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p38 mitogen-activated protein kinase (MAPK) signal transduction pathways are essential 
regulators of the immune response. Particularly, p38γ and p38δ regulate many immune 
cell functions such as cytokine production, migration, or T cell activation; however, their 
involvement in immune cell development is largely unknown. Here, we analysed the 
role of p38 MAPK isoforms p38γ and p38δ in T cell differentiation in the thymus and in 
lymph nodes, using mice deficient in p38γ, p38δ, or in both. We found that the T cell 
differentiation program in the thymus was affected at different stages in p38γ-, p38δ-, 
and p38γ/δ-deficient mice, and also peripheral T cell homaeostasis was compromised. 
Particularly, p38δ deletion affects different stages of early CD4−CD8− double-negative 
thymocyte development, whereas lack of p38γ favours thymocyte positive selection from 
CD4+CD8+ double-positive to CD4+ or CD8+ single-positive cells. Our results identify 
unreported functions for p38γ and p38δ in T cells.
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inTrODUcTiOn

In the thymus, the development of T cell from CD4−CD8− double-negative (DN) to CD4+CD8+ 
double-positive (DP) and then into CD8+ or CD4+ single-positive (SP) cells (a process known as 
positive selection) is regulated by multiple signalling pathways that induce cell-specific gene expres-
sion (1, 2). Failure of the appropriate signals occurring during T cell development can lead to immune 
disorders such as severe T cell immunodeficiency or autoimmune diseases. The mitogen-activated 
protein kinase (MAPK) signalling pathways, including extracellular signal-related kinase (ERK), 
c-Jun N-terminal kinase (JNK), and p38 MAPK, have been implicated in thymocyte differentiation 
(3–5). Of these three major MAPK pathways, the ERK pathway is known to be involved in T cell 
positive selection (6–8), since ERK1-deficient mice exhibit defects in T cell maturation (9). Results 
obtained with JNK1- and JNK2-deficient mice indicate that these kinases are not needed for the 
initial stages of T cell development (5, 10), although they are implicated in different aspects of T cell-
mediated immune response, for example, in the subsequent differentiation of the activated CD4 
T cells into Th1 or Th2 phenotype (3–5).

On the other hand, the p38 MAPK pathway has been suggested to participate in early thymocyte 
development. The mammalian p38 MAPK family is composed of four members, such as p38α, p38β, 
p38γ, and p38δ, encoded by distinct genes and all activated by phosphorylation mediated primarily 
by the MAPK kinases (MKK)3 and MKK6 (11, 12). p38 MAPK can be divided into two subsets, 
such as p38α/p38β and p38γ/p38δ, based on substrate specificities, protein similarity, expression 
patterns, and sensitivity to chemical inhibitors (11). Studies using a range of p38α inhibitors in vitro, 
dominant-negative or constitutively active transgenes, or the constitutive deletion of its activators, 
MKK6 and MKK3 to suppress p38 MAPK, have suggested a role for p38α in early T cell development 
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and also in T cell function (5, 13–18). Thus, it has been shown that 
in mice that express dominant-negative forms of both MKK3 and 
MKK6 specifically in T cells, the positive selection of thymocytes 
is impaired (15). However, since MKK3 and MKK6 activate all 
p38 MAPK isoforms (12), some of the findings from experi-
ments in which MKK3 and/or MKK6 have been overexpressed 
or constitutively deleted may be due to an effect on any of the four 
p38 MAPKs, and not necessarily on p38α specifically. Knockout 
mice for each p38 MAPK isoform have been generated and could 
be an adequate tool to elucidate the specific role of individual 
p38 MAPKs on T  cell development. Gene targetting to delete 
p38α in the whole mouse yields an embryonic lethal phenotype 
(19–21); however, one study using p38α−/−Rag−/− chimaeras 
showed normal T cell development in these mice, with no altera-
tions in mature T cell proliferation (22). Moreover, lymphocyte 
development or cytokine production in response to LPS is not 
affected in p38β-null mice (23). A recent study using knockout 
mice in which p38α has been specifically deleted in T cells (24, 
25) shows that mice with p38α-deficient T cells express elevated 
amounts of p38β, and that mice with T  cells simultaneously 
lacking p38α and p38β displayed a decreased size and cellularity 
of the thymus, lymph nodes (LNs), and spleen compared with 
those of wild-type (WT) animals (24). However, p38α and p38β 
deletion did not prevented the thymic development of CD4+ and 
CD8+ T cells or their homing and maintenance in the LNs and 
spleen (24) suggesting that p38α and p38β are dispensable for the 
development of thymocytes and that other p38 MAPK isoforms 
might be regulators of this process.

Using mice deficient in p38γ, p38δ, or both, it has been shown 
that these kinases are crucial for the inflammation and the innate 
immune response, by controlling immune cell response (11, 26–
29). Particularly, they have recently been shown to play important 
roles in regulating: cytokine production by macrophages and 
dendritic cells; T cell activation and neutrophil migration; and 
also in modulating tumourigenesis associated with inflammation 
(11, 28, 30, 31). Despite the implication of the p38 MAPKs in 
the immune response, their role in the normal physiology of 
haematopoietic cells is largely unknown. No anomalies have 
thus far been reported in T  cell development in p38γ-, p38δ-, 
or p38γ/δ-deficient mice. There are nonetheless indications 
that p38γ and p38δ are implicated in the development of some 
immune cells. Measurement of mRNA levels in inflammatory 
cell lineages showed that p38α and p38δ are the dominant p38 
isoforms in monocyte/macrophages, neutrophils, CD4+ T cells, 
and endothelial cells, whereas p38β and p38γ mRNAs are poorly 
expressed (32). A possible role for p38γ in haematopoiesis has 
been proposed based on the mRNA expression pattern for each 
p38 isoform during differentiation of primary human erythroid 
progenitor. p38α and p38γ are expressed in early and late stages, 
whereas p38δ mRNA is expressed only at terminal stages of 
erythroid differentiation (33). Nonetheless, the role of p38γ and 
p38δ in the development and function of other haematopoietic 
cells remains unclear.

In this study, we investigate the role of p38γ and p38δ in T lym-
phocyte development. We performed a comparative analysis of 
both, the T cell differentiation in the thymus and the distribution 
of T cell populations in the LNs, in WT mice, and in mice lacking 

p38γ, p38δ, or both and in mice expressing kinase-inactive p38γ. 
We found that the combined action of p38γ and p38δ is necessary 
for thymocyte development and peripheral T cell homeostasis.

MaTerials anD MeThODs

Mice, antibodies, and reagents
Mice deficient in p38γ (p38γ−/−), p38δ (p38δ−/−), and p38γ/δ 
(p38γ/δ−/−) have been described (34). The generation of mice 
expressing inactive p38γ (p38γ171A/171A) was described in Ref. (35). 
All mouse strains were backcrossed onto the C57BL/6 strain for at 
least nine generations. Mice were housed in pathogen-free condi-
tions. Anti-total p38α and anti-α-tubulin antibodies were from 
Santa Cruz, -p38β from Zymed, and -p38γ and -p38δ antibodies 
were produced and purified as described (36, 37). This study was 
carried out in accordance with the recommendations of national 
and EU guidelines, with the approval of the Centro Nacional 
de Biotecnología Animal Ethics Committee (Reference: CAM 
PROEX 316/15).

Flow cytometry analysis
Thymus and LN cell suspensions were prepared; erythrocytes 
were lysed, and cells were counted. Cell samples were stained 
with combinations of fluorescently labelled antibodies to the cell 
surface markers CD3 (145-2C11), CD4 (L3T4, H129.19), CD8 
(Ly-2, 53-6.7), CD44 (pgp1, IM7), CD25 (IL-2R a-chain), CD27 
(LG.7F9), CD90.2 (Thy1.2, GL1) (from BD Biosciences and 
Biolegend) as indicated, and analysed in a FACScalibur cytometer 
(BD Biosciences). The profiles obtained were analysed using the 
FlowJo software (BD Biosciences).

immunoblotting
Proteins were resolved by SDS-PAGE and transferred to nitrocel-
lulose membranes, which were blocked for 30 min in 50 mM Tris/
HCl (pH 7.5), 0.15 M NaCl, 0.05% (v/v) Tween (TBST buffer) 
containing 10% (w/v) non-fat dry milk, then incubated in TBST 
buffer with 10% (w/v) non-fat dry milk and 0.5–1 mg/ml anti-
body (2 h at room temperature or overnight, 4°C). Horseradish 
peroxidase-conjugated secondary antibodies and the enhanced 
chemiluminescence reagent (Amersham Pharmacia Biotech), 
using the Odyssey infrared imaging system, were used for the 
detection of proteins.

statistical analysis
Statistical analysis of data was performed applying the unpaired 
Student’s t-test, using the Prism software v. 4.0b (GraphPad).

resUlTs

Thymocyte Development in p38γ−/−, 
p38δ−/−, and p38γ/δ−/− Mice
First, we examined the mRNA and protein expression of the four 
p38 MAPK isoforms in isolated thymocytes and observed that 
all p38 MAPKs were expressed in WT T cells, whereas p38γ was 
not expressed in p38γ−/− and p38γ/δ−/− T  cells, and p38δ was 
not expressed in p38δ−/− and p38γ/δ−/− T cells (Figures 1A,B). 
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FigUre 1 | p38γ and p38δ deficiency decreases thymus cell number. (a) Lysates from WT, p38γ−/−, p38δ−/−, and p38γ/δ−/− thymocytes were immunoblotted with 
anti-total p38α, -p38β, -p38γ, and -p38δ antibodies, and with anti-α-tubulin. (B) Expression of p38 MAPK mRNA analysed by qPCR method from WT, p38γ−/−, 
p38δ−/−, and p38γ/δ−/− mouse thymus. Data show mean ± SD of triplicates from one representative experiment. Data were normalised to GAPDH mRNA. (c) Total 
cell numbers from 4-week-old (1-month) WT (n = 17), p38γ−/− (n = 15), p38δ−/− (n = 15), and p38γ/δ−/− (n = 16) mice, determined by counting isolated cell 
suspensions. *p ≤ 0.05; **p ≤ 0.001.
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Analysis of the total number of thymocyte showed decreased 
thymic cellularity in p38γ−/−, p38δ−/−, and p38γ/δ−/− mice com-
pared with WT mice (Figure  1C). On average, the reduction 
of total thymocyte number ranged from 26% in p38γ−/− mice 
to 40% in p38δ−/− mice. Since a role has been proposed for the 
p38 MAPK pathway in the regulation of T cell development, we 
compared major thymus cell populations in p38γ−/−, p38δ−/−, 
p38γ/δ−/−, and WT mice by flow cytometry. Early T  cell pro-
genitors lack both CD4 and CD8 and are called DN cells. We 
examined the presence of the different DN T cell subpopulations 
by analysing CD25 and/or CD44 expression. Early precursor is 
CD25−CD44+ (DN1), CD25 is then upregulated CD25+CD44+ 
(DN2), CD44 downregulated CD25+CD44− (DN3) and, in the 
DN4 stage CD25 is downregulated, CD25−CD44− (Figure  2). 
When we analysed DN population frequency in early thymocyte 
development (Figure 3A), we observed that the lack of p38γ did 
not affect the frequency of any DN subpopulation compared 
with WT mice. However, we found a significant increase in the 
percentage of CD25−CD44+ (DN1), CD25+CD44+ (DN2), and 
CD25−CD44− (DN4) subpopulations, together with a reduction 
in the CD25+CD44− (DN3) subpopulation in p38δ−/− mice. 
In p38γ/δ−/− mice, the frequency of DN1 and DN4, but not of 
DN2, was higher than in WT mice, whereas DN3 subpopula-
tion was decreased (Figure 3B). To exclude the possibility that 
the observed increase of DN4 frequency in the knockout mice 

could be due to an increase in non-T  cells, we performed an 
internal control by labelling the cells with anti-Thy1.2. We found 
that in both WT and p38γ/δ−/− thymus the percentage of DN4 
population gated on CD3−CD4−CD8− was similar to that gated on  
Thy1.2+CD3−CD4−CD8−. Thus, in these control experiments, the 
frequency of CD3−CD4−CD8− DN4 population was 20.1 ±  0.9 
and the frequency of Thy1.2+CD3−CD4−CD8− DN4 population 
was 19.5  ±  1.3 in WT mice. Whereas in p38γ/δ−/− mice, the 
percentage of CD3−CD4−CD8− DN4 cells was 22.7 ± 1.6 and the 
percentage of Thy1.2+CD3−CD4−CD8− DN4 cells was 21.5 ± 1.02. 
This confirms that gated CD3−CD4−CD8− thymocytes are T cells. 
When we analysed total cell numbers in the DN population, we 
found no effect of p38γ and/or p38δ-deletion in DN1, DN2, and 
DN4 populations, whereas the DN3 subpopulation in p38δ−/− 
and p38γ/δ−/− mice was significantly reduced compared with WT 
and p38γ−/− T cells (Figure 3C). Comparison of DN2/DN1, DN3/
DN2, and DN4/DN3 ratio in p38γ−/−, p38δ−/−, and p38γ/δ−/− mice 
versus WT mice (Figure 3D) suggested that p38δ positively con-
trol the transition from DN2 to DN3 and negatively control the 
transition from DN3 to DN4, whereas p38γ and p38δ together 
positively regulate DN1 to DN2 transition.

Both CD4 and CD8 are upregulated in a next stage of T cell 
development to produce DP cells. Either CD4 or CD8 is then 
downregulated, yielding CD4+ or CD8+ SP thymocytes that move 
from the thymus to the periphery (Figure 2). We did not found 
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FigUre 2 | Schematic representation showing the different cell surface markers expressed in key stages of T cell development in mouse thymus.
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significant differences in the percentage of DN, DP, and mature 
CD4+ and CD8+ SP cells between WT and p38δ−/− mice. In 
p38γ/δ−/− mice, the percentage of CD4+ was increased compared 
with WT. We also observed a moderate increase in DN and a 
decrease in DP thymocyte frequency in p38γ−/− mice, which 
correlated with a proportional increase in CD4+ and CD8+ SP 
populations (Figures  4A,B). We found that absolute numbers 
of individual thymic subpopulations were slightly decreased in 
p38γ-, p38δ-, and p38γ/δ-deficient mice compared with WT mice 
(Figures 4C,D). When we analysed absolute numbers of DN, DP, 
CD4+, and CD8+ SP thymocytes in p38γ-, p38δ-, and p38γ/δ-
deficient mice compared with WT mice, we observed a reduction 
from 20% (in the case of p38γ/δ−/− CD4+ SP) to 35% (in the case 
of p38γ/δ−/− DN) compared with WT mice (Figures  4C,D), 
which is consistent with the decrease in total thymocyte number 
(Figure 1C). All these results suggest that both p38δ and p38γ are 
involved in early thymocyte development by regulating different 
stages of differentiation in a positive or in a negative manner. 
Thus, p38δ and p38γ would positively control the transition from 
DN1 to DN2; p38δ would promote DN2 to DN3 transition and 
impair DN3 to DN4 transition, whereas p38γ would decrease DN 
to DP transition and increase positive selection (Figure 5).

Since we have previously described that p38γ can function 
independently of its kinase activity regulating the composition of 
protein complexes (35), we have checked the effect of the catalyti-
cally inactive mutant p38γ (D171A) in the transition from DN to 
DP and also in T cell-positive selection. p38γ171A/171A mice geno-
type was confirmed by PCR (Figure 6A). Western blot analysis 
confirmed that the thymus of p38γ171A/171A mouse expresses p38γ, 
and that the p38δ and p38α protein levels were similar to those 
in WT thymus (Figure  6B). Comparison of thymocyte total 
number from p38γ171A/171A and WT mice showed no significant 
differences (Figure 6C). In addition, the percentage of DN, DP, 
and mature CD4+ and CD8+ SP cells in the thymus of p38γ171A/171A 
were similar to WT mice, and contrary to what observed in 
p38γ−/− mice (Figure 6D). Absolute DN, DP, CD4+, and CD8+ SP 
thymocyte numbers were similar between p38γ171A/171A and WT 
mice (Figure 6E). All these results indicate that p38γ plays a role 
in the regulation of DN to DP transition and of T cell-positive 
selection independently of its canonical kinase activity.

p38γ and p38δ Modulate αβ T cell 
Development
Double-negative T  cells can develop to either γδ or αβ TCR-
expressing cells. Successful development of T  cell is depend-
ent on signals activated by pre-TCR and TCR complex (38). 
Rearrangements at the Tcrd, Tcrg, and Tcrb loci are initiated at 
the DN2 stage, and γδ and αβ divergence is complete upon arrival 
at the end of DN3 stage (39). DN3 cells include pre- and post-β-
selected thymocytes. We have analysed the status of β-selection 
of DN3 thymocytes in p38γ-, p38δ-, and p38γ/δ-deficient mice 
compared to WT mice checking CD27 expression by flow 
cytometry. The increase of CD27 expression in the DN3 stage is 
concomitant to cytoplasmic TCR-β expression and therefore of 
cells that are initiating β-selection (40). We did not observe sig-
nificant differences in the expression of CD27 between genotypes 
(Figure 7A), indicating that p38γ and p38δ are not implicated in 
the process of β-selection.

To determine whether or not p38γ/p38δ contributed to 
commitment to the γδ and the αβ lineage, we examined TCRγδ 
and TCRαβ expression in thymocytes. TCRγδ expression in 
CD3+ DN, CD4−, and CD8− thymocytes was analysed by flow 
cytometry using anti-γδ TCR antibodies. We did not observe 
significant differences in the percentage of TCRγδ+CD3+ cells 
between genotypes (Figure 7B).

For cells that passed along the αβ TCR pathway, DN3-stage 
cells first express pre-TCRα, which is encoded by a non-
rearranging locus. The assembly of pre-TCR after rearrangement 
of the TCR β-chain triggers the transition of early DN T  cells 
into DP. Following TCR α-chain rearrangement and the expres-
sion of the dimer TCRαβ, the binding of TCR with self-major 
histocompatibility complex (MHC)–peptide complex promotes 
DP T cell differentiation of into SP cells (1, 41). TCRαβ expres-
sion in DP, CD4+, and CD8+ thymocytes were analysed by flow 
cytometry using anti-αβ TCR antibodies (Figure 7C). We did not 
found significant differences in the percentage of TCRαβ+CD4+ 
cells between genotypes. However, lack of p38δ caused a slight 
increase in TCRαβ+CD8 percentage, whereas the percentage of 
TCRαβ+DP was lower in p38δ−/− and p38γ/δ−/− mice compared 
with WT and p38γ−/− mice (Figure 7D). Comparison of TCRαβ 
mean fluorescence intensity levels in CD8+ cells showed not 
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FigUre 3 | Effect of p38γ and/or p38δ deletion in the development of double-negative (DN) T cell. Thymocytes from 1-month mice were stained with anti-CD3, 
-CD4, -CD8, -CD44, and -CD25 antibodies and positive cells were analysed by flow cytometry. (a) Representative flow cytometry profiles are shown. (B,c) 
CD4−CD8− thymocytes from 1-month mice were analysed for CD44 and CD25 expression after simultaneous staining with anti-CD44 and -CD25 antibodies. The 
percentages (B) and total numbers (c) of DN1, DN2, DN3, and DN4 cells were determined. Each dot represents a single mouse. *p ≤ 0.05; **p ≤ 0.001. (D) Ratio 
of DN2/DN1, DN3/DN2, and DN4/DN3 cell number. *p ≤ 0.05; **p ≤ 0.001; ***p ≤ 0.0001.
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FigUre 4 | p38γ and p38δ modulate lymphoid cell development in thymus. (a) Thymocytes from 1-month mice were stained with anti-CD3, -CD4, and -CD8 
antibodies and the percentage of positive cells was analysed by flow cytometry. Representative flow cytometry profiles are shown. (B,c) Thymocytes from 1-month 
mice were stained simultaneously with anti-CD4 and -CD8 antibodies, and the percentages (B) and total number (c) of double-negative (DN), CD4+, CD8+, and 
double-positive (DP) cells were analysed by flow cytometry. Each dot represents a single mouse. *p ≤ 0.05; **p ≤ 0.001. (D) Table showing the average cell number 
and the SD of thymocyte subpopulations from mice represented in panel (c).
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differences between genotypes (Figure  7E), indicating that the 
lack of p38γ/p38δ is affecting CD8+ expansion rather than TCR 
expression. These results suggest that to some extent TCRαβ 
expression in CD8-positive cells is dependent on p38δ signalling.

T cells in the Peripheral lymphoid Organs 
of p38γ- and p38δ-Deficient Mice
We then examined whether or not p38γ and p38δ deficiency 
affected T  cell population in secondary lymphoid organs. We 
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FigUre 5 | Schematic representation indicating the different stages of T cell development partially controlled by p38γ and/or p38δ.
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analysed CD4+ and CD8+ T  cell populations in LNs of WT, 
p38γ, and p38δ double-deficient mice (p38γ/δ−/−), and also of 
the single knockout mice p38γ−/− and p38δ−/− to investigate the 
effect of each p38 MAPK deletion. Western blot analyses showed 
that both p38γ and p38δ were expressed in the LNs from WT 
mice (Figure  8A). The sizes of p38γ/δ−/− LNs were similar to 
those from WT mice (Figure  8B), and comparison of LN cell 
number from p38γ/δ−/−, p38γ−/−, p38δ−/−, and WT mice showed 
no significant difference (Figure  8C). We then analysed T  cell 
populations by flow cytometry and found that the number of 
CD3+, and of CD4+ and CD8+ T cells was similar in all genotypes 
(Figure 8F); however, the percentages of CD3+, CD4+, and CD8+ 
T cells in p38γ−/− LN were significantly smaller than in the rest of 
genotypes (Figures 8D,E). These results indicate that p38γ might 
play a role in DP to SP thymocyte transition and peripheral T cell 
homeostasis, both depending on TCR signalling. The analysis of 
other LN’s immune cell populations showed not major differences 
between genotypes (Table 1).

DiscUssiOn

Here, we used mice lacking p38γ and/or p38δ, and mice express-
ing a kinase-inactive p38γ mutant to analyse the effect of these 
p38 isoforms on the development of T  lymphocytes. Studies 
using p38α/p38β inhibitors and the expression of dominant-
negative or active forms of p38α or MKK3 and MKK6 suggested 
that p38α is involved in T  cell development by maintaining 
normal CD4− CD8− DN thymocyte numbers and by inhibiting 
formation of DP cells [reviewed in Ref. (18)]. However, neither 
the deletion of p38α or p38β alone nor the deletion of p38α and 
p38β in combination leads to thymocyte development defects 
(22, 23, 25). These observations do not rule out a potential role 
for p38α and p38β signals in T cell development, as some p38 
isoforms could compensate for lack of others during this process. 
Here, we show that both single and the combined deletion of 
p38γ and p38δ led to specific thymocyte development defects. 
Total thymocyte cellularity and the absolute numbers of DN, DP, 
and SP CD4+ and CD8+ thymocytes were reduced in p38γ−/−, 
p38δ−/−, and p38γ/δ−/− mice compared with WT mice; this 

reduction was more evident in p38γ/δ−/− mice than in the other 
genotypes. In early thymocyte development, there is a reduction 
in the percentage of the CD25+CD44− (DN3) subpopulation 
within the DN population, together with an accumulation of the 
CD25−CD44+ (DN1), CD25+CD44+ (DN2), and CD25−CD44− 
(DN4) subpopulations in p38δ−/− mice. These results suggest that 
p38δ regulates differentiation and expansion of DN3 thymocytes, 
and that has either opposite or different roles in the transition 
from DN2 to DN3 and from DN3 to DN4. In the regulation of 
DN2–DN3 transition, it is possible that p38δ controls signalling 
pathways, such the IL7 receptor (IL7R) or the Notch pathway, 
that are critical for the proliferative expansion of early pro-T cells 
within the thymus (2). Thus, p38δ could be mediating either the 
secretion of Notch ligands and/or of IL7 by stromal cells in the 
thymus or the signalling downstream of Notch and/or IL7R in 
pro-T  cells, or both. In the DN3–DN4 transition, p38δ might 
negatively modulate proliferation or survival signalling since 
β-selection of DN3 thymocytes in p38δ-deficient mice is not 
affected compared with WT, and p38 MAPKs are downstream 
of the TCR receptor (42). However, further studies are required 
to determine the exact role p38δ in early thymocyte differentia-
tion. p38δ−/− and p38γ/pδ−/− mouse phenotypes resembled those 
observed using the dominant-negative MKK3 and MKK6 [lck-
MKK3(A)/MKK6b(A)] transgenic mice (15). These mice exhibit 
impaired DN thymocyte development and T-cell proliferation. 
Accordingly, MKK6(Glu) transgenic mice, which express a 
constitutively active form of MKK6, exhibit an arrest in T cell 
development at the DN3 stage (13). Because all p38 MAPKs 
are specifically activated by MKK3 and MKK6 (12), but neither 
p38α nor p38β deletion in mice results in thymocyte develop-
ment defects (22, 23, 25, 43), our observations indicate that p38γ 
and p38δ signalling might account for the effects observed in 
T cell development using transgenic MKK3 and MKK6 mice. We 
show that p38γ and p38δ signalling control at least partially the 
correct development and maintenance of the different thymocyte 
subsets.

Also, our data suggest that these p38 MAPKs have a role in 
transmitting signals from the pre-TCR during DN to DP transi-
tion and αβ TCR-mediated negative selection signals during DP 
to SP transition. In late thymocyte development, signals mediated 
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FigUre 6 | Effect of kinase-inactive p38γ (D171A) in late T cell development. (a) Genomic DNA purified from tail biopsy sample was used as a template for PCR as 
in Ref. (35). (B) Lysates from WT and p38γ171A/171A thymocytes were immunoblotted with anti-total p38α, -p38γ, and -p38δ antibodies. (c) Total cell numbers from 
4-week-old (1-month) WT and p38γ171A/171A mice, determined by counting isolated cell suspensions. Thymocytes from 1-month WT and p38γ171A/171A mice were 
stained simultaneously with anti-CD4 and -CD8 antibodies, and the percentages (D) and total number (e) of double-negative (DN), CD4+, CD8+, and double-
positive (DP) cells were analysed by flow cytometry as in Figure 3. p38γ−/− mice are included in panel (D) as control. Each dot represents a single mouse. *p ≤ 0.05; 
**p ≤ 0.001; ***p ≤ 0.0001.
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FigUre 7 | Effect of p38γ and/or p38δ deletion in the generation of γδTCR- and αβTCR-expressing T cells. Thymocytes from 1-month mice were stained with 
anti-CD3, -CD4, -CD8, -CD27, and -TCRγδ or -TCRαβ antibodies and cells were analysed by flow cytometry. (a) Analysis of CD27 expression in DN3 thymocytes. 
Data are representative of five different staining. (B) The percentages of CD3+, CD4−, CD8−, and -TCRγδ+ cells were determined. (c) Representative flow cytometry 
profiles are shown. Numbers indicate the percentage of cells falling into the respective regions. (D) The percentages of the different T cell populations were 
determined. Each dot represents a single mouse. *p ≤ 0.05; **p ≤ 0.001. (e) Mean fluorescence intensity (MFI) levels in αβTCR CD8+ cells. Data show mean ± SD 
from one representative experiment with five mice.
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by the pre-TCR complex induce CD4−CD8− (DN) thymocyte dif-
ferentiation into CD4+CD8+ (DP). After TCR α-chain rearrange-
ment and TCRαβ expression, DP thymocyte go through both 
positive and negative selection after the interaction of the TCR 

with the corresponding MHC, which leads to the downregulation 
of either CD8 or CD4, and to the differentiation of DP thymocytes 
into CD4+ or CD4+ SP cells (1). The lack of p38γ causes a moder-
ate increase in DN and a decrease in DP thymocyte frequency, 
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TaBle 1 | p38γ and p38δ are not required for lymphoid and myeloid cells development in lymph node (LN).

ln

Wild type p38γ−/− p38δ−/− p38γ/δ−/−

B220+ 30.79 ± 4.04 (n = 18) 32.05 ± 9.2 (n = 14; p = 0.6) 29.31 ± 8.53 (n = 18; p = 0.51) 29.01 ± 5.99 (n = 20; p = 0.3)
CD11b+ 4.6 ± 2.3 (n = 17) 4.86 ± 2.75 (n = 13; p = 0.77) 3.17 ± 1.2 (n = 18; p = 0.03) 3.58 ± 1.22 (n = 19; p = 0.1)
CD11b+F4/80+ 1.59 ± 1.42 (n = 17) 1.61 ± 1.2 (n = 13; p = 0.96) 0.97 ± 0.46 (n = 18; p = 0.09) 1.00 ± 0.47 (n = 19; p = 0.1)
CD11b+Gr1+ 1.12 ± 0.6 (n = 17) 1.58 ± 1.23 (n = 13; p = 0.18) 0.84 ± 0.37 (n = 18; p = 0.1) 1.61 ± 1.4 (n = 19; p = 0.18)
NK+ 0.66 ± 0.28 (n = 18) 0.62 ± 0.3 (n = 14; p = 0.71) 0.52 ± 0.17 (n = 18; p = 0.08) 0.97 ± 0.82 (n = 19; p = 0.13)
NKT+ 0.4 ± 0.26 (n = 18) 0.2 ± 0.11 (n = 11; p = 0.03) 0.26 ± 1.12 (n = 18; p = 0.06) 0.56 ± 0.39 (n = 16; p = 0.15)

LN cells from WT, p38γ−/−, p38δ−/−, and p38γ/δ−/− mice were stained with anti-CD3, B220, -CD11b, -Gr1, -F4/80, and NK1.1 and the percentage of the indicated populations was 
examined by flow cytometry.

FigUre 8 | Characterisation of lymph nodes (LNs) in p38γ/δ-deficient mice. (a) LNs lysates from WT mice were immunoblotted with anti-total p38α, -p38β, -p38γ, 
and -p38δ antibodies. Results from two independent samples are shown. (B) Representative popliteal (top) and inguinal (bottom) LN from adult WT and p38γ/δ−/− 
mice. Bar, 1 cm. (c) Total cell number in draining LNs of 4-week-old (1-month) of the indicated genotypes. Each dot represents a single mouse. **p ≤ 0.001. (D–F) 
LN cells from 1-month WT, p38γ−/−, p38δ−/−, and p38γ/δ−/− mice were stained with anti-CD3, -CD4, and -CD8, and the percentage of the indicated populations was 
examined. (D) Representative flow cytometry profiles and dot plots. T cells were gated as CD3+ cells. (e,F) Graphs showing total number (F) and percentages (e) of 
LN T cell populations. Each dot represents a single mouse. *p ≤ 0.05; **p ≤ 0.001.
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suggesting that p38γ modulate cell survival probably by modi-
fying TCR signal strength and affecting the threshold between 
positive and negative selection. Also, there is an increase in CD4+ 
and in CD8+ populations in the thymus of p38γ−/− mice, indicat-
ing a role of this kinase in cell survival. Interestingly, the effect of 
p38γ in late thymocyte development is not mediated by its kinase 
activity since the expression of inactive mutant p38γ (D171A) 
reverts the effect observed in the p38γ−/− mice. p38γ is the only 
MAPK that has a C-terminal sequence that docks directly to PDZ 
domains of different proteins (11, 34, 35). This allows p38γ to 
regulate the composition of protein complexes independently 
of its kinase activity in different cellular compartments (11, 34, 
35). For example, p38γ binds to the scaffold protein human discs 
large (hDlg, also known as Dlg1 and dlgh1) modulating the 
integrity and composition of hDlg complexes in the nucleus and 
in the cytoskeleton (11, 34, 35). In T cells, hDlg is implicated in 

TCR-mediated actin polymerisation, and it is essential for the 
preservation and regulation of cell polarity, which is important 
for T-cell development (44). Whether or not p38γ modulates 
hDlg complexes, TCR affinity and T  cell proliferation in late 
thymocyte development are being investigated.

Analysis of secondary lymphoid organs showed that lack of 
p38γ decreased the frequency of CD4+ and CD8+ T cells in LNs 
and supports the role for p38γ in mature T cell differentiation. 
This reduction could be due to increased apoptosis or to a defect 
in cell proliferation. We have previously shown in in vitro T cell 
assays that LN cells from p38γ/δ−/− mice showed reduced prolif-
eration, and interferon γ and IL-17 production, compared with 
WT mice, in response to anti-CD3 (30).

An important observation in this study is that in some stages 
of thymocyte development the combined deletion of p38γ and 
p38δ do not causes the same effect that the individual deletion of 
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