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Abstract

Background: Non-invasive brain–computer interfaces (BCIs) have been developed for realizing natural bi-directional
interaction between users and external robotic systems. However, the communication between users and BCI systems
through artificial matching is a critical issue. Recently, BCIs have been developed to adopt intuitive decoding, which is the
key to solving several problems such as a small number of classes and manually matching BCI commands with device
control. Unfortunately, the advances in this area have been slow owing to the lack of large and uniform datasets. This study
provides a large intuitive dataset for 11 different upper extremity movement tasks obtained during multiple recording
sessions. The dataset includes 60-channel electroencephalography, 7-channel electromyography, and 4-channel
electro-oculography of 25 healthy participants collected over 3-day sessions for a total of 82,500 trials across all the
participants. Findings: We validated our dataset via neurophysiological analysis. We observed clear sensorimotor
de-/activation and spatial distribution related to real-movement and motor imagery, respectively. Furthermore, we
demonstrated the consistency of the dataset by evaluating the classification performance of each session using a baseline
machine learning method. Conclusions: The dataset includes the data of multiple recording sessions, various classes
within the single upper extremity, and multimodal signals. This work can be used to (i) compare the brain activities
associated with real movement and imagination, (ii) improve the decoding performance, and (iii) analyze the differences
among recording sessions. Hence, this study, as a Data Note, has focused on collecting data required for further advances in
the BCI technology.
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Data Description
Background and purpose
The brain–computer interface (BCI) technology allows users
to communicate with external devices including a speller [1],

wheelchair [2], robotic arm [3–5], and robotic exoskeleton [6,
7]. A non-invasive BCI commonly uses electroencephalography
(EEG) signals to decode user intentions [8–11] because the EEG-
based BCI system offers lower risk, lower cost, and more con-
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venience than other non-invasive BCI paradigms (e.g., func-
tional near-infrared spectroscopy [12]). EEG-based BCIs have
been developed using various paradigms including motor im-
agery (MI) [13–15], steady-state visual evoked potential [16, 17],
event-related potential [18], and movement-related cortical po-
tential [19, 20]. Over the past decades, the information regarding
the EEG datasets of these general paradigms has been published
through competitions, cooperative projects, and open-access ar-
ticles [21–25]. Some research groups have developed advanced
machine learning algorithms and deep learning architectures
for improving BCI performance using these datasets.

The recent advances in BCI systems have been focused on
topics ranging from intuitive EEG decoding to directly match-
ing the interaction between user intention and device feedback
for real-world environments [20, 26]. For example, to control a
neuro-prosthetic arm using typical BCI paradigms, we temporar-
ily matched BCI commands with robotic arm motions (e.g., MI
for both hands = grasping motion of the robotic hand). How-
ever, this unintended artificial matching is hindered by several
constraints, such as the small number of restrictive classes for
communicating with devices and inflexible user training owing
to unintuitive commands in real-world scenarios [7, 13, 27]. For
example, if a robotic hand performs the grasping motion, the
users should also imagine the hand-grasping motion the same
as the robotic hand motion to enhance the natural decoding ex-
perience [27].

In this work, we collected data on intuitive upper extrem-
ity movements from 25 participants. To collect high-quality sig-
nal data, the experiments were conducted on healthy partic-
ipants, who had maintained good physical condition by, e.g.,
limiting their alcohol intake and getting sufficient sleep. We
focused on various upper extremity motions because they are
the most extensible and available movements among all the
body movements. Accordingly, we selected the upper extremi-
ties for decoding intuitive movements and then collected data
based on the movement-based multimodal signals. The par-
ticipants were asked to perform 11 different movement tasks:
arm-reaching along 6 directions, hand-grasping of 3 objects, and
wrist-twisting with 2 different motions. The corresponding 11
classes were designed for each segmented motion related to the
arm, hand, and wrist, rather than for continuous limb move-
ments. Therefore, the users of our dataset could either con-
duct respective analyses for individual classes or attempt de-
coding the complex upper extremity movements by combining
data from different classes. For researchers focused on more ad-
vanced and analytical approaches using multimodal signals, the
dataset comprised not only EEG data but also electromyography
(EMG) and electro-oculography (EOG) data. These data were syn-
chronously collected in the same experimental environment,
while ensuring no unintentional interference between them.
The data acquired using a 60-channel EEG, 7-channel EMG, and
4-channel EOG were simultaneously recorded during the exper-
iment. EEG sensors were placed according to international spec-
ifications to collect signals from all the regions of the scalp. Ad-
ditionally, EMG sensors were attached to carefully selected loca-
tions on the right arm to reflect the most relevant muscle activ-
ity information associated with the corresponding upper limb
movement. We also recorded the EOG signals using 4 channels
independent of the EEG channels to capture detailed eye move-
ments, which were mainly used for artifact removal. The partic-
ipants performed real upper extremity movements and MI asso-
ciated with the 11 aforementioned motions. Additionally, each
participant participated in 3 recording sessions at 1-week inter-
vals and followed the same experimental protocols. To acquire

a large amount of high-quality data, we prioritized the physi-
cal and mental condition of the participants during the exper-
iments. Eventually, the multimodal signal dataset became suf-
ficiently large for the BCI experiment because it now included
data acquired from 82,500 trials performed for all the partici-
pants (i.e., 3,300 trials were collected per participant).

To the best of our knowledge, the present dataset descrip-
tor is the first large public dataset for intuitive BCI paradigms to
include multimodal signals such as EEG, EMG, and EOG signals.
This study might contribute to the realization of reliable neu-
rorehabilitation of patients with motor disabilities and a high-
level BCI system for healthy users. Furthermore, to ensure the
practicality of the BCI technology, we intend to investigate how
to robustly decode motor-related intentions despite different
recording sessions and subject dependency (i.e., the session-to-
session problem [23, 28] and subject independence problem [29]).
However, at present only a few datasets exist that can be applied
to various types of real-world applications and to develop a ro-
bust neural decoding model. To overcome this challenge, this
study could contribute to the development of a practical BCI sys-
tem based on deep learning techniques and multiple modalities
by providing a large dataset.

Experimental design

Participants
Twenty-five participants (all right-handed, aged 24–32 years, 15
men and 10 women) who were naive BCI users participated in
the experiments. They were healthy individuals with no known
neurophysiological anomalies or musculoskeletal disorders. Be-
fore the experiments, they were informed about the experimen-
tal protocols, paradigms, and purpose. After ensuring that they
had understood the information, they provided their written
consent according to the Declaration of Helsinki. The partici-
pants signed a form that agreed to the anonymous public re-
lease of their data. We checked their physical and mental states
so that the influence of the BCI performance could be compared
according to individual state. Additionally, each participant was
required to be in normal health, get sufficient sleep (∼8 h), and
avoid alcohol, caffeinated drinks, and strenuous physical activ-
ity before the experiments. All the experimental protocols and
environments were reviewed and approved by the Institutional
Review Board (IRB) at Korea University (1040548-KU-IRB-17-181-
A-2).

Environment
During the experiments, each participant was comfortably
seated in a chair with armrests facing the front of an LCD mon-
itor, ∼80 ± 5 cm away from each other [30]. An EEG cap (Fig. 1)
with 60 channels (actiCap, BrainProduct GmbH, Gilching, Bay-
ern, Germany) was placed on the head of each participant. Sur-
face EMG and EOG electrodes were attached to pre-assigned lo-
cations on the right arm and around the eyes of each participant,
respectively. The participants were then asked to perform the
movements with relaxed muscles and minimum eye and body
movements during the data recording.

The duration of the experiment was ∼6-7 h a day. Our ex-
periment comprised multiple recording sessions (3 days) to con-
sider inter-session and inter-participant variabilities. Compared
with typical BCI experiments, our experiments required a longer
recording time. To maintain the physical and mental condition
of the participants and thus ensure high signal quality, the par-
ticipants took sufficient breaks between each task. During the
breaks, we first confirmed the physical and mental condition of



Jeong et al. 3

Figure 1: Experimental environments for acquiring multimodal signals related to the intuitive movement tasks. The participants were asked to perform real-movement
(e.g., arm-reaching) and MI tasks (e.g., hand-grasping).

the participants through self-report. If they reported any incon-
venient position or unstable condition, we either adjusted the
experimental environment according to their requests or halted
the experiment. In the case the experiment was halted, the par-
ticipants could ask to conduct the experiment next time or with-
draw from the experiment altogether. However, if the conditions
of the participants were good to conduct the experiment, we
checked the impedances of the EEG, EMG, and EOG electrodes
and injected electrolyte gel into them to maintain impedance
values <15 k�. Thus, we attempted to obtain clear signals ex-
cluding spontaneous noise due to muscle and mental fatigue
during the recording.

Experimental paradigm
The experiment was designed to quantitatively acquire data re-
lated to the 11 different upper extremity movements for both
real-movement and MI tasks. The participants conducted the
experimental tasks using the same limbs. Decoding different
tasks related to the same limb by using EEG signals could in-
crease the number of possibilities of controlling the BCI sys-
tem compared with typical somatosensory rhythm–based BCIs,
which often only detected left/right hand and foot imagery [27].
The experimental tasks comprised 3 main upper extremity mo-
tions: arm-reaching, hand-grasping, and wrist-twisting. When
the experiment began, visual instructions were provided on the
monitor by displaying a black cross sign on a gray background.
The participants stared at the visual instructions for 4 s while
resting. After resting, a visual cue was displayed on the monitor
with a text sign for 3 s, following which the participants began
preparing to perform the real-movement or MI tasks according
to the visual cue (see Fig. 2). Upon changing the visual cue to
a text sign reading “Movement Execution” and “Movement Im-
agery,” the participants performed the corresponding tasks dur-
ing 4 s. During the real-movement tasks, the participants were
asked to focus on the sensations involved with each motion and
to remember those sensations for the MI tasks.

Arm-reaching along 6 directions: The participants were
asked to perform multi-direction arm-reaching tasks directed

from the center of their bodies outward. They performed the
tasks along 6 different directions in 3D space: forward, back-
ward, left, right, up, and down, as depicted in Fig. 3. In the real-
movement tasks, the participants extended their arms along 1
of the directions. The arm-reaching paradigm required 50 tri-
als along each direction so that data could be collected for a to-
tal of 300 trials. However, in the MI tasks, the participants only
imagined performing an arm-reaching task; the number of tri-
als in the MI paradigm was the same as in the real-movement
paradigm.

Hand-grasping 3 objects: The participants were asked to
grasp 3 objects of daily use via the corresponding grasping mo-
tions. They performed the 3 designated grasp motions by hold-
ing the objects, namely, card, ball, and cup, corresponding to lat-
eral, spherical, and cylindrical grasp, respectively (see Fig. 3). In
the real-movement tasks, we asked the participants to use their
right hands to grasp a randomly selected object and hold it using
its corresponding grasping motion. Eventually, we acquired data
on 50 trials for each grasp, and hence, we collected 150 trials per
participant. In the MI tasks, the participants performed only 1 of
the 3 grasping motions per trial, randomly. The number of trials
in the MI paradigm was the same as that in the real-movement
paradigm.

Wrist-twisting with 2 different motions: For the wrist-
twisting tasks, the participants rotated their wrists to the left
(pronation) and right (supination), as depicted in Fig. 3. During
real-movement task, each participant maintained his/her right
hand in a neutral position with the elbow comfortably placed
on the desk. Notably, wrist pronation and supination are com-
plex actions used to decode user intentions from brain signals.
Additionally, these movements are intuitive motions for realiz-
ing neurorehabilitation and prosthetic control [31]. We collected
data for 50 trials per motion (i.e., total 100 trials) per day, and the
visual cues were randomly displayed.

Additionally, the participants were asked to participate in 3
recording sessions with a 1-week interval between each session.
The experimental environment and protocols were the same for
all 3 sessions. Consequently, we collected data from 3,300 trials
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Figure 2: Experimental paradigm in a single trial and the representation of visual cues according to each task.

Figure 3: Experimental tasks of 11 intuitive upper extremity movements related to arm-reaching, hand-grasping, and wrist-twisting, respectively.

(1,800 trials for arm-reaching, 900 for hand-grasping, and 600
for wrist-twisting) in all classes per participant, for both real-
movement and MI paradigms.

Data records

We simultaneously collected 3 different kinds of physiological
signals, namely, EEG, EMG, and EOG signals for 11 different upper
extremity movements (see Fig. 3). During the experiment, the
signals were acquired using the same digital amplifier and types
of electrodes. Therefore, the raw signals were stored together in
1 data file according to each participant. To obtain high-quality
signals, the impedances of all the channels were maintained to
be <15 k�. After applying conductive gel to the electrodes, we
validated the accuracy of the EEG and EOG signals by asking the
participants to blink and close their eyes. The eye-blinking task
was used to identify strong spikes in the frontal EEG channels
(e.g., Fp1 and Fp2) and 4 EOG channels. The eye-closing task was

used to confirm the α oscillations in the occipital channels (e.g.,
O1, O2, and Oz). We also asked the participants to perform a sim-
ple hand-grasping motion to confirm the strong spikes in the
EMG signals.

EEG signals
The EEG data were recorded in conjunction with an EEG signal
amplifier (BrainAmp, BrainProduct GmbH, Germany), sampled
at 2,500 Hz. Additionally, we applied a 60 Hz with a notch filter
to reduce the effect of external electrical noises (e.g., DC noise
due to power supply, scan rate of the monitor display, and fre-
quency of the fluorescent lamp) in raw signals [21, 32, 33]. The
raw data were recorded using BrainVision (BrainProduct GmbH,
Germany) with MATLAB 2019a (MathWorks Inc., USA). Further-
more, a toal of 60 EEG electrodes were selected by following a
10-20 international configuration (Fp1-2, AF5-6, AF7-8, AFz, F1-8,
Fz, FT7-8, FC1-6, T7-8, C1-6, Cz, TP7-8, CP1-6, CPz, P1-8, Pz, PO3-
4, PO7-8, POz, O1-2, Oz, and Iz). Ground and reference channels
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were placed on the Fpz and FCz, respectively (see Fig. 4). The
impedances of all the electrodes between the sensors and scalp
skin were maintained to be <15 k�. During breaks, conductive
gel was injected into the electrodes using a syringe with a blunt
needle.

EMG signals
The EMG signals were recorded using 7 silver/silver chloride
electrodes from the digital amplifier, the same equipment used
to record the EEG signals. We simultaneously acquired the EMG
and EEG signals using the same amplifer [34]. The signals were
captured at a sampling rate of 2,500 Hz with a 60 Hz notch filter,
the same as the setting used to record the EEG signals. The EMG
data were recorded from 6 related muscles for right arm move-
ment: extensor carpi ulnaris, extensor digitorum, flexor carpi
radialis, flexor carpi ulnaris, biceps brachii, and triceps brachii
(see Fig. 4) [35]. The ground and reference were recorded in Fpz
and FCz, respectively, which are the same as the EEG and EOG
signals. The last electrode was placed on the elbow of the right
arm, which is a non–muscle movement area, as an alternative
reference signal [36]. The purpose of recording EMG signals was
to detect muscle activities when the participants performed the
designated tasks. The signals could prove that the participants
performed MI tasks without muscle movement. Simultaneously,
the electrodes were placed so as to record a sufficient number
of signals from various arm and hand movements (i.e., 6 arm-
reaching, 3 hand-grasping, and 2 wrist-twisting motions).

EOG signals
The EOG signals were recorded using 4 channels while following
the same protocol. Subsequently, the FT9, FT10, TP9, and TP10
electrodes were moved to the region around the eyes to function
as EOG channels to eliminate artifacts due to ocular activities.
One of these channels was moved to the region around the left
eye and the others to the region around the right eye (see Fig. 4).
The electrodes EOG1 and EOG4 were used to record horizontal
eye movements, while EOG2 and EOG3 were used to record ver-
tical movements [37]. Medical tape was used to hold the sensors
around the eyes and maintain the impedances of all the elec-
trodes to be <15 k�.

Data format and structure
Readers can access our codes and datasets through the Gi-
gaDB repository. The “Read me”.pdf file, which overviews of data
description and code execution, is included in the repository.
Several useful scripts, including Data analysis.m and Visualiza-
tion.m files, are in the “SampleCode” folder. We recommend the
BBCI (http://www.bci.de) toolbox [38] in the “Reference toolbox”
folder and the “Signal Processing” toolbox in the MATLAB soft-
ware, for data processing using our custom code. Please directly
contact the authors for more information on the code script.

Each dataset (raw signals, converted data, and scripts) is also
publicly available via the GigaDB repository. The raw signals
and converted data are contained in the corresponding fold-
ers, namely, “Raw data” and “Converted data,” respectively. Ta-
ble 1 summarizes the data description for both folders. The in-
dicated ”Task” includes the names of arm-reaching, multigrasp,
and twisting. We provide the folders, namely, “Raw data” and
“Converted data,” which comprise .eeg, .vmrk, .vhdr, and .mat
files for each participant. The .eeg file includes the raw EEG, EOG,
and EMG signal data because of the simultaneous data acquisi-
tion performed using the same amplifier. Moreover, the .vmrk
file provides the marked trigger information (e.g., trigger num-
ber, marked time, and file name) and the .vhdr file includes

the number of channels, sampling rate, channel position, and
electrode impedances. The .mat file includes pre-processed EEG,
EOG, and EMG data, channels, class information, scalp montage,
and sample frequency. Additionally, to enable easy data access
for the users, we provided the dataset after converting the .eeg
file to a .mat file in the “Converted data” folder. The converted
.mat file includes some information such as trigger mark infor-
mation, channel configuration, and epoch segmentation.

Data analysis.m provides the basic data-processing script,
which includes data loading, signal pre-processing, artifact re-
jection, feature extraction, classification, and performance eval-
uation. All users can download and unzip the SampleData.zip
file contained in the “SampleData” folder before executing each
code.

Visualization.m enables the visualization of raw signals,
scalp distribution, and event-related spectral perturbation
(ERSP) using EEGLAB [39]. The raw signals were visualized as
channels through the time representation for the representative
participant No. 8. The scalp plot can be visualized to choose a
specific channel and time epoch for a selected participant. The
ERSP plot requires the installation of the EEGLAB toolbox. After
installing the EEGLAB toolbox, users can load the .vhdr file to
EEGLAB and visualize the ERSP pattern that follows the descrip-
tion.

Data Validation
Methods

The technical signal validation was conducted using a BBCI tool-
box [38] in the MATLAB 2019a environment. The initial settings
of the recording program for converting an analog signal into a
digital one were slightly different for each signal because of the
scale of the signal amplitude. For each of the EEG, EMG, and EOG
signals, triggers were marked to indicate the experimental state.

Initially, for data pre-processing, we applied a zero-phase
fourth-order Butterworth filter for band-pass signal filtering in
the EEG signals. The data were filtered between 8 and 30 Hz
(μ and β bands, respectively), known to be within the motor-
related frequency range, and this could also include the spectral
range for somatosensory rhythm observation (i.e., 13–15 Hz) [40,
41]. For artifact rejection, the apparent eye-blinking contamina-
tion in the EEG signal was removed via independent component
analysis (ICA) [42]. To obtain corrected EEG data, we removed the
contamination factors using the infomax ICA [43], which is used
to decompose brain signals into statistically independent com-
ponents (ICs). From various types of ICA methods, we adopted
the ICA with the infomax algorithm because it could robustly re-
move artifacts, such as eye and head movement artifacts, from
the EEG data [44]. The EEG data were transformed by the ICA
mixing matrix. The contaminated ICs with patterns similar to
the EOG channels (i.e., horizontal and vertical eye movements)
were removed. Subsequently, the remaining ICs were projected
back into the scalp channel space to be reconstructed as the cor-
rected EEG data (see Fig. 5). Before feature extraction, we seg-
mented a time interval of −0.5 to 4 s for performing EEG classi-
fication and also selected a baseline period as −0.5 to 0 s [25].

For evaluating the classification performance using EEG sig-
nals, we adopted the common spatial pattern (CSP) algorithm
as a feature extraction method and a regularized linear discrim-
inant analysis (RLDA) method as the classification method. CSP
feature extraction method and RLDA classifier are generally used
as baseline algorithms for decoding EEG-based MI and motor ex-
ecution in the field of BCI [26, 45, 46]. Especially, CSP, one of the

http://www.bci.de
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Figure 4: Data configuration for 60 EEG, 7 EMG, and 4 EOG channels. Specifically, 4 EOG channels were numbered as 32–35 out of the 64-channel actiCAP montage.

EEG feature extraction methods, is proved to be robust in spa-
tial feature extraction for decoding movement-related tasks and
MI. CSP trained for finding the optimal spatial filter that maxi-
mizes inter-class variation and minimizes intra-class variation.
We calculated a transformation matrix using CSP in which the
logarithmic variances of the first and last 3 columns were used
as a feature. We trained the RLDA classifier by adding a regular-
ization term to the covariance matrix using the optimal shrink-
age parameters [47, 48]. Essentially, shrinkage performs regular-
ization to improve the estimation of covariance matrices where
the training samples are fewer than features. Therefore, during
the training period, the optimal shrinkage parameter was au-
tomatically estimated with the maximum covariance between
classes. In the classification procedure, we classified the multi-
class according to each different experimental task, separately,
such as arm-reaching along 6 directions (6-class), hand-grasping
of 3 objects (3-class), and wrist-twisting with 2 different motions

(2-class), as depicted in Fig. 3. We applied 10 × 10-fold cross-
validation for fair performance measurement so that we parti-
tioned the data samples as equal sizes into 10 subsets. One of
the subsets was selected as the test dataset and the remain-
ing others as the training datasets. The cross-validation pro-
cess was conducted 10 times, with each of the 10 subsets used
once as the test dataset to avoid variability problems in per-
formance evaluation. The evaluation was estimated using all
recorded classes simultaneously over all the recording sessions.
Table 2 presents the averaged evaluation results obtained by es-
timating the classification performance of each arm-reaching (6-
class), hand-grasping (3-class), and wrist-twisting (2-class) task.

Furthermore, we checked the EMG activation to verify
whether the upper extremity movement was performed or not
according to the tasks. In this work, the EMG signals were pre-
processed from 10 to 500 Hz with a Butterworth fifth-order zero-
phase band-pass filter [34, 49]. We segmented a time interval of
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Table 1: Data description for Raw data folder and Converted data folder

Raw data Converted data (e.g., session1 sub1 multigrasp MI.mat)

Name Description Name Suffix Description

session1 sub1 (Task) (realMove/MI).eeg Raw signals (session 1) .dat .x Pre-processed data
session1 sub1 (Task) (realMove/MI).vhdr Data header information (session

1)
.fs Sampling frequency

session1 sub1 (Task) (realMove/MI).vmrk Marker information (session 1) .file File name
.clab Channel information

.mnt .x X coordinates for channel
position

session2 sub1 (Task) (realMove/MI).eeg Raw signals (session 2) .y Y coordinates for channel
position

session2 sub1 (Task) (realMove/MI).vhdr Data header information (session
2)

.pos 3d 3D coordinates for channel
position

session2 sub1 (Task) (realMove/MI).vmrk Marker information (session 2) .clab Channel information
.mrk .pos Trigger marking time

.toe Trigger number
session3 sub1 (Task) (realMove/MI).eeg Raw signals (session 3) .fs Sampling frequency
session3 sub1 (Task) (realMove/MI).vhdr Data header information (session

3)
.y Class labels

session3 sub1 (Task) (realMove/MI).vmrk Marker information (session 3) .className Class name
.mics Experiment start and end

information

Figure 5: Infomax ICA based on EOG data was applied to eliminate the eye movement–induced noise from the original EEG data. The right panel shows the corrected
EEG data wherein noise has been eliminated by the application of the infomax ICA to the original EEG data.

−0.5 to −4 s for EMG data analysis. We selected the interval of
−0.5 to 0 s as the baseline period. Subsequently, the data were
rectified using the absolute values, following which we calcu-
lated the moving average of EMG amplitudes with a 100-ms in-

terval. The EMG signals could show how well the participants
had followed the experimental protocol for each task. For ex-
ample, if the participant was asked to perform the MI task, the
EMG activation should not show a peak shape because of the
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Figure 6: Example representation of EMG activation according to each 6-channel EMG. From the top, the plot represents the activities of the EMG signals as the

representative participant No. 4 performs arm-reaching, hand-grasping, and wrist-twisting tasks, respectively.

static state at that time, as depicted in Fig. 6. EMG signal patterns
contain important information regarding muscle activation and
noise. For example, the noise due to heartbeat and other unre-
lated movements reduces the quality of EMG signals. While the
participants performed the wrist-twisting task, the amplitude
scale was reduced as compared with other work, so that noise
information could be confirmed to be displayed. Meanwhile, in
the real-movement tasks, the EMG signals could show the ac-
tivation while the participants were performing the upper ex-
tremity movement task. Notably, the signal amplitude of chan-
nel EMG6 is higher than those of the other channels. Because
the biceps are relatively bigger than other muscles, a peak phe-
nomenon occurred [50]. Particularly, biceps are used the most in
bending the arm. The EMG signals featured a large signal ampli-
tude because more muscle activity increases the signal ampli-
tude. Consequently, the EMG signal amplitude was large for the
arm-reaching and hand-grasping tasks but small for the wrist-
twisting task [51].

Results and Discussion

We verified the data through the EEG-based classification re-
sults, the EMG signal quality, and spectral and spatial EEG pre-
sentations. First, we verified the data on the basis of EMG signal
quality, as shown in Fig. 6. Using the EMG signals recorded while
the participants performed each arm-reaching, hand-grasping,

and wrist-twisting experiment, we could confirm the quality
of the data obtained. Furthermore, dynamic EMG signals were
observed during the real-movement sessions; additionally in-
significant changes were observed in the EMG signals close to
the rest state in the MI sessions. The EMG signals, particularly,
proved that we had collected the data appropriately because
they were not activated throughout the entire duration of the ac-
tual motion session, and appeared strongly for the actual move-
ments of the participants right after ∼0.5 seconds from the on-
set. Additionally, the non-activated EMG signals during the MI
tasks clearly indicate that the movement artifacts of the corre-
sponding EEG signal were minimized.

We also analyzed the EEG signals in the spectral and spatial
domains to confirm the data quality. Fig. 7 shows the examples
of spectral energy information in the EEG data for a represen-
tative participant during multiple recording sessions. The ERSP
plot illustrates spectral variability according to the time epoch in
a certain channel (C3). Generally, the ERSP plot showed ERD/ERS
patterns, which reflect sensorimotor activation and deactiva-
tion, respectively. The ERD patterns can be seen during motor
preparation, execution, and imagery as correlations in an acti-
vated cortical region. ERS can be observed after the imagery or
execution of movement over the same region [52, 53]. In Fig. 7,
ERD/ERS patterns appeared during all the imagery phases (0–4 s),
showing the same cortical activation on the μ band across all the
recording sessions. Additionally, we conducted a statistical anal-
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Figure 7: EEG data validation via spectral representation. The event-related

desynchronization/synchronization (ERD/ERS) representation of channel C3 dur-
ing multiple recording sessions.

ysis to confirm whether the participants consistently performed
MI via their single upper extremities as instructed at the begin-
ning. We selected typical EEG channels on the motor cortex cor-
responding to right-hand (channel C3), left-hand (channel C4),
and foot (channel Cz) imagery [54, 55]. The mean ERD/ERS values
for channel C3 contain significant differences compared with
other channels (Cz and C4), as confirmed through the paired t-
test. All the P-values between the channels were <0.05 except
for a few participants.

Fig. 8a depicts the representative spatial distribution ob-
tained using grand-average signal amplitude responses per time
period [56, 57]. For participant No. 2, the data for wrist prona-
tion is presented in Fig. 8a. We used all of the EEG channels and
adopted signal processing (similar to that in the pre-processing
steps), such as band-pass filtering and epoch segmentation, and
we also used a baseline period. We applied the moving average
of EEG amplitudes with a 200-ms interval. The topographic maps
of the mean amplitudes were visualized in 4 temporal intervals
for all the recording sessions. Therefore, the left hemisphere of
the contralateral sensorimotor region was activated while per-
forming tasks in all the recording sessions. Hence, over time,
the mean amplitude in the contralateral sensorimotor region of
the left hemisphere significantly increased clearly as the par-
ticipants performed MI. Moreover, it was clearly observed that
the contralateral sensorimotor regions of the most participants
were activated by MI in the 3–4 s period. Therefore, we confirmed
0–2 s as the preparation period and that the contralateral senso-

rimotor region was appropriately activated after the first 2 s in
the recording phases.

For a more sophisticated analysis, we used a source imag-
ing technique to identify and compare activated regions in the
brain with each other while a participant was performing each
task. We used a standardized low-resolution electromagnetic
tomography (sLORETA)-based current density estimation tech-
nique for inverse modeling the brain points that were activated
from the EEG signals. sLORETA is a variant of the weighted min-
imum norm estimation technique for obtaining an inverse so-
lution [31, 58]. We visualized the activated regions of the brain
for each task and showed them in terms of the horizontal, sagit-
tal, and coronal planes, as shown in Fig. 8b. The source images
were visualized by the significant differences by calculating the
P-values for the spatial distribution between the baseline period
(−0.5 to 0 s) and MI period (0 to 4 s). The yellow colors indicate
P-values <0.01, and the red colors P-values <0.05 [59]. The main
differences were observed in the supplementary motor region
and premotor cortex; they indicate that the participants satis-
factorily performed MI. Because all the participants performed
MI related to the movement of the right upper limb, it can be
confirmed from Fig. 8b that the left side region of the cortex as-
sociated with the MI is activated.

We evaluated the dataset quality by observing BCI classi-
fication performance (see Table 2). By using the baseline ma-
chine learning method, we confirmed that the accuracies were
at least higher than chance-level accuracy for each class. The
performances were validated according to tasks including arm-
reaching, hand-grasping, and wrist-twisting. We computed the
chance-level accuracies with a significant confidence level (α
= 5%) [60] and could obtain the chance results per evaluation
as 0.17 (arm-reaching), 0.34 (hand-grasping), and 0.51 (wrist-
twisting). Table 2 represents the classification accuracies with
the standard deviation for each participant and recording ses-
sion. Because our dataset was recorded over 3 different sessions,
it allows for further research related to BCI calibration problems.
According to our classification result obtained using the base-
line decoding method and conventional approach, some partic-
ipants showed a significant change in classification results be-
tween sessions; however, the other participants showed similar
classification accuracies over different sessions.

The decoding of intuitive upper extremity movements from
EEG signals is a challenging study. However, if the upper ex-
tremity movements can be successfully analyzed, BCI technol-
ogy could be used for many applications. The BCI may be applied
to the operation of robotic instruments, such as a robotic arm
and neuro-prosthesis related to upper extremity movements,
or to control peripheral devices using commands based on de-
coding the movement intention. In this study, to enable addi-
tional advances in the technology, we provide a multimodal sig-
nal dataset when the participants executed and imagined the
intuitive movement tasks using a single arm. As mentioned in
“Experimental paradigm,” decoding various tasks from the same
limb could provide various BCI classes and significantly intuitive
communication between users and BCI systems as compared
with a typical paradigm. Therefore, a robust decoding model
for this dataset could contribute one step toward the advance-
ment of a practical and commercial BCI. Therefore, one must
obtain high-quality data. Additionally, more advanced analyses
can be attempted because we have constructed a database that
includes not only the EOG and EMG data but also the EEG data.
For example, the EOG data might be used to remove the noise
due to explicit eye movement from the EEG data. Additionally,
the EMG data may demonstrate the integrity of the EEG data
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Figure 8: Data validation performed using the spatial information with respect to scalp activation. (a) Scalp topography of the wrist pronation task for a representative
participant, No. 2. (b) Source imaging analysis performed via sLORETA using a statistically significant difference in the MI tasks for a representative participant, No. 13

(red: P < 0.05, yellow: P < 0.01).

by showing that no movement-related interference was present
in the EMG data in the analysis and MI tasks associated with
the EEG. In this work, we recorded the signals’ data using 3
modalities, namely, EEG, EOG, and EMG. Additionally, we col-
lected data from 25 participants and divided the experiment into
3 sessions to prepare the dataset. We also provided the spectral
representation and time-spatial distribution of a representative
participant according to multiple recording sessions. Generally,
we confirmed that the data variability among each recording
session did not show any significant differences in our dataset
(i.e., P < 0.05). Furthermore, we confirmed that the classification
accuracy per task was slightly higher than chance-level accu-
racy using the baseline method. Conversely, despite the difficult
tasks involved in the experiments, the participants successfully
focused on the experiments so that we could obtain high-quality
data. In the future, the users of this dataset can contribute to
increasing the present classification accuracy using their novel
methodology.

Through preliminary data validation, we determined the suf-
ficient quality of our dataset Further studies can be performed
to determine the hidden characteristics and features related to
the intention of upper-limb movements using only our EEG data,
while the EOG data can be used to filter noise for obtaining
clear EEG signals. Simultaneously, researchers can attempt to
combine EEG and EMG signals using our dataset for developing
hybrid BCI systems. In related studies, the hybrid approaches
showed remarkable possibility to improve the decoding perfor-
mance of real-movement and MI-based BCIs [34, 61]. Addition-
ally, our dataset can be used for studies that analyze the cor-

relations between EEG and EMG. In related studies, the rele-
vance of EEG and EMG signals can be found through the con-
nectivity analysis of the data acquired over a specific period. For
example, a statistical analysis of activated EEG channels con-
ducted during the activation of a particular EMG channel can
determine the region of the brain, channel location, and fre-
quency band directly related to the movement of the particular
muscle [62].

Inter-session comparisons are also important topics in BCI
experiments. Because the BCI systems are recalibrated at the be-
ginning of each recording session, this procedure becomes time-
consuming and thus may limit the adoption of BCI systems for
long-term daily use [63]. Furthermore, we recorded data over 3
sessions to enable cross-session analysis. For each session, we
collected a dataset of uniform quality on the basis of classifi-
cation results (see Table 2) because we focused on conducting
all the experiments under stable conditions. Researchers can
analyze the decoding performance using our dataset from the
entire session and they can also compare the decoding results
of each session with each other. Different approaches are also
available, and they include training the decoding model in a par-
ticular session and testing the model using data from indepen-
dent sessions on the basis of the principle of transfer learning in
BCI, as done in [64]. Accordingly, creating a session-independent
BCI decoding model is critical to establishing a practical BCI sys-
tem such as a biometric authentication system [65] or brain-
controlled augmented reality/virtual reality system [66]. There-
fore, our experimental data can be useful for studies to build
session-independent decoding models.
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