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Abstract
Introduction  Studies have reported autonomic impairment in patients with idiopathic REM sleep behaviour disorder (iRBD), 
which is considered a prodromal stage of alpha-synucleinopathies. It is still debated whether central or peripheral patholo-
gies are first manifestations of alpha-synucleinopathies. This study aimed to characterize autonomic and somatosensory 
function in iRBD patients.
Methods  This cross-sectional prospective case–control study included 17 iRBD patients (mean age 66.3 ± 9.2 years) and 16 
healthy controls (HCs, 66.6 ± 11.3 years). Quantitative sensory testing, neurological and neuropsychological assessments, 
norepinephrine blood plasma levels, tilt table examination with orthostatic blood pressure, and heart rate variability were 
carried out. Longitudinal data of 10 iRBD patients, including neurological, neuropsychological, and tilt table examination, 
were assessed.
Results  iRBD patients more frequently presented with orthostatic dysfunction than HCs (70.6% vs. 6.3%, p < 0.0001). Supine 
norepinephrine plasma levels were normal, but lower in iRBD (249.59 ± 99.78 pg/ml iRBD, 354.13 ± 116.38 pg/ml HCs, 
p < 0.05). Quantitative sensory testing revealed impaired cold (CDT) and vibration detection thresholds (VDT) on the foot 
in iRBD (CDT foot iRBD − 1.24 ± 0.31, HCs − 9.89E-17 ± 0.25, VDT iRBD − 1.11 ± 0.47, HCs − 1.46E-16 ± 0.25, p < 0.05). 
Cold detection thresholds differed between the foot and hand among iRBD patients (foot − 1.24 ± 0.31, hand − 0.56 ± 0.25, 
p < 0.05). Longitudinal data revealed an increase in maximum systolic and diastolic orthostatic blood pressure changes and 
a decrease in the Valsalva ratio in the follow-up group (p < 0.05).
Conclusion  This study revealed autonomic dysfunction with somatosensory impairment, and decreased norepinephrine 
levels in iRBD, which may serve as a possible prodromal marker for developing alpha-synucleinopathy.

Keywords  Idiopathic REM sleep behaviour disorder · Autonomic dysfunction · Quantitative sensory testing · 
Norepinephrine levels · Somatosensory dysfunction
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Introduction

Idiopathic REM sleep behaviour disorder (iRBD) is char-
acterized by pathological dream-enacting behaviour during 
REM sleep and is considered a premotor stage of alpha-
synucleinopathies (α-SYN), such as Parkinson’s disease 
(PD) or multiple system atrophy (MSA) [1, 2]. It is already 
known that several autonomic symptoms can occur in this 
prodromal stage of α-SYN [3, 4]. We recently described 
the prevalence of transient orthostatic hypotension (OH) in 
iRBD [5]. In addition to obstipation and olfactory dysfunc-
tion, OH is one of the most common autonomic features of 
α-SYN [6]. Regarding the onset and manifestation of PD 
in iRBD, there remains debate whether central or periph-
eral pathology is the first to appear. One hypothesis posits 
the spread of alpha-synuclein towards the brain from the 
peripheral nervous system to the central nervous system [8]. 
Recent studies have demonstrated the presence of various 
peripheral autonomic impairments and of alpha-synuclein 
aggregates in the skin; first metabolic brain changes; and 
a reduction in intraepithelial nerve fibre density in iRBD 
[5, 9–12]. Here, we characterized peripheral autonomic and 
somatosensory functions in iRBD by means of noninvasive 
quantitative sensory testing (QST), norepinephrine (NE) 
blood plasma levels, orthostatic BP, and heart rate changes.

Materials and methods

Subjects

Seventeen male iRBD patients from the prospective natu-
ral history cohort study of the German RBD Study Group 
were examined at the Department of Neurology, RWTH 
Aachen University, between February 2016 and May 
2018 and were compared to 16 healthy controls (HCs) 
matched for sex and age. iRBD was screened using the 
RBD Screening Questionnaire and was polysomnographi-
cally confirmed by diagnostic criteria established by the 
American Academy of Sleep Medicine, including abnor-
mal behaviour during REM sleep, electromyographic 
activity, and dream enactment, as described previously in 
Schrempf et al. [12]. The study was approved by the insti-
tutional ethics review board at RWTH Aachen University 
(EK 231/09) and carried out under the terms of the Decla-
ration of Helsinki. All participants gave written informed 
consent prior to study enrolment. Exclusion criteria were:

1)	 clinical motor signs, as assessed through detailed neuro-
logical examination and the Unified Parkinson’s Disease 
Rating Scale (UPRDS-III) [13] (cut off > 5);

2)	 sleep apnoea syndrome (higher than grade two);

3)	 severe heart failure;
4)	 long-standing diabetes mellitus with HbA1c > 7% as 

well as deficits of vitamin B12 or folic acid; in HC 
subjects, signs suggestive for peripheral neuropathy 
including abnormalities in nerve conduction studies and 
reduced clinical vibration detection.

In addition to carrying out a cross-sectional, case–control 
design, we also analyzed longitudinal data in a subgroup 
of ten iRBD patients with follow-up assessments following 
their inclusion in the natural history study between 2010 
and 2016.

Autonomic function and norepinephrine plasma 
levels

The autonomic testing battery included sympathoneural 
function (BP changes during head up-tilt, NE blood plasma 
levels, taken both supine and standing) and cardiovagal 
function (supine heart rate changes, during deep breath-
ing, orthostasis as well as the Valsalva manoeuvre). Tests 
were always performed in a fasted, standardized manner in 
the morning without morning medication, smoking or caf-
feine intake for at least 12 h. BP, breathing rate, and heart 
rate were recorded continuously using a Finometer Midi 
(Finapres Medical Systems B.V., Enschede; Netherlands) 
and Fan 4.1.0 (BioSign GmbH, Ottenhofen, Germany). BP 
measurement was consistently assessed in a standardized 
manner, using calibration between the brachial arterial pres-
sure and the finger artery pressure, correcting for height, 
and continuous recording at the cardiac level. During two 
minutes of deep breathing, defined as six inspirations per 
minute, respiratory sinus arrythmia (RSA) was quantified 
as the median difference between the maximal and minimal 
interbeat (R–R) intervals per respiratory cycle (diffR-Rmax-
R-Rmin). Parameters of heart rate variability (i.e., coefficient 
of variation during rest, Ewing coefficient in upright posi-
tion, and Valsalva ratio), were calculated and rated patholog-
ically, as previously described [5]. The tilt table examination 
was performed supine for 10 min, followed by 20 min in a 
70° upright position. OH in this study included all variants 
of OH and were defined as follows: classic OH, if systolic 
(> 20 mmHg) or diastolic (> 10 mmHg) BP dropped within 
three minutes of standing compared to mean supine BP val-
ues before [7]; transient OH, if BP dropped transiently and 
stabilized within five minutes after standing; and delayed 
OH, if the abovementioned BP dropped beyond three min-
utes of standing [7]. The maximum heart rate rise and the 
systolic/diastolic BP decrease compared to baseline, were 
calculated. NE plasma levels were measured in supine blood 
samples taken after ten minutes of rest (NE supine) and after 
ten minutes in an upright position (NE upright). In healthy 
persons, plasma levels of NE double within five minutes 



925Journal of Neurology (2021) 269:923–932	

1 3

after postural change and stabilize BP [14]. Neurogenic 
orthostatic hypotension (NOH) is characterized by reduced 
NE plasma levels and/or a reduced noradrenergic respon-
siveness to postural change [14].

Quantitative sensory testing

According to the protocol of the German Research Network 
on Neuropathic Pain (DFNS), QST was consistently per-
formed in the same procedure on the left hand dorsum and 
left foot dorsum, as described previously [15]. Standardized 
instructions were used to quantify the functional state of 
the somatosensory system, including nerve fibre function of 
small fibres; C- and Aδ-fibres, and large fibres; Aβ-fibres, as 
well as their pathways to the brain. QST included all thermal 
and mechanical detection and pain thresholds necessary for 
assessing a complete sensory phenotype.

Neuropsychological and neurological assessment

Neuropsychological and neurological assessments were 
performed, as described previously [12]: the Montreal Cog-
nitive Assessment (MoCA), Unified Parkinson’s Disease 
Rating Scale (UPDRS), and Hoehn and Yahr (HY) were 
administered. Typical non-motor and autonomic symptoms, 
as analogously described in PD, were rated by the non-motor 
symptoms questionnaire (NMS Quest) for comparability. 
Screening for depressive symptoms was performed using 
the Beck Depression Inventory, version II (BDI-II). Fur-
thermore, olfactory deficits were assessed via the “Sniffin’ 
Sticks” identification test. Signs of polyneuropathy were 
ruled out by motor and sensory nerve conduction studies 
and vibration detection.

Longitudinal assessment

For this autonomic subproject, we added QST and NE levels 
in 2016 to our natural history study (started on 09/2010). A 
subgroup of patients participated in follow-up assessments, 
allowing for longitudinal analysis of tilt table examination 
and neuropsychological and neurological assessments.

Statistical analysis

We compared the differences between groups (iRBD vs. 
HCs) using the two-sample t test and Mann–Whitney U 
test, as appropriate. Fisher’s exact test was used to analyse 
NMS Quest frequency distributions and heart rate variability 
parameters. Smelling and heart rate variability parameters 
were compared between groups using ANCOVA with age 
as the covariate. Paired supine and upright systolic and dias-
tolic BP, heart rate, NE plasma levels, and QST data were 
analysed using ANOVA with repeated measures. Cohen’s f 

was used as the effect size, defined as f = 0.10 mild, f = 0.25 
moderate and f = 0.40 for severe effects. For QST data, 
ANOVA was followed by Fisher’s LSD post hoc tests. Most 
QST values were normally distributed in log-space and 
transformed logarithmically before calculating z-scores in 
relation to log-data of HC subjects. For correlation analyses, 
we used Spearman’s coefficient. To compare follow-up and 
baseline assessments in the subgroup of iRBD, the paired 
sample t tests and Wilcoxon signed-rank tests were used. 
A p value of ≤ 0.05 was considered significant. Statistical 
analysis was performed with IBM SPSS Statistics Version 
25 (IBM SPSS Statistics for Mac, Version 25.0) and Statis-
tica software for Windows 7.1 (StatSoft Inc., USA).

Results

Sample characteristics

Seventeen male iRBD patients (mean age 66.3 ± 9.2 years, 
mean disease duration since diagnosis 5.9 ± 3.5 years) were 
compared with 16 male HCs (mean age 66.5 ± 11.3 years). 
See Table 1 for detailed sample characteristics and missing 
data. In nine iRBD patients, cranial MRI scans were able 
to be performed without any signs of structural abnormali-
ties (e.g., atrophy referring to MSA). Four iRBD patients 
(23.53%) showed electroneurographical signs of sensorimo-
tor polyneuropathy without clinical symptoms and without 
a significantly impaired vibration detection threshold, as 
compared to iRBD patients with physiological nerve conduc-
tion studies. Subjects were diagnosed with following comor-
bidities: obesity (12.50% iRBD, 26.70% HCs), nephropathy 
(5.89% iRBD), arterial hypertension (17.65% iRBD, 43.75% 
HCs), heart disease (29.41% iRBD, 6.25% HC), early type 
II of diabetes mellitus (6.25% HC), and smoking (29.41% 
iRBD, 12.50% HCs). In terms of medications, two iRBD 
patients (11.76%) were taking a serotonin–norepinephrine 
reuptake inhibitor (duloxetine), three iRBD patients (17.65%) 
and seven HCs (43.75%) were taking antihypertensive medi-
cation, two iRBD patients (11.76%) and one HC (6.25%) used 
to take beta-1-specific adrenergic antagonists, and two HCs 
(12.50%) used local eye drops containing nonspecific beta-
adrenergic antagonists for glaucoma. Hyposmia, evaluated 
via the Sniffin’ Sticks identification test, was more frequent in 
iRBD 52.94% vs. in HCs 0% (median olfaction score, right: 6 
(interquartile range 5–9) in iRBD vs. 13.5 (interquartile range 
12–14.5) in HCs, F = 23.17 p < 0.0001; left: 9 (interquartile 
range 6–10) in iRBD vs. 14 (interquartile range 11.5–15) in 
HCs, F = 12.26 p = 0.004), and iRBD patients displayed more 
depressive symptoms (BDI-II 7.77 ± 8.87 iRBD vs. 1.5 ± 2.42 
HCs, U =  − 2.56, p = 0.014). The incidence of motor and 
non-motor symptoms was also significantly higher in iRBD 
patients than in HCs, as expected (Table 1).
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Table 1   Demographic and clinical data of patients with idiopathic REM sleep behaviour disorder compared to healthy controls (cross-sectional) 
and longitudinal assessments of patients with idiopathic REM sleep behaviour disorder baseline vs. follow-up assessments

Cross-sectional group Longitudinal assessment iRBD

iRBD HC p value baseline follow-up p value

Demographics
 Subjects, n 17 16 n.s 10 10 n.s
 Sex 17 m, 0 f 16 m, 0 f n.s 10 m, 0 f 10 m, 0 f n.s
 Age, years 66.25 ± 9.17 66.54 ± 11.33 n.s 61.54 ± 11.97 65.27 ± 11.08  < 0.0001
 Duration of iRBD, years 5.85 ± 3.47 n.a n.s 2.31 ± 2.25 5.95 ± 3.08 0.001
 RBD Quest 8.53 ± 2.76** 0.75 ± 1.39  < 0.0001 9.90 ± 3.00 8.70 ± 2.71* 0.024
 UPDRS III 2.29 ± 1.90** 0.19 ± 0.54  < 0.0001 0.90 ± 1.29 1.90 ± 2.23 n.s

Sympathoneural
 NE supine, pg/ml 249.59 ± 99.78* 354.13 ± 116.38 0.017 n.a n.a n.a
 NE upright, pg/ml 579.12 ± 235.41 760.63 ± 303.45 n.s n.a n.a n.a
 Mean supine systolic BP, mm 

Hg
125.45 ± 20.92 124.74 ± 20.28 n.s 117.04 ± 11.43 125.87 ± 21.22 n.s

n = 15
 Mean upright systolic BP, mm 

Hg
123.17 ± 21.62 128.72 ± 29.74 n.s 120.31 ± 12.68 121.21 ± 18.62 n.s

n = 15
 Mean supine diastolic BP, mm 

Hg
68.41 ± 9.84 69.72 ± 12.12 n.s 65.89 ± 7.16 70.10 ± 8.52 n.s

n = 15
 Mean upright diastolic BP, mm 

Hg
71.82 ± 12.59 75.66 ± 14.61 n.s 73.20 ± 7.63 73.10 ± 12.61 n.s

n = 15
 Mean HR supine, beats/min 60.85 ± 9.14 58.75 ± 8.33 n.s 64.32 ± 9.6 62.55 ± 9.94 n.s

n = 14 n = 8
 Mean HR upright, beats/min 68.71 ± 10.88 64.29 ± 6.70 n.s 72.98 ± 10.60 70.61 ± 11.71* 0.019

n = 14 n = 8
 Systolic BP change 3 min stand-

ing, mm Hg
 − 0.96 ± 9.00 2.13 ± 6.31 n.s  − 1.21 ± 4.89  − 0.25 ± 10.15 n.s

n = 15
 Diastolic BP change 3 min 

standing, mm Hg
3.32 ± 13.26 7.70 ± 6.83 n.s 6.90 ± 9.05 3.52 ± 16.97 n.s

n = 15
 HR change 3 min standing, 

beats/min
7.48 ± 8.26 6.20 ± 7.15 n.s 10.43 ± 8.27 9.34 ± 7.56 n.s

n = 14
 Max systolic BP change, mm 

Hg
 − 41.45 ± 16.88*  − 23.67 ± 16.23 0.005 -24.50 ± 11.70  − 42.27 ± 20.01* 0.024

n = 15
 Max diastolic BP change, mm 

Hg
 − 21.35 ± 11.48* –10.92 ± 8.76 0.008  − 12.79 ± 7.99  − 21.60 ± 13.34* 0.037

n = 15

 Max HR raise, beats/min 20.32 ± 7.99 18.39 ± 13.16 n.s 20.87 ± 8.4 21.82 ± 9.33 n.s
n = 14 n = 8

 Max BP change mean systolic, 
mm Hg

 − 2.28 ± 15.98 3.98 ± 14.28 n.s 3.27 ± 14.47  − 4.66 ± 19.53 n.s
n = 15

 Max BP change mean diastolic, 
mm Hg

3.41 ± 11.04 5.94 ± 7.30 n.s 7.31 ± 7.85 3.0 ± 13.99 n.s
n = 15

Cardiovagal
 RSA difference BPmax/BPmin, 

ms
102.25 ± 71.29 124.13 ± 60.47 n.s 81.11 ± 80.62 99 ± 69.43 n.s
n = 16 n = 15 n = 9

 Heart rate variability supine, ms 4.02 ± 2.32 6.87 ± 6.89 n.s 4.21 ± 1.72 3.83 ± 2.21 n.s
n = 15 n = 8

 Valsalva ratio (BPmax/BPmin) 1.30 ± 0.12 1.44 ± 0.43 n.s 1.46 ± 0.27 1.29 ± 0.11* 0.007
n = 16 n = 12 n = 9 n = 9

 Ewing 30:15 quotient 1.36 ± 0.77 1.16 ± 0.11 n.s 1.15 ± 0.11 1.12 ± 0.07 n.s
n = 14 n = 9
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Cross‑sectional autonomic data

In total, 70.59% of iRBD patients and 6.25% of HCs pre-
sented with any type of OH. Four iRBD patients had clas-
sic OH; five had transient OH; two had delayed OH; and 
one patient had a transient BP drop, first with stabilization 
and then with delayed OH. One HC tilt table examination 
was excluded from the analysis due to measurement errors. 
In addition, the following had to be excluded: one iRBD 
RSA Score; one iRBD Valsalva test; and four HCs who 
were not allowed to perform the Valsalva manoeuvre due 
to contraindications. In one HC, the heart rate parameters 
were not evaluable due to cardiac arrhythmia. BP dropped 
more severely in iRBD (max. change − 41.45 ± 16.88 mmHg 
systolic, max. change − 21.35 ± 11.48  mmHg diastolic) 
than in HCs (max. change − 23.67 ± 16.23 mmHg systolic, 
t =  − 3.03 p = 0.005, max. change − 10.92 ± 8.76 mmHg 
diastolic, t =  − 2.86 p = 0.008). ANOVA with repeated 
measures confirmed a significant difference in NE levels in 
iRBD vs. HCs (F = 5.83, p = 0.022, effect size f = 0.43) and 
in the supine vs. upright position, as expected (F = 82.64, 
p < 0.0001, effect size f = 1.63). With regard to individual 
values, NE supine was lower in iRBD (249.59 ± 99.78 pg/
ml iRBD vs. 354.13 ± 116.38  pg/ml HCs, U =  − 2.38, 
p = 0.017), whereas the NE ratio (NE supine vs. upright) 
did not differ significantly between iRBD patients and HCs 
(Fig. 1).

In QST, the cold detection threshold on the left foot 
dorsum in iRBD patients was significantly higher than 
that in HCs (iRBD − 1.24 ± 0.31, HCs − 9.89E-17 ± 0.25, 

p = 0.007). In addition, the cold detection threshold on 
the left foot was significantly increased in comparison to 
the cold detection threshold on the left hand within iRBD 
patients (foot − 1.24 ± 0.31, hand − 0.56 ± 0.25, p = 0.038). 
The vibration detection threshold was significantly increased 
in iRBD patients on the foot compared to that in HCs 
(iRBD − 1.11 ± 0.47, HCs − 1.46E-16 ± 0.25, p = 0.038). In 
iRBD patients with electrophysiological signs of sensorimo-
tor polyneuropathy, the vibration detection threshold did not 
significantly differ from those with normal electrophysiolog-
ical test results. None of the other QST parameters differed 
significantly between iRBD and HCs (Fig. 2, Tables 2, 3, 
and Supplementary material). The cold detection threshold 
on the foot correlated inversely with the NE supine plasma 
level in iRBD: a higher cold detection threshold was associ-
ated with lower NE plasma levels (r =  − 0.599, p = 0.014).

Longitudinal autonomic data

Longitudinal data in ten iRBD patients were analysed over 
a period of 3.64 ± 2.53 years. Missing data included heart 
rate parameters in two baseline assessments, Valsalva ratio 
in one baseline and one follow-up assessment; RSA score; 
Ewing quotient and MoCA in one baseline assessment; and 
olfaction parameters for the right in two and for the left in 
one baseline assessment. The maximum systolic BP change 
(− 24.50 ± 11.70 mmHg at baseline vs. − 42.27 ± 20.01 mmHg 
at follow-up, t =  − 2.72, p = 0.024) and maximum dias-
tolic BP change (− 12.79 ± 7.99  mmHg at baseline 
vs. − 21.60 ± 13.34 mmHg at follow-up, z =  − 2.09 p = 0.037) 
were significantly higher at follow-up than at baseline. The 

Table 1   (continued)

Cross-sectional group Longitudinal assessment iRBD

iRBD HC p value baseline follow-up p value

 Non-motor symptoms
 NMS Quest 6.82 ± 3.73** 2.19 ± 2.07  < 0.0001 7.10 ± 4.07 6.60 ± 3.13 n.s
 OH 12 yes, 5 no 1 yes, 15 no  < 0.0001 3 yes, 7 no 8 yes, 2 no* 0.015
 BDI-II 7.77 ± 8.87* 1.50 ± 2.42 0.014 7.00 ± 9.24 5.70 ± 6.99 n.s
 MoCA 27.41 ± 2.06 28.69 ± 1.25 n.s 27.44 ± 2.01 27.10 ± 2.28 n.s

n = 9
 Olfaction left 9 (6–10)°** 14 (11.5–15)° 0.004 10 (7–10)° 9 (6–10)° n.s

n = 9
 Olfaction right 6 (5–9)°** 13.5 (12–14.25)°  < 0.0001 8.5 (7.75–10.25)° 7 (6–9.75)° n.s

n = 8

Bold values represent the significant data
Beck Depression Inventory II (BDI-II), blood pressure (BP), female (f), healthy control (HC), heart rate (HR), idiopathic REM sleep behaviour 
disorder (iRBD), male (m), Montreal Cognitive Assessment (MoCA), Non-motor Symptoms Questionnaire (NMS Quest), norepinephrine (NE), 
not significant (n.s.), orthostatic hypotension (OH), RBD Questionnaire (RBD Quest), respiratory sinus arrhythmia (RSA), Unified Parkinson’s 
Disease Rating scale, part III (UPDRS III)
Significant differences between groups or baseline vs. follow-up at *p < 0.05, **p < 0.001, data presented as the mean ± SD, but as median (IQR) 
for olfaction
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heart rate in the upright position was significantly lower at fol-
low-up (70.61 ± 11.71) than at baseline (72.98 ± 10.60 mmHg, 
t =  − 2.93, p = 0.019), and the Valsalva ratio was significantly 
reduced at the follow-up than at baseline (1.46 ± 0.27 BPmax/
BPmin at baseline vs. 1.29 ± 0.11 BPmax/BPmin at follow-
up, t =  − 3.75, p = 0.007). None of the remaining parameters 
changed significantly (Table 1).

Discussion

This study demonstrates autonomic dysfunction in the 
form of somatosensory impairment and decreased supine 
NE levels in iRBD patients compared to those in HCs. Our 
findings confirm OH as a common autonomic impairment 
in iRBD patients and reveal progression of OH severity 
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n = 16, on the left hand dorsum and left foot dorsum, cold detection 

threshold (CDT), cold pain threshold (CPT), healthy controls (HCs), 
heat pain threshold (HPT), idiopathic REM sleep behaviour disorder 
(iRBD), mechanical detection threshold (MDT), quantitative sen-
sory testing (QST), thermal sensory limen (TSL), vibration detection 
threshold (VDT), warm detection threshold (WDT) *p < 0.05 iRBD 
vs. HCs, p < 0.05 Hand vs. Foot (ANOVA, Fisher’s LSD post hoc 
test), data presented as z-scores
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over time. In the present study, our focus was on car-
diovascular autonomic function, using sympathoneural 
neurotransmitter NE values and somatosensory profiles 
in QST as a non-invasive method for investigating small 
fibre impairment in iRBD. The demographic and clinical 
characteristics of the iRBD group are in line with other 
studies in terms of age, sex, and frequency of autonomic 
and non-motor symptoms in iRBD [9, 16]. Furthermore, 
we confirmed previous reports of significantly higher 
orthostatic BP drops in iRBD patients compared to HCs, 
as well as hyposmia and increased depressive symptoms 
as early signs of autonomic and non-motor impairment 
in iRBD [5, 17–19]. However, it remains unclear if these 
autonomic impairments in iRBD are more likely due to 
central or to peripheral dysfunction. Under physiological 
conditions, plasma levels of sympathetic NE double within 
five minutes of a postural change, and stabilize BP [14]. In 
this study, supine NE levels were lower in iRBD patients 
than in HCs, while the orthostatic NE response was pre-
served. Various pathologies of NOH in MSA and PD are 
discussed in the literature. For example, there is a cen-
tral NE-deficit in MSA patients compared to a peripheral 
NE-deficit in PD patients [14, 20, 21]. PD patients with 
NOH demonstrate lower NE supine blood plasma levels in 
comparison to PD patients without NOH [14]. In iRBD, a 
peripheral sympathetic dysfunction, such as cardiac sym-
pathetic denervation [9, 22], impaired gut innervation, 
decreased noradrenergic locus coeruleus innervation, 
and depletion of neuromelanin-producing cells in locus 

coeruleus, has been described, implicating a peripheral 
autonomic impairment in PD patients and underlining the 
severe autonomic dysfunction in this disease [9]. While 
in NOH, the NE response to postural change is reduced 
[14], in our study, the iRBD NE response was maintained. 
We assume that the lower supine NE blood plasma levels 
in iRBD patients compared to those in HCs might sug-
gest an early sign of NE-deficit. This hypothesis needs 
to be validated in longitudinal assessments, investigating 
possible intra- and inter-individual variability of plasma 
NE levels, as well as different NE metabolism parameters 
(e.g., dihydroxyphenylglycol). Competing medication 
(e.g., serotonin–norepinephrine reuptake inhibitors [23] 
or beta-adrenergic antagonists [24]), as well as older age 
[25] might affect norepinephrine metabolism, although 
all medications, smoking and caffeine intake were paused 
at least 12 h prior to testing. Since differing entities of 
our cohort might lead to heterogeneous results, further 
longitudinal investigations, such as using dopamine trans-
porter or cardiac imaging to discriminate between risks of 
conversion to PD vs. MSA, may also help to clarify this 
question. Notably, Knudsen and colleagues [9] recently 
observed, using multimodal imaging in iRBD, sustained 
dopaminergic innervation that coincided with impaired 
autonomic nerve function, noradrenergic dysfunction, and 
locus coeruleus denervation. In line with this, our study 
might highlight signs of impairment via NE plasma levels, 
suggesting a noradrenergic deficiency already present in 
iRBD with a sustained NE response to postural change. 

Table 2   QST data of idiopathic REM sleep behaviour disorder patients compared to healthy controls

Bold values represent the significant data
Significantly impaired cold and vibration detection thresholds on the foot in iRBD patients compared to HCs. Length-dependent loss of function 
in cold detection threshold in iRBD patients iRBD (n = 17 for all parameters except for thermal testing and PPTfoot n = 16) and HC (n = 16) on 
the left hand dorsum and left foot dorsum healthy control (HC), idiopathic REM sleep behaviour disorder (iRBD), not significant (n.s.), quantita-
tive sensory testing (QST)
Log transformed data presented as the mean ± SD, *p < 0.05 iRBD vs. HC, p < 0.05 Hand vs. Foot in iRBD, p values of Fisher’s Least significant 
difference post hoc test in ANOVA

QST parameter (log and raw data) Hand p value Foot p value

iRBD HC iRBD HC

Cold detection thresholdlog 0.44 ± 0.24º 0.30 ± 0.24 n.s 0.79 ± 0.30*º 0.48 ± 0.24 0.007
Warm detection thresholdlog 0.75 ± 0.29 0.60 ± 0.35 n.s 1.02 ± 0.15 0.94 ± 0.19 n.s
Thermal sensory limenlog 0.97 ± 0.25 0.78 ± 0.31 n.s 1.30 ± 0.18 1.20 ± 0.10 n.s
Cold pain thresholdraw 7.71 ± 5.66 6.28 ± 2.20 n.s 7.47 ± 4.95 9.71 ± 7.84 n.s
Heat pain thresholdraw 48.40 ± 1.87 47.58 ± 2.46 n.s 48.76 ± 1.44 48.54 ± 1.58 n.s
Mechanical detection thresholdlog 0.12 ± 0.51  − 0.16 ± 0.58 n.s 0.52 ± 0.46 0.31 ± 0.57 n.s
Mechanical pain thresholdlog 1.82 ± 0.58 1.74 ± 0.45 n.s 1.52 ± 0.49 1.42 ± 0.43 n.s
Mechanical pain sensitivitylog 0.03 ± 0.56 0.10 ± 0.35 n.s 0.08 ± 0.56 0.23 ± 0.29 n.s
Wind-up ratiolog 0.29 ± 0.17 0.23 ± 0.17 n.s 0.41 ± 0.21 0.32 ± 0.23 n.s
Vibration detection thresholdraw 7.11 ± 0.64 7.40 ± 0.73 n.s 5.41 ± 1.79* 6.45 ± 0.93 0.038
Pressure pain thresholdlog 2.74 ± 0.11 2.75 ± 0.06 n.s 2.77 ± 0.13 2.76 ± 0.11 n.s
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Interestingly, most of the iRBD patients did not experi-
ence any orthostatic symptoms, and the initial orthostatic 
BP drop was often compensated during prolonged stand-
ing, which emphasizes the occurrence of subtle autonomic 
changes prior to clinical manifestation. This also suggests 
a sustained sympathetic NE response compensating for 
an initial BP drop. Thus, the significant BP drop in iRBD 
compared to that in HCs must be caused by other mecha-
nisms (e.g., impaired cardiovagal response). It has been 
shown that there are neurocirculatory failures, such as an 
impaired beat-to-beat response to Valsalva manoeuvre 
in PD patients with OH, MSA or pure autonomic failure 
[26]. This impairment, over time, was also demonstrated 
in the present study by means of a significant reduction 
in the Valsalva ratio and orthostatic heart rate variability 
response in the longitudinal assessment.

Likewise, as previously described, the QST results in 
this study confirm the dysfunction of thinly myelinated 
Aδ-fibres. Unmyelinated C-fibres appear to function physi-
ologically appropriately in iRBD. Compared to a previous 
study using QST [16], we were able to confirm impaired 
cold detection on the hand. Additionally, our study showed 
a length-dependent loss of function for myelinated fibres 
(Aβ- and Aδ-fibres) with preserved C-fibre performance, 
as well as significantly impaired cold detection and vibra-
tion sense on the foot in iRBD patients compared to those 
in HCs. Alpha-synuclein aggregates were recently demon-
strated in the skin of iRBD patients [10]. In PD patients, 
these were previously shown in various skin sections (i.e., 
epidermis [27] and autonomic nerves [28]). Signs of distal 
sensory loss and small fibre neuropathy [28–30] were also 
observed. Others have highlighted the presence of sensory 
impairment in early-stage PD and have reported it to be not 
a result of therapy [30]. Relating these observations to the 
present findings in iRBD, our study confirms peripheral 
somatosensory impairment in this prodromal stage, using 
QST as a noninvasive technique. Thus, QST might serve as 
an easy, noninvasive test in diagnosing early loss of func-
tion of myelinated fibres in iRBD, confirming the hypoth-
esis of peripheral, rather than central, dysfunction in iRBD. 
Additionally, when combined with cardiac imaging, QST 
might serve as a potentially useful biomarker of conversion 
to α-SYN, and aid in differentiating among different entities 
with central vs. peripheral impairment.

Limitations of this study include the limited sample size, 
particularly for the longitudinal data; the lack of additional 
visual modalities; the lack of central denervation testing; the 
lack of different NE metabolism parameters (e.g., dihydroxy-
phenylglycol); the possible confounders in NE metabolism 
(e.g., age, comorbidities, medications); and the possible 
intra- and inter-individual variability of plasma NE levels.

As there are recent theories on different subtypes in PD 
[31], iRBD is proposed to be part of a severely affected 

phenotype [32]. The disease is associated with faster pro-
gression of non-motor and motor symptoms [32] and early 
sympathetic cardiac denervation [9]. iRBD in PD might be 
associated with a higher disease burden, higher risk of mor-
tality, and poor prognosis [33]. Zitser et al. described an 
association with severe autonomic dysfunction and a greater 
risk of phenoconversion and severe progression [34].

Overall, this study confirms early peripheral autonomic 
dysfunction in the form of somatosensory impairment and 
decreased NE plasma levels, which is in line with the periph-
eral-to-central α-SYN spreading hypothesis. The findings 
support the concept of a peripheral origin and suggest auto-
nomic testing as a feasible method to find predictive mark-
ers of conversion to α-SYN and future-directed potential 
protective therapies. This is important in light of a severe 
phenotype and poor prognosis. Further longitudinal investi-
gations of QST, autonomic assessment, and NE levels may 
clarify the progression and severity of autonomic dysfunc-
tion in iRBD.
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