 250 s i.e., 38 and 40% higher as compared to
Dijkstra with UAV and clustering-energy, respectively. Figure 8 shows the EE of different
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schemes. The clustering-K mean-GW has highest throughput per unit of energy until
35 s. Beyond 35 s, clustering-K mean shows highest throughput starting from 75 s to
180 s. Both the Dijkstra-based schemes have the lowest EE and decrease further with time.
The clustering-K mean has a 29 and 45% higher EE as compared to clustering-energy and
Dijkstra without UAV. Figure 9 shows end-to-end delay. The delay is very high in all the
schemes because of the high hop count. In comparison, Dijkstra without UAV shows the
highest delay followed by Dijkstra with UAV. Clustering-K mean-GW offers a 75% lower
delay when compared with Dijkstra without the UAV.

Figure 10 shows Packet Delivery Ratio (PDR) of different schemes. In the beginning,
both the non-clustering schemes (Dijkstra) have a higher PDR upto 75 s. Afterwards their
performance degrades and Dijkstra w/o UAV has the lowest PDR. Compared to (Dijkstra),
the PDR of clustering schemes decays slowly. The clustering-energy-GW have the highest
PDR after 150 s and it is 9.2% higher than that of clustering-K mean at 250 s.
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Figure 6. Residual energy.
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4.1. Reinforcement-Based Routing

From earlier results we observed that clustering-K mean performs the best in EE, therefore,
we apply RL on the best performing scheme. Figure 11 shows the EE between the best perform-
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ing scheme clustering-K mean and clustering-K mean-RL. The results show an improvement
of up to 15% at 10 s when compared with the underlying scheme. In addition, we have also
compared RL-based distance and energy only variant of Equation (15). Its worth mentioning
that RL-based distance only variant performed much better compared to both conventional
Dijktsra and Dijkstra with UAV. Figure 12 shows PDR between the clustering-K mean and
its RL variant. RL-based K mean variant shows at least a 4% improvement.
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Figure 11. Energy efficiency of the reinforcement learning scheme. RL: Reinforcement Learning.
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Figure 12. Packet delivery ratio of the reinforcement learning scheme.

Figure 13 shows a comparison of the total number of control packets sent by all the
schemes including clustering and Dijkstra-based schemes. Both Dijkstra-based schemes
transmit almost the same number of control packets. It is interesting to observe that
the control overhead of Dijkstra-based schemes is approximately 90% higher than the
clustering-energy-GW. Figure 14 shows the same comparison between different clustering
schemes. The control overhead of clustering-energy-GW is 32% higher when compared to
clustering-energy, clustering-K mean-GW, and clustering-K mean-RL.

Figure 15 shows the number of CH changes in different clustering schemes. The
energy-based schemes show the highest number of CH changes when compared with the
K mean clustering schemes because of their distributed nature. Clustering-energy-GW
shows 53% more CH changes when compared with clustering-K mean-GW.
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Figure 13. Control packets sent by all the schemes.
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Figure 14. Control packets sent by different clustering schemes.
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Figure 15. Number of CH changes in different clustering schemes.

4.2. Combined RL and UAV(s) Trajectory Optimization

In the previous sections, the UAV was considered to be a static node. However,
the UAVs act as flying relays and with an adequately designed flight trajectory they can
provide uniform coverage to all the CHs, thus increasing EE. In this paper we consider
the placement of single and multiple UAVs and analyze the impact of their trajectory. The
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purpose of multiple UAVs is to decrease the number of hops and provide an improved EE.
In the disaster scenarios, the energy of the devices is very critical so to further improve
EE and connectivity, a multiple-UAV scenario is applied. The speed of UAVs in motion is
2.70 m/s. The transmission range of a UAV is 60 m. If the CHs falls in the transmission
range of two UAVs, the CH will choose the UAV closest to the CC. The RL is used to
find the best routing paths in the scenario given in Figure 16. Figure 16a provides three
dimensional view of the disaster scenario and Figure 16b shows the trajectory paths of
UAV’s around the disaster scenario. We consider pre-defined UAV flight paths around the
area which are discussed below.

(a) 3-D view of the scenario. (b) Trajectories of the UAVs.

Figure 16. Trajectories of UAVs around the disaster area.

• Two UAVs on Opposite Axis and Same direction (TUOAS): In this scheme, the two
UAVs are placed at the edge of the building. Both the UAVs are placed on the opposite
corners of the building. They start moving from the same side of the building, as
shown in Figure 16. Both these UAVs are moving in parallel to each other but the
direction they are following is the same. The trajectory they are following is along
the straight line alongside the building. When they reach the opposite corner of the
building, they will follow the same path backwards. The CHs that are in the range
of any of these UAVs will send there packets through the respective UAV. Thus, the
Equation (15) for the two UAVs will be modified as:

Cost1 = β

(
α

(
dm1n1

max(dm1n1 )

)
+ (1− α)

(
dn1(UAV1)

max(dn1(UAV1)
)

))
+ (1− β)

( Em1n1
max(Em1n1 )

)
. (17)

Here Cost1 is the cost associated with UAV1 in which m1 and n1 are the sender and
receiver nodes associated to the UAV1:

Cost2 = β

(
α

(
dm2n2

max(dm2n2 )

)
+ (1− α)

(
dn2(UAV2)

max(dn2(UAV2)
)

))
+ (1− β)

(
Em2n2

max(Em2n2 )

)
. (18)

Similarly Cost2 is the associated cost with the UAV2. While m2 and n2 are the sender
and receiver nodes associated to the UAV2. In the case, sender m is in the direct range
of CC, the cost will be calculated using Equation (15). The above equations can also
be used for all other two UAV schemes presented below.

• Two UAVs on Opposite Axis and Opposite Direction (TUOAO): In this scheme two
UAVs are placed at the opposite corner of the building as shown in Figure 16. Both
UAVs moves along a straightline alongside the building towards their respective
direction. By moving in this way they will help in maximize the coverage area of
the building affected by the disaster. When a UAV reaches the edge of the building
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it will follow the same path backwards and it keeps on doing this till the end of
the simulation.

• Two UAVs moving on Same Axis (TUSA): In this scheme, both the UAVs were placed
on the same axis separated by 60 m, as shown in Figure 16. Both the UAVs move in
the same direction and on reaching there respective endpoint they follow the same
path backwards. The maximum separation between them remains the same.

• Single UAV in motion (SU): In this scheme, we placed a single UAV at the corner of
the building. The UAV moves alongside the building and traverses the same path on
its way back from the end of the building.

We have considered variable energy for the nodes varying between 0 and 1 J. The
bars in Figure 17a show that all the schemes achieve their maximum throughput after
250 s. The TUOAO records the highest throughput and provide 2%, 15%, and 20% gain
when compared with TUOAS, TUSA, and SU, respectively. Figure 17b presents the number
of DNs for each scheme. The difference between the schemes TUOAO, TUSA, and SU
was minor and only TUOAS showed 7% lesser DNs compared to the other three schemes.
Figure 17c shows the residual energy after 250 s. TUOAO has the most residual energy
whereas TUOAS was second with 6% lower residual energy, and SU and TUSA are third
and fourth, respectively. Figure 17d shows EE. All the schemes present a higher perfor-
mance compared to the SU case. TUOAO presents the highest gain in EE, whereas the EE
of TUOAS is 10% lower. The EE of TUSA and SU is 23% and 27% lower when compared
to TUOAO. Figure 18 compares the number of control packets sent for different trajectory
schemes. The scheme with a single UAV sends the least amount of control packets, 14%
lower than that of TUOAS. Figure 19 shows the number of CH changes against time. The
schemes with two UAVs have a higher number of CH changes. This is mainly due to
the routing overhead induced by the movement of the UAVs, which result from frequent
changes in routing paths. Intuitively, the SU scheme in comparison has 50% fewer CH
changes than the TUOAS.
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Figure 17. Results after 250 s.
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Figure 18. Number of control packets.
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Figure 19. Number of CH changes.

5. Conclusions

In this work, multiple routing schemes were evaluated for a man-made disaster
scenario. The main concern in these scenarios is the network lifetime achieved through
EE. As expected, the simulation results showed clustering schemes had a longer network
lifetime when compared with non-clustering schemes. In terms of throughput, clustering-
energy-GW had 40% higher throughput than clustering-energy. However, in terms of EE,
clustering-K mean showed the best performance. We then applied RL on the clustering-K
mean which further improved the EE by 15% at 10 s. Inclusion of multiple UAVs further
improved EE, however, the amount of improvement was highly dependent on the trajectory
of these UAVs. In a rectangular disaster area, maximum EE was achieved when the UAVs
started scanning linearly from the opposite ends of the building while maximizing the
coverage. However, this came at the cost of increased routing overhead and cluster changes.
In future, we plan to get a holistic picture by incorporating the impact of control packets. It
is also possible to explore the use of localization techniques to find the exact location of the
nodes, which is useful in planning multi-UAV deployment.

Author Contributions: H.I.M., R.A. and W.A. contributed the key idea and defined the problem
statement. R.A. and W.A. helped with the system model, simulation framework, basic clustering
schemes, and UAV trajectories. H.I.M. performed the implementation, analysis, and simulations.
M.W. contributed to the design of the RL based approach. M.M.A. and S.T.G. provided statistical



Sensors 2021, 21, 4121 20 of 22

input and integration of results. H.I.M., R.A., W.A. and M.W. were involved in the preparation of
the original draft of the paper. M.M.A. and S.T.G. helped review the paper. The improvements in
the write up were contributed by all. All authors have read and agreed to the published version of
the manuscript.

Funding: This research has received funding from the NATO-SPS funding grant agreement no. G5482.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zakaria, M.; Jun, W.; Ahmed, H. Effect of terrorism on economic growth in Pakistan: an empirical analysis. Econ. Res. Ekonomska

IstražIvanja 2019, 32, 1794–1812. [CrossRef]
2. Qureshi, R.; Gulraiz, A.; Shahzad, Z. An Analysis of Media’s Role: Case Study of Army Public School (APS) Peshawar Attack.

Soc. Commun. 2016, 2, 20–30. [CrossRef]
3. Masood, A.; Scazzoli, D.; Sharma, N.; Moullec, Y.L.; Ahmad, R.; Reggiani, L.; Magarini, M.; Alam, M.M. Surveying pervasive

public safety communication technologies in the context of terrorist attacks. Phys. Commun. 2020, 41, 101109. [CrossRef]
4. Ali, K.; Nguyen, H.X.; Shah, P.; Vien, Q.T.; Bhuvanasundaram, N. Architecture for public safety network using D2D communica-

tion. In Proceedings of the 2016 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), Doha,
Qatar, 3–6 April 2016; pp. 206–211.

5. Shaikh, F.S.; Wismüller, R. Routing in multi-hop cellular device-to-device (D2D) networks: A survey. IEEE Commun. Surv. Tutor.
2018, 20, 2622–2657. [CrossRef]

6. Muraoka, K.; Shikida, J.; Sugahara, H. Feasibility of capacity enhancement of public safety LTE using device-to-device commu-
nication. In Proceedings of the 2015 International Conference on Information and Communication Technology Convergence
(ICTC), Jeju Island, Korea, 28–30 October 2015; pp. 350–355.

7. Anupama, M.; Sathyanarayana, B. Survey of cluster based routing protocols in mobile adhoc networks. Int. J. Comput. Theory
Eng. 2011, 3, 806. [CrossRef]

8. Ephremides, A.; Wieselthier, J.E.; Baker, D.J. A design concept for reliable mobile radio networks with frequency hopping
signaling. Proc. IEEE 1987, 75, 56–73. [CrossRef]

9. Chiang, C.C.; Wu, H.K.; Liu, W.; Gerla, M. Routing in clustered multihop, mobile wireless networks with fading channel.
In Proceedings of the IEEE SICON, Singapore, 14–17 April 1997; Volume 97, pp. 197–211.

10. Fodor, G.; Parkvall, S.; Sorrentino, S.; Wallentin, P.; Lu, Q.; Brahmi, N. Device-to-device communications for national security and
public safety. IEEE Access 2014, 2, 1510–1520. [CrossRef]

11. Lu, Q.; Miao, Q.; Fodor, G.; Brahmi, N. Clustering schemes for D2D communications under partial/no network coverage.
In Proceedings of the 2014 IEEE 79th Vehicular Technology Conference (VTC Spring), Seoul, Korea, 18–21 May 2014; pp. 1–5.

12. Guizani, B.; Ayeb, B.; Koukam, A. Hierarchical cluster-based link state routing protocol for large self-organizing networks.
In Proceedings of the 2011 IEEE 12th International Conference on High Performance Switching and Routing, Cartagena, Spain,
4–6 July 2011; pp. 203–208.

13. Laha, A.; Cao, X.; Shen, W.; Tian, X.; Cheng, Y. An energy efficient routing protocol for device-to-device based multihop
smartphone networks. In Proceedings of the 2015 IEEE International Conference on Communications (ICC), London, UK, 8–12
June 2015; pp. 5448–5453.

14. Chang, T.C.; Wei, C.; Hsu, M.; Lin, C.; Su, Y.T. Distributed clustering and spectrum-based proximity device discovery in a wireless
network. In Proceedings of the 2016 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting
(BMSB), Nara, Japan, 1–3 June 2016; pp. 1–4.

15. Islam, N.; Dey, S.; Sampalli, S. Energy-Balancing Unequal Clustering Approach to Reduce the Blind Spot Problem in Wireless
Sensor Networks (WSNs). Sensors 2018, 18, 4258. [CrossRef]

16. Minhas, H.I.; Ahmad, R.; Ahmed, W.; Alam, M.M.; Magarani, M. On the impact of clustering for Energy critical Public Safety
Networks. In Proceedings of the 2019 International Symposium on Recent Advances in Electrical Engineering (RAEE), Islamabad,
Pakistan, 28–29 August 2019; Volume 4, pp. 1–5.

17. Echoukairi, H.; Kada, A.; Bouragba, K.; Ouzzif, M. A novel centralized clustering approach based on K-means algorithm for
wireless sensor network. In Proceedings of the 2017 Computing Conference, London, UK, 18–20 July 2017; pp. 1259–1262.

18. Gupta, A.; Shekokar, N. A novel K-means L-layer algorithm for uneven clustering in WSN. In Proceedings of the 2017
International Conference on Computer, Communication and Signal Processing (ICCCSP), Chennai, India, 10–11 January 2017;
pp. 1–6.

http://doi.org/10.1080/1331677X.2019.1638290
http://dx.doi.org/10.1515/sc-2016-0009
http://dx.doi.org/10.1016/j.phycom.2020.101109
http://dx.doi.org/10.1109/COMST.2018.2848108
http://dx.doi.org/10.7763/IJCTE.2011.V3.414
http://dx.doi.org/10.1109/PROC.1987.13705
http://dx.doi.org/10.1109/ACCESS.2014.2379938
http://dx.doi.org/10.3390/s18124258


Sensors 2021, 21, 4121 21 of 22

19. Razzaq, M.; Devi Ningombam, D.; Shin, S. Energy efficient K-means clustering-based routing protocol for WSN using optimal
packet size. In Proceedings of the 2018 International Conference on Information Networking (ICOIN), Chiang Mai, Thailand,
10–12 January 2018; pp. 632–635.

20. Bholowalia, P.; Kumar, A. Article: EBK-Means: A Clustering Technique based on Elbow Method and K-Means in WSN. Int. J.
Comput. Appl. 2014, 105, 17–24.

21. Arbia, D.B.; Alam, M.M.; Attia, R.; Hamida, E.B. ORACE-Net: A novel multi-hop body-to-body routing protocol for public safety
networks. Peer-Peer Netw. Appl. 2017, 10, 726–749. [CrossRef]

22. Yuan, H.; Guo, W.; Wang, S. Emergency route selection for D2D cellular communications during an urban terrorist attack.
In Proceedings of the 2014 IEEE International Conference on Communications Workshops (ICC), Sydney, Australia, 10–14 June
2014; pp. 237–242.

23. Hassan, A.; Ahmad, R.; Ahmed, W.; Magarini, M.; Alam, M.M. UAV and SWIPT Assisted Disaster Aware Clustering and
Association. IEEE Access 2020, 8, 204791–204803. [CrossRef]

24. Li, X.; Guo, D.; Grosspietsch, J.; Yin, H.; Wei, G. Maximizing mobile coverage via optimal deployment of base stations and relays.
IEEE Trans. Veh. Technol. 2015, 65, 5060–5072. [CrossRef]

25. Zeng, Y.; Zhang, R.; Lim, T.J. Wireless communications with unmanned aerial vehicles: Opportunities and challenges. IEEE
Commun. Mag. 2016, 54, 36–42. [CrossRef]

26. Mozaffari, M.; Saad, W.; Bennis, M.; Debbah, M. Unmanned aerial vehicle with underlaid device-to-device communications:
Performance and tradeoffs. IEEE Trans. Wirel. Commun. 2016, 15, 3949–3963. [CrossRef]

27. Al-Hourani, A.; Kandeepan, S.; Lardner, S. Optimal LAP altitude for maximum coverage. IEEE Wirel. Commun. Lett. 2014,
3, 569–572. [CrossRef]

28. Košmerl, J.; Vilhar, A. Base stations placement optimization in wireless networks for emergency communications. In Proceedings
of the 2014 IEEE International Conference on Communications Workshops (ICC), Sydney, Australia, 10–14 June 2014; pp. 200–205.

29. Hassan, A.; Ahmad, R.; Ahmed, W.; Magarini, M.; Alam, M.M. Managing Critical Nodes in UAV assisted Disaster Networks. In
Proceedings of the 2020 17th Biennial Baltic Electronics Conference (BEC), Tallinn, Estonia, 6–8 October 2020; pp. 1–5. [CrossRef]

30. Alam, M.M.; Le Moullec, Y.; Ahmad, R.; Magarini, M.; Reggiani, L. A Primer On Public Safety Communication in the Context of
Terror Attacks: The NATO SPS “COUNTER-TERROR” Project. In Advanced Technologies for Security Applications; Palestini, C., Ed.;
Springer: Dordrecht, The Netherlands, 2020; pp. 19–34.

31. Valente Klaine, P.; Nadas, J.; Souza, R.; Imran, M. Distributed Drone Base Station Positioning for Emergency Cellular Networks
Using Reinforcement Learning. Cogn. Comput. 2018, 10. [CrossRef]

32. Hydher, H.; Jayakody, D.N.K.; Hemachandra, K.T.; Samarasinghe, T. Intelligent UAV deployment for a disaster-resilient wireless
network. Sensors 2020, 20, 6140. [CrossRef] [PubMed]

33. Lin, N.; Fu, L.; Zhao, L.; Min, G.; Al-Dubai, A.; Gacanin, H. A Novel Multimodal Collaborative Drone-Assisted VANET
Networking Model. IEEE Trans. Wirel. Commun. 2020, 19, 4919–4933. [CrossRef]

34. Zhao, L.; Yang, K.; Tan, Z.; Li, X.; Sharma, S.; Liu, Z. A Novel Cost Optimization Strategy for SDN-Enabled UAV-Assisted
Vehicular Computation Offloading. IEEE Trans. Intell. Transp. Syst. 2020. [CrossRef]

35. Zhang, S.; Zhang, H.; Song, L. Beyond D2D: Full Dimension UAV-to-Everything Communications in 6G. IEEE Trans. Veh. Technol.
2020, 69, 6592–6602. [CrossRef]

36. Wang, L.; Wang, K.; Pan, C.; Xu, W.; Aslam, N.; Hanzo, L. Multi-Agent Deep Reinforcement Learning Based Trajectory Planning
for Multi-UAV Assisted Mobile Edge Computing. IEEE Trans. Cogn. Commun. Netw. 2020. [CrossRef]

37. Atif, M.; Ahmad, R.; Ahmad, W.; Zhao, L.; Rodrigues, J.J.P.C. UAV-Assisted Wireless Localization for Search and Rescue. IEEE
Syst. J. 2021, 1–12. [CrossRef]

38. Arafat, M.Y.; Habib, M.A.; Moh, S. Routing Protocols for UAV-Aided Wireless Sensor Networks. Appl. Sci. 2020, 10, 4077.
[CrossRef]

39. Zhan, C.; Zeng, Y.; Zhang, R. Energy-Efficient Data Collection in UAV Enabled Wireless Sensor Network. IEEE Wirel. Commun.
Lett. 2018. [CrossRef]

40. Gomez, J.M.; Wiedemann, T.; Shutin, D. Unmanned Aerial Vehicles in Wireless Sensor Networks: Automated Sensor Deployment
and Mobile Sink Nodes. In Proceedings of the International Conference on Intelligent Autonomous Systems, Baden-Baden,
Germany, 11–15 June 2018.

41. Uddin, M.A.; Mansour, A.; Jeune, D.L.; Ayaz, M.; Aggoune, E.H.M. UAV-Assisted Dynamic Clustering of Wireless Sensor
Networks for Crop Health Monitoring. Sensors 2018, 18, 555. [CrossRef] [PubMed]

42. Zema, N.R.; Mitton, N.; Ruggeri, G. Using location services to autonomously drive flying mobile sinks in wireless sensor networks.
In Proceedings of the International Conference on Ad Hoc Networks, San Remo, Italy, 1–2 September 2015; pp. 180–191.

43. Villas, L.A.; Guidoni, D.L.; Maia, G.; Pazzi, R.W.; Ueyama, J.; Loureiro, A.A. An energy efficient joint localization and
synchronization solution for wireless sensor networks using unmanned aerial vehicle. Wirel. Netw. 2015, 21, 485–498. [CrossRef]

44. Albu-Salih, A.T.; Seno, S.A.H. Energy-efficient data gathering framework-based clustering via multiple UAVs in deadline-based
WSN applications. IEEE Access 2018, 6, 72275–72286. [CrossRef]

45. Dong, M.; Ota, K.; Lin, M.; Tang, Z.; Du, S.; Zhu, H. UAV-assisted data gathering in wireless sensor networks. J. Supercomput.
2014, 70, 1142–1155. [CrossRef]

http://dx.doi.org/10.1007/s12083-016-0513-9
http://dx.doi.org/10.1109/ACCESS.2020.3035959
http://dx.doi.org/10.1109/TVT.2015.2458015
http://dx.doi.org/10.1109/MCOM.2016.7470933
http://dx.doi.org/10.1109/TWC.2016.2531652
http://dx.doi.org/10.1109/LWC.2014.2342736
http://dx.doi.org/10.1109/BEC49624.2020.9276993
http://dx.doi.org/10.1007/s12559-018-9559-8
http://dx.doi.org/10.3390/s20216140
http://www.ncbi.nlm.nih.gov/pubmed/33126709
http://dx.doi.org/10.1109/TWC.2020.2988363
http://dx.doi.org/10.1109/TITS.2020.3024186
http://dx.doi.org/10.1109/TVT.2020.2984624
http://dx.doi.org/10.1109/TCCN.2020.3027695
http://dx.doi.org/10.1109/JSYST.2020.3041573
http://dx.doi.org/10.3390/app10124077
http://dx.doi.org/10.1109/LWC.2017.2776922
http://dx.doi.org/10.3390/s18020555
http://www.ncbi.nlm.nih.gov/pubmed/29439496
http://dx.doi.org/10.1007/s11276-014-0802-2
http://dx.doi.org/10.1109/ACCESS.2018.2882161
http://dx.doi.org/10.1007/s11227-014-1161-6


Sensors 2021, 21, 4121 22 of 22

46. Okcu, H.; Soyturk, M. Distributed clustering approach for UAV integrated wireless sensor networks. Int. J. Hoc Ubiquitous
Comput. 2014, 15, 106–120. [CrossRef]

47. Hashima, S.; Hatano, K.; Mohammed, E. Multiagent Multi-Armed Bandit Schemes for Gateway Selection in UAV Networks.
In Proceedings of the 2020 IEEE Globecom Workshops (GC Wkshps), Taipei, Taiwan, 7–11 December 2020; pp. 7–11.

48. Mohamed, E.M.; Hashima, S.; Aldosary, A.; Hatano, K.; Abdelghany, M.A. Gateway Selection in Millimeter Wave UAV Wireless
Networks Using Multi-Player Multi-Armed Bandit. Sensors 2020, 20, 3947. [CrossRef]

49. Hodge, V.J.; Hawkins, R.; Alexander, R. Deep reinforcement learning for drone navigation using sensor data. Neural Comput.
Appl. 2020, 33, 2015–2033 [CrossRef]

50. Bultitude, Y.D.J.; Rautiainen, T. IST-4-027756 WINNER II D1. 1.2 V1. 2 WINNER II Channel Models. In EBITG, TUI, UOULU,
CU/CRC, NOKIA; Tech. Rep; 2007. Available online: http://www.ero.dk/93F2FC5C-0C4B-4E44-8931-00A5B05A331B?frames=
no& (accessed on 10 March 2021).

51. Kiani, F.; Amiri, E.; Zamani, M.; Khodadadi, T.; Abdul Manaf, A. Efficient intelligent energy routing protocol in wireless sensor
networks. Int. J. Distrib. Sens. Netw. 2015, 11, 618072. [CrossRef]

52. Gupta, P.; Kumar, P.R. The capacity of wireless networks. IEEE Trans. Inf. Theory 2000, 46, 388–404. [CrossRef]
53. Johnson, D.B. A note on Dijkstra’s shortest path algorithm. J. ACM 1973, 20, 385–388. [CrossRef]

http://dx.doi.org/10.1504/IJAHUC.2014.059912
http://dx.doi.org/10.3390/s20143947
http://dx.doi.org/10.1007/s00521-020-05097-x
http://www.ero.dk/93F2FC5C-0C4B-4E44-8931-00A5B05A331B?frames=no&
http://www.ero.dk/93F2FC5C-0C4B-4E44-8931-00A5B05A331B?frames=no&
http://dx.doi.org/10.1155/2015/618072
http://dx.doi.org/10.1109/18.825799
http://dx.doi.org/10.1145/321765.321768

	Introduction
	System Model
	Network Throughput and Delay
	Energy Model
	Problem Formulation

	Reinforcement Learning-Based Routing
	Clustering
	Clustering-Energy
	Clustering-Kmean

	Route Discovery
	Routing
	Control Overhead

	Performance Analysis
	Reinforcement-Based Routing
	Combined RL and UAV(s) Trajectory Optimization

	Conclusions
	References

