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METTL3-mediated m6A modification of STEAP2 mRNA inhibits
papillary thyroid cancer progress by blocking the Hedgehog
signaling pathway and epithelial-to-mesenchymal transition
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Papillary thyroid cancer (PTC) is a common endocrine system malignancy all over the world. Aberrant expression of six
transmembrane epithelial antigen of the prostate 2 (STEAP2) has been functionally associated with cancer progression in many
cancers. Nevertheless, its biological function in PTC is still unclear. Here, we found that PTC tissues had preferentially
downregulated STEAP2 as compared with noncancerous tissues. Low STEAP2 expression correlated with aggressive
clinicopathological characteristics and dismal prognosis in patients with PTC. We performed gain- and loss-of-function experiments,
including cell proliferation assay (Cell Counting Kit-8 assay), EdU (5-ethynyl-2′-deoxyuridine) and colony formation assays, transwell
migration, and invasion assays, and constructed a nude mouse xenograft tumor model. The results demonstrated that STEAP2
overexpression inhibited PTC cell proliferation, migration, and invasion in vitro and inhibited lung metastasis and tumorigenicity
in vivo. Conversely, silencing STEAP2 yielded the opposite results in vitro. Mechanistically, bioinformatics analysis combined with
validation experiments identified STEAP2 as the downstream target of methyltransferase-like 3 (METTL3)-mediated N6-
methyladenosine (m6A) modification. METTL3 stabilized STEAP2 mRNA and regulated STEAP2 expression positively in an m6A-
dependent manner. We also showed that m6A-mediated STEAP2mRNA translation initiation relied on a pathway dependent on the
m6A reader protein YTHDF1. Rescue experiments revealed that silencing STEAP2 partially rescued the tumor-suppressive
phenotype induced by METTL3 overexpression. Lastly, we verified that the METTL3–STEAP2 axis functions as an inhibitor in PTC by
suppressing epithelial–mesenchymal transition and the Hedgehog signaling pathway. Taken together, these findings strongly
suggest that METTL3-mediated STEAP2 m6A modification plays a critical tumor-suppressive role in PTC progression. The
METTL3–STEAP2 axis may be a potential therapeutic molecular target against PTC.
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BACKGROUND
The most predominant malignancy of the endocrine system is
thyroid cancer (TC), with steadily growing occurrence and
morbidity around the world [1]. The most prevalent thyroid
malignancy histotype is papillary thyroid carcinoma (PTC), and its
response to therapy and the prognosis are good [2]. Nevertheless,
around 1 in 10 patients with aggressive PTC develop distant
metastases or recurrences within 10 years [3]. Hence, under-
standing the PTC progression molecular mechanism and identify-
ing effective therapeutic targets for PTC remains important.
The human STEAP (six transmembrane epithelial antigen of

prostate) family comprises four cell surface membranes:
STEAP1–4. The STEAPs have very similar structure and domain
organization and play a physiological role as oxidoreductases,
where they participate in absorbing and reducing iron and copper
[4, 5]. Emerging evidence has shown that the STEAPs are involved
in inflammation, cell growth, and differentiation [4, 6]. Moreover,
developing studies have found that STEAPs have a dual role in

cancer progression. STEAP1 is overexpressed in human cancer
tissues and cell lines, including those of bladder, prostate, ovarian,
colon tumors, and Ewing’s sarcoma [7]. Prostate cancer has
aberrantly upregulated STEAP1, STEAP2, and STEAP4, playing an
important oncogene function in tumor malignancy [8–10]. On the
contrary, STEAP3 inhibits prostate cancer cell proliferation by
stimulating p53 expression [11]. Despite their importance in
cancer development, current research on STEAPs is in its initial
stages, and their expression status and function in PTC are still
obscure.
N6-methyladenosine (m6A) RNA modification is tremendously

prevalent, functionally modulating the eukaryotic transcriptome to
affect mRNA export, splicing, translation, localization, and stability
[12, 13]. m6A is one of the most plentiful post-transcriptional
modifications in mammalian mRNA [14]; many researchers have
suggested that m6A modification pattern changes are involved in
tumorigenesis, leading to various cancers, e.g., liver [15], lung [16],
cervical [17], and pancreatic cancer [18]. Methyltransferase-like 3
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(METTL3) was originally identified as responsible for m6A
modification and is the pivotal component of the m6A
methyltransferase complex [19]. Extensive research has estab-
lished that METTL3 is involved in cancer progression. METTL3
promotes cancer progression, such as in hepatocellular carcinoma
[20], pancreatic cancer [21], lung cancer [22], and acute myeloid
leukemia [23]. On the other hand, METTL3 acts as a tumor
suppressor in endometrial cancer [24] and triple-negative breast
cancer [25]. Therefore, it could have different roles in different
cancer types. Recent studies have reported that METTL3 restricts
PTC progression through regulating neutrophils infiltration
[26, 27]. However, its potential role in PTC and the mechanism
by which METTL3 inhibit PTC aggressive phenotypes remains
incompletely understood.
Here, we examined the features of STEAP family expression by

comprehensively analyzing public databases and tissue microarray.
We found that PTC tissue had lower STEAP2 expression than the
paired adjoining noncancerous tissue, which was associated with
poor prognosis. Notably, gain- and loss-of-function experiments
revealed that enforced expression of STEAP2 remarkably inhibited
cell proliferation, migration, and invasion in vitro, while silencing
STEAP2 yielded the opposite results. In addition, STEAP2 over-
expression inhibited tumorigenesis and lung metastasis in mouse
xenografts. Mechanistically, we further identified STEAP2 as a
potential direct target regulated by the METTL3-YTHDF1 axis in an
m6A-dependent manner. Most importantly, rescue experiments
demonstrated that reintroducing STEAP2 markedly abolished the
promoting effects on cell proliferation and invasion induced by
METTL3 silencing. Overall, we demonstrate that the tumor
suppressor protein STEAP2 play a critical roles in PTC progression.
Moreover, we provide several new insights into METTL3-mediated
STEAP2 m6A modification, and uncover a novel molecular
mechanism underlying PTC.

RESULTS
Decreased STEAP2 expression correlates significantly with
poor prognosis and metastasis in patients with PTC
To determine the expression status and clinical association
between STEAPs in patients with PTC, we first determined the
expression profile of STEAP1–4 using public datasets (TCGA and
GEO), and further validated with our own clinical PTC tissue cohort
through immunohistochemical (IHC) staining. We found STEAP2
and STEAP2 were aberrantly expressed in PTC both at mRNA and
protein levels (Fig. 1A, B). Subsequently, we evaluated the clinical
significance of STEAPs expression in TCGA PTC cohort, and found
that low-level STEAP2 and high-level STEAP1 staining correlated
significantly with disease-free survival probabilities (Fig. 1C, D;
Supplementary Fig. S1). In addition, STEAP2 was observably lowly
expressed in patients with lymph node metastasis (Fig. 1E). In light
of the aberrant expression status and good prognostic value of
STEAP2 in PTC, we chose STEAP2 for functional investigation.

STEAP2 ectopic overexpression promotes migration,
proliferative, and invasive abilities in vitro
RT-qPCR and western blotting analysis showed that STEAP2 was
pervasively lowly expressed in PTC cell lines but expressed at
relatively high levels in normal thyroid epithelial cell line (Fig. 2A).
Thus, BCPAP and TPC-1 with low expression of STEAP2 were
chosen for further gain-of-function studies. BCPAP and TPC-1 cells
were transfected with two designed small activating RNA (saRNA)
to achieve STEAP2 overexpression and activation efficiency were
validated via RT-qPCR and western blotting (Fig. 2B; Supplemen-
tary Fig. S2). After enforced expression of STEAP2, we detected the
alterations in cell proliferative ability with CCK-8 assay, EdU
testing, and formation of colonies assay. Notably, STEAP2
overexpression markedly inhibited PTC cell proliferative abilities
(Fig. 2C–E). In addition, increased TUNEL intensity was observed

following STEAP2 overexpression, suggesting enhanced apoptosis
(Supplementary Fig. S3). Moreover, transwell and wound healing
assay assessment of the role of STEAP2 in PTC cell invasion and
migration and showed that STEAP2-activated PTC cells migrated
faster as compared to the vector control cells, and invasion activity
was increased (Fig. 2F–H). Meanwhile, metastasis-related proteins
(MMP2, MMP7, MMP9) were significantly decreased in STEAP2-
activated PTC cells (Fig. 2I). More importantly, STEAP2 over-
expression has no effect on normal thyroid epithelial cell
proliferative abilities (Supplementary Fig. S4). Together, these
findings demonstrate that STEAP2 activation diminishes PTC cell
proliferation, migration, and invasion in vitro.

Silencing STEAP2 promotes PTC cell aggressive behavior
in vitro
In addition to STEAP2 overexpression, loss-of-function experi-
ments were conducted in the STEAP2 relative high-expression PTC
cells K1 and KTC-1; knockdown efficiency was confirmed by
western blotting and RT-PCR (Fig. 3A, B). The proliferative and
clonogenic capacities of the PTC cells were enhanced significantly
after STEAP2 knockdown (Fig. 3C, D). In addition, their DNA
synthesis rate determined by EdU test was dramatically increased
upon STEAP2 silencing (Fig. 3E). Moreover, migration and invasive
abilities of K1 and KTC-1 cells were substantially accelerated
following STEAP2 silencing (Fig. 3F–H). Moreover, in order to
exclude the possibility of off-target effects, two shRNA targeting
STEAP1 with high knockout efficient were employed and
consistent results were obtained (Supplementary Fig. S5).
Collectively, these observations indicate that STEAP2 could inhibit
aggressive tumor phenotypes of PTC cells.

STEAP2 gain-of-function suppresses tumorigenicity and
metastasis in vivo
We further investigated the effects of STEAP2 reactivation on
tumor growth and metastasis in vivo. Tumor growth status in the
subcutaneous xenograft mouse model showed that the STEAP2
reactivation group had slower tumor volume growth rate, smaller
tumors, and lower final tumor weight than the NC groups
(Fig. 4A–C). IHC analysis of STEAP2 expression indicated successful
STEAP2 reactivation in vivo (Fig. 4D). In addition, Ki-67 and PCNA
staining showed that tumors from the STEAP2 reactivation group
had impaired cellular proliferation (Fig. 4D). Consistently,
hematoxylin-eosin (HE) staining of resected lung revealed that
STEAP2 overexpression significantly decreased lung metastatic
colonization (Fig. 4E, F). Conversely, STEAP2 loss-of-function could
promote PTC cell tumorigenicity and metastasis in vivo (Supple-
mentary Fig. S6). Taken together, the results show that STEAP2
acts as a novel negative controller of tumorigenicity and
metastasis of PTC cells in vivo.

STEAP2 acts as a tumor suppressor by inhibiting the
Hedgehog signaling pathway and EMT
To identify the downstream signaling related to STEAP2, we
conducted Gene set variation analysis (GSVA) based on TCGA
dataset and found a positive correlation between low STEAP2
expression and abnormal activation of the Hedgehog signaling
pathway and epithelial–mesenchymal transition (EMT) (Fig. 5A). It
is well known that the Hedgehog signaling pathway is signifi-
cantly associated with tumor proliferation [28], while EMT plays a
crucial role in metastasis [29], indicating that these two signaling
pathways may account for the aggressiveness induced by STEAP2
deficiency in PTC. To test this hypothesis, we performed western
blotting in vitro and found that STEAP2 ectopic overexpression
dramatically suppressed the expression levels of Hedgehog
signaling pathway marker proteins including GLI1, PTCH1, and
SMO (Fig. 5B). Moreover, decreased SMO phosphorylation level
and blocked GLI1 nuclear translocation were observed following
STEAP2 activating (Supplementary Fig. S7). In addition, there were
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decreased mesenchymal molecule marker proteins (N-cadherin,
vimentin, Snail, and β-catenin) and increased epithelial molecule
marker (E-cadherin) following STEAP2 reactivation (Fig. 5C).
Furthermore, we detected the expression of the abovementioned
proteins in xenograft tumor tissues via IHC and obtained results
consistent with the in vitro findings (Fig. 5D, E). Collectively, these
data indicate that STEAP2 may exert its tumor-suppressive
function by restraining the Hedgehog signaling pathway and EMT.

METTL3-regulated m6A modification enhances STEAP2 mRNA
stability in an YTHDF1-dependent manner
Increasing studies have shown that m6A RNA modification is an
emerging regulatory mechanism for gene expression and plays
vital roles in tumorigenesis [30]. Hence, we explored whether m6A
modification was involved in STEAP2 inactivation. Online predic-
tion tool (http://m6a2target.canceromics.org [31]) showed that
METTL3, a m6A “writer” protein, was among the potential m6A
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functional candidates regulating STEAP2 expression, while persis-
tently positive relationship between METTL3 and STEAP2 expres-
sion was observed in most cancers, including PTC (Fig. 6A–C).
Previous study reported that METTL3 is downregulated in PTC
tissues and plays a tumor-suppressor role [26]. To confirm whether
STEAP2mRNA undergoes METTL3-mediated m6A modification, we
performed methylated RNA immunoprecipitation quantitative PCR
(MeRIP-PCR) and results indicated that the m6A abundance of
STEAP2 mRNA was notably decreased upon METTL3 silencing,
while it was increased following METTL3 upregulation (Fig. 6D).
Moreover, STEAP2 expression was significantly enhanced after
METTL3 reintroduction, whereas it was decreased with METTL3
knockdown in PTC cells at both mRNA and protein levels (Fig. 6E,
F; Supplementary Fig. S8). As expect, STEAP2 mRNA stability was
enhanced upon METTL3 overexpression, and was decreased in
METTL3-silenced PTC cells (Fig. 6G; Supplementary Fig. S9).
More importantly, the effect of catalytic mutant METTL3 construct
on STEAP2 was assessed. As expected, STEAP2 expression in

METTL3-Mutant-transfected cells was no different from controls
group, indicating that METTL3 regulates STEAP2 via distinct
mechanisms which depends on the catalytic activity of METTL3
(Supplementary Fig. S10).
The current consensus indicates that m6A modification

exercises its biological functions mainly by recruiting m6A
“reader” proteins [32]. Among the identified m6A reader proteins,
YTHDF1 promotes m6A-modified mRNA protein translation [33].
Intriguingly, significant increased STEAP2 expression was
observed in PTC cells following YTHDF1 reintroduction, while
not YTHDF2 (Fig. 6H, I; Supplementary Fig. S11). In addition,
YTHDF1 overexpression could enhance STEAP2 mRNA stability,
while rescue experiments showed that YTHDF1 silencing remark-
able counteracted the positive effects on STEAP2 expression
induced by METTL3 overexpression (Fig. 6J; Supplementary Fig.
S12). In summary, these findings suggest that METTL3-mediated
m6A modification enhance STEAP2 mRNA stability in an YTHDF1-
dependent manner.
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Silencing STEAP2 reverses the tumor inhibitory effects of
METTL3
We further verified whether STEAP2 inactivation was involved in
the tumor inhibitory activity of METTL3 in PTC. We enforced
METTL3 expression in BCPAP and TPC-1 cells with
STEAP2 silencing by siRNA (Fig. 7A). Rescue experiments showed
that the transiently transfected STEAP2 siRNA could partially
rescue the negative effects on cell proliferation induced by
METTL3 (Fig. 7B–D; Supplementary Fig. S13A). In addition, TUNEL
assay results showed that STEAP2 knockdown could rescue the
increased apoptosis rate in PTC cells transfected with METTL3
overexpression plasmid (Supplementary Fig. S13B). Moreover,
STEAP2 silencing partially abrogated the migration and invasion
inhibitory effects caused by METTL3 overexpression in PTC cells
(Fig. 7E–G).
Furthermore, we evaluated the effect of the METTL3–STEAP2

axis on the Hedgehog signaling pathway and EMT. The results
suggested that METTL3 upregulation inhibited Hedgehog signal-
ing pathway and EMT activation, while STEAP2 knockdown
partially restored the inhibitory effects on the Hedgehog signaling
pathway and EMT in METTL3 overexpression PTC cells (Fig. 8A, B).
Therefore, our data suggest that METTL3 suppresses the PTC
malignant process by enhancing STEAP2 expression and conse-
quently restraining the Hedgehog signaling pathway and EMT.

DISCUSSION
STEAP family members are extensively expressed in noncancerous
human tissues and were initially identified as important metallor-
eductases participating mineral absorption, ferroptosis, and TP53-
regulated transcription of cell death genes [6]. Emerging evidence
has shown that STEAPs are frequently aberrantly expressed in a

variety of cancer types [4]. Functionally, STEAPs play both tumor-
suppressive or -promoter roles in cancer progression [4]. Never-
theless, their function in PTC is still undefined.
Here, the expression status and prognostic significance of all

STEAP family members underwent systematic and comprehensive
analysis. We identified that PTC tissues had obviously down-
regulated STEAP2, and reduced STEAP2 expression correlated
worse prognosis. Functionally loss-of-function assays demon-
strated the silencing STEAP2 promoted PTC cell invasion and
proliferation in vitro. Likewise, STEAP2 knockdown enhanced lung
metastasis and tumor growth in vivo. Conversely, STEAP2 gain-of-
function had the opposite effects. These results suggest that
STEAP2 may have an anti-oncogenic role in PTC progression. In
accordance with our findings, downregulated STEAP2 has been
observed in breast cancer and glioblastoma, while STEAP2
downregulation promotes breast cancer cell proliferation and
invasion [34–36]. On the contrary, it has been reported STEAP2 is
overexpressed in other human cancers, e.g., bladder, pancreatic,
ovarian, cervical, colon cancer, and Ewing sarcoma [4]. Burnell
et al. reported that STEAP2 knockdown decreased the potential for
prostate cancer cells to invade [37]. We assume that STEAP2 may
have opposite functions due to the heterogeneity of different
cancers.
Previous studies demonstrated that STEAP2 inhibited EMT and

suppressed the PI3K–AKT–mTOR signaling pathway in breast
cancer [35]. Intriguingly, bioinformatics analysis indicated that the
Hedgehog signaling pathway and EMT were the most significantly
enriched pathways in STEAP2-low expression PTC tissues. The
Hedgehog signaling pathway is highly conserved, and previous
studies have demonstrated that its aberrant activation has a vital
function in PTC progression and development [38]. Meanwhile,
EMT allows epithelial cells obtain the invasive and motile abilities
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Fig. 3 Loss-of-function of STEAP2 inhibits the proliferation and migration of PTC cells. A-B The knockdown effect on STEAP2 was detected
by RT-qPCR and western blot after transfection of K1 and KTC-1 cells with designed siRNAs targeting STEAP2 (si-STEAP2) or negative control
(si-NC). C–E CCK-8 assay, colony formation assay, and EdU assay were used to determine the viability of BCPAP and TPC-1 cells after
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evaluate the migration ability of K1 and KTC-1 cells after STEAP2 activation. All data are presented as the mean ± standard deviation of three
independent experiments. *P < 0.05, **P < 0.01, and ***P < 0.001.
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characteristic of mesenchymal cells, a vital development in cancer
metastasis [29]. Here, we uncovered a new mechanism where
STEAP2 blocked Hedgehog signaling pathway and inhibit EMT
activation. However, more studies should be performed to clarify
the underlying mechanism for this crosstalk.
To date, there has been no report on the regulatory mechanism

of aberrant STEAP2 expression. m6A modification is a widespread
internal mRNA modification that regulates the result of gene
expression [30]. In the present study, we verified that the METTL3-
initiated m6A methylation increases STEAP2 mRNA stability and
promotes its translation in a YTHDF1-dependent pathway. METTL3
is the master component of the writer complex and plays key roles
in regulating gene expression [32]. METTL3 was reported to
display a dual role as both an oncogene and a tumor suppressor
[39]. Previous publications have reported that METTL3 is down-
regulated in PTC and functions as a suppressor by regulating
neutrophil infiltration, which was in line with our observations
[26]. In the present study, rescue experiments revealed that
silencing STEAP2 partially rescued the tumor-suppressive pheno-
type induced by METTL3 overexpression. Notably, upregulating
METTL3 blocked the Hedgehog signaling pathway and EMT
activation, and disrupting STEAP2 partially abrogated these
inhibitory effects. Taken together, these results indicate that
METTL3 induces STEAP2 translation in an m6A-dependent manner,

subsequently leading to inactivation of the Hedgehog signaling
pathway and EMT, and restrains aggressive tumor phenotypes
(Fig. 8C).

CONCLUSION
To our knowledge, this represents the first systematic analysis of
the role of STEAP2 in PTC. STEAP2 was characterized as a potential
tumor suppressor and could inhibit tumor proliferation and
metastasis in PTC. We also demonstrate that METTL3 epigeneti-
cally enhances STEAP2 expression via an m6A–YTHDF1-depen-
dent mechanism. The discovery of the METTL3–STEAP2 axis and
its impact on PTC progression will aid further exploration of
efficient therapeutic strategies against aggressive PTC.

METHODS
Clinical tissue specimens
Twenty PTC patients having went through resection at the Sun Yat-Sen
Memorial Hospital were recruited in this cohort study. The entire
procedures were subjected to the supervision of the Ethics Review
Committee of Sun Yat-Sen Memorial Hospital, and rigorously remained in
conformance to the Declaration of Helsinki. All involved subjects submitted
informed written consent before tissue sampling.
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Analysis of public databases
The raw expression data for PTC samples were gained from the Cancer
Genome Atlas (TCGA) and GEO database. The individual datasets
(GSE3467, GSE33630, GSE35570, GSE60542) were analyzed in this study.

Immunohistochemistry analysis
The slides were subjected to 30min of H2O2 solution (0.3%) treatment to
inhibit the activity of endogenous peroxidase. Permeabilization was
conducted by treating tissues with 0.5% Triton X-100 for 30min, followed
by incubation of tissues with citrate buffer at working strength to identify
the relevant antigen. Following three times of rinsing with PBS, 5% normal
goat serum was used to block the slides. Samples were subsequently
subjected to cross-reaction with STEAP1 antibody (Proteintech: 20199-1-
AP, China), STEAP2 (Proteintech: 20201-1-AP, China), STEAP3 (Proteintech:
17186-1-AP, China), STEAP4 (Proteintech: 11944-1-AP, China), SMO
(Proteintech: 20787-1-AP, China), GLI1 (Abcam: ab134906, USA), PTCH1
(Abcam: ab53715, USA), Ki-67 (Proteintech: 27309-1-AP, China), PCNA
(Proteintech: 10205-2-AP, China), E-Cadherin (Proteintech: 20874-1-AP,
China), N-Cadherin (Proteintech: 22018-1-AP, China). Dilution of antibodies
was performed at a ratio of 1:100, followed by two hours of incubation
with the sample at ambient temperature. The slides were then subjected

to 30min of incubation with a secondary horseradish peroxidase (HRP)-
conjugated anti-rabbit IgG (H+ L). Besides, counterstaining of nuclei was
carried out with DAPI.

saRNA activation, RNA interference, and transfection
saRNA was designed as specified in previous reports [40]. Three double-
stranded RNA pairs, containing 21 nucleotides each, were designed as
complementary to the sequence of STEAP3 promoter. The saRNA
sequences were listed in Supplementary Table S1. Synthesis of saRNA
was performed in GeneBio, China. The STEAP2-siRNA (si-STEAP2), METTL3-
siRNA (si-STEAP2), and negative control (si-NC) siRNAs were procured from
RiboBio, China. The pcDNA3.1-METTL3 and empty vectors were procured
from Sangon Biotech, China. Transfection with plasmids or siRNAs was
conducted on Lipofectamine 3000 (Invitrogen, USA) as per the official
protocol.

CCK-8 assay, EdU analysis, and colony formation assay
Cell viability was evaluated using CCK-8 as well as with Ethynyl
deoxyuridine (EdU) assay and colony formation assay. Spreading of PTC
cells was performed in 96-well plates with the density at 1 × 104 cells/ml.
After 0, 24, 48, and 72 h of incubation, respectively, each well was
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supplemented with CCK-8 solution (Djingo, Japan) and the OD at 450 nm
was detected with a microplate reader. EdU assay was conducted as
specified by the vendor (RiboBio, China). Treated cells were detected under
a fluorescence photo-microscopy, and measured by counting the numbers
in at least 6 random fields. For colony formation assay, cells were
incubated in a complete medium on plates for 14 days. The medium was
replaced at an interval of 3 days. Cell colonies were subjected to fixation
with paraformaldehyde, and subsequently to 20min of staining with
crystal violet (0.1%). Visually available colonies were quantified.

RT-qPCR
TRIzol reagent (Invitrogen) was used to extract Total RNA. Takara kit
(Dalian, China) was used for performing reverse transcription reactions at
42 °C. RT-PCR analyses were conducted using SYBR Green supermix (Bio-
Rad Laboratories, U.S.) according to a two-step procedure. GAPDH was
used for normalizing gene expressions. ΔΔCt or 2-ΔΔCt method was
applied for data analysis. Synthesis of primers was conducted in Sangon
Biotech (Shanghai, China) with the sequences as follows: STEAP2 F: 5′-
GGTCACTGTAGGTGTGATTGG-3′, R: 5′-ACCACATGATAGCCGCATCTAA-3′;
GAPDH R: 5′-CCAGGTGGTCTCCTCTGA-3′, GADPH F: 5′-GCTGTAGC-
CAAATCGTTGT-3′.

Western blot
Extraction of total proteins was performed with RIPA lysis buffer containing
protease inhibitors. Proteins were detected using a BCA protein assay kit
(Pierce, China) prior to being separated by SDS-PAGE and migrated to PVDF
membranes (Millipore, Germany). The membranes were then subjected to
incubation with respective primary antibodies against STEAP2 (Proteintech,
20201-1-AP), METTL3 (Proteintech, 15073-1-AP), YTHDF1 (Proteintech,
17479-1-AP), SMO (Proteintech, 20787-1-AP), GLI1 (Abcam, ab134906),
PTCH1 (Abcam, ab53715), E-Cadherin (Proteintech, 20874-1-AP),
N-Cadherin (Proteintech, 22018-1-AP), MMP2 (Proteintech, 10373-2-AP),
MMP7 (Proteintech, 10374-2-AP), MMP9 (Proteintech, 10375-2-AP), SNAIL
(Proteintech, 13099-1-AP), β-catenin (Proteintech, 51067-2-AP), Vimentin
(Proteintech, 10366-1-AP). The signal was examined with a LI-COR Odyssey
Imaging System (Lincoln, NE, USA) as specified by the vendor.

Transwell migration and invasion assay
Transwell assay was performed to determine cell migration and invasion.
Cells were seeded in 24-well Transwell inserting chambers (BD Biosciences,
USA) (2% Matrigel was used to pre-coat inserting chambers for invasion
assay) that contained serum-free medium. FBS (20%) was added to the
lower-chamber medium as a source of chemo-attractant. After 2 days, the
cells having not migrated through the chamber membrane were removed,
and those having passed through the membrane were subjected to
fixation and staining with crystal violet. They were subsequently detected
and photographed using a microscope.

In vivo tumor xenograft model and lung metastasis model
The animal experiment permission was granted by the Animal Care
Committee of the Sun Yat-Sen Memorial Hospital. Female BALB/c nude
mice (aged between 6 and 8 weeks) were procured from the Beijing Vital
River Laboratory Animal Technology Company, and reared in conditions
deprived of specific pathogens. BCPAP cells (5 × 106) were introduced into
the mice by means of subcutaneous injection through the flank area.
STEAP2-saRNA or NC-saRNA (n= 6 for each group) was given by
intratumoral multipoint injection at an interval of 3 days (5 injections in
total) using an in vivo transfection reagent (Entranster™-in vivo, Engreen,
China) as per the vendor-provided protocol. Tumor volume (V) was
monitored and calculated as follows: V= (L ×W2)/2. For the in vivo tumor
metastasis assay, BCPAP cells (5 × 106 cells) were administrated into mice
through the tail vein. STEAP2-saRNA or NC-saRNA (n= 6 for each group)
was given via tail vein injection at an interval of 3 days (8 injections in
total). Lung micrometastases were counted via morphological observation
of H&E-stained sections.

RNA total m6A quantification
GenElute™ mRNA Miniprep Kit (Sigma-Aldrich, Germany) was used to
extract total RNA and remove polyadenylated mRNA by following the
vendor-provided instructions. Then, the total m6A level was determined
with deEpiQuik™ m6A RNA Methylation Quantification Kit (Colorimetric)
(Epigentek, USA) in treated cells as per the specific protocol. The m6A
content was quantified based on the absorbance at 450 nm.
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Fig. 8 METTL3/STEAP2 m6A axis regulates hedgehog signaling pathway and EMT in PTC. BCPAP PTC cell lines were transfected with
METTL3-overexpression (METTL3) plasmids and siRNA targeting STEAP2 (si-STEAP2) as indicated. A, B Effect of METTL3/STEAP2 axis on the
expression of Hedgehog signaling pathway-related proteins (Smo, Gli1, and PTCH1) and EMT markers (E-cadherin, N-cadherin, snail, vimentin,
and β-catenin) in PTC cells were quantified by western blot assay. C The graphic illustration of METTL3-mediated m6A modification
modulating malignant phenotype of PTC through enhancing STEAP2 expression and then restraining Hedgehog signaling pathway and EMT.
All data are presented as the mean ± standard deviation of three independent experiments. *P < 0.05, **P < 0.01, and ***P < 0.001.
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MeRIP-qPCR
Magna MeRIP™ m6A Kit (Millipore, Germany) was used for MeRIP assay to
identify the m6A modification of specific transcripts. Briefly, a total of
150 μg RNA was extracted from pretreated cells, and reduced into
fragments of 100 or fewer nucleotides. Immunoprecipitation of RNA
samples was performed with magnetic beads pre-coated with 10 μg anti-
m6A antibody (Millipore) or anti-mouse IgG (Millipore). Normalization of
m6A enrichment was performed relative to inputs.

Statistical analysis
All experiments were performed in 3 repeated runs at a minimum. All
statistical data were processed on GraphPad Prism 7.0 (GraphPad, USA),
and shown as mean ± SD. Nonpaired Student’s t-test or nonparametric
Mann–Whitney test was used for two-group comparison. One-way or two-
way ANOVA, along with the Bonferroni post hoc test, was adopted in
comparisons between more than two groups. The linear relationship
between METTL3 and STEAP2 expression levels was measured by Pearson
correlation coefficient. The survival probability was calculated using the
Kaplan–Meier approach and compared with the log-rank test. All statistical
analysis involved two-tailed tests. Statistical significance was denoted by P
< 0.05.

DATA AVAILABILITY
The datasets used and/or analyzed during the current study are available from the
corresponding author on reasonable request.
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