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Abstract 

Background:  The development of computer-assisted technologies to diagnose anterior cruciate ligament (ACL) 
injury by analyzing knee magnetic resonance images (MRI) would be beneficial, and convolutional neural network 
(CNN)-based deep learning approaches may offer a solution. This study aimed to evaluate the accuracy of a CNN sys-
tem in diagnosing ACL ruptures by a single slice from a knee MRI and to compare the results with that of experienced 
human readers.

Methods:  One hundred sagittal MR images from patients with and without ACL injuries, confirmed by arthroscopy, 
were cropped and used for the CNN training. The final decision by the CNN for intact or torn ACL was based on the 
probability of ACL tear on a single MRI slice. Twelve board-certified physicians reviewed the same images used by 
CNN.

Results:  The sensitivity, specificity, accuracy, positive predictive value and negative predictive value of the CNN clas-
sification was 91.0%, 86.0%, 88.5%, 87.0%, and 91.0%, respectively. The overall values of the physicians’ readings were 
similar, but the specificity was lower than the CNN classification for some of the physicians, thus resulting in lower 
accuracy for the human readers.

Conclusions:  The trained CNN automatically detected the ACL tears with acceptable accuracy comparable to that of 
human readers.
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Introduction
An anterior cruciate ligament (ACL) injury is one of the 
most common sports injuries [1, 2]. As with any other 
injuries, the diagnosis is based on the history and mech-
anism of the injury occurrence, followed by a physical 
examination [3]. A combination of several specific tests, 
such as the anterior drawer test, the Lachman test, and 

the pivot shift test, often provide sufficient information 
for the diagnosis [3]. Subsequent imaging tests are com-
monly performed for a definitive diagnosis, and magnetic 
resonance imaging (MRI) is the most reliable and least 
invasive modality [4]. Several studies report high accu-
racy in using MRI to diagnose cruciate ligament injuries 
and associated intra-articular pathologies [5, 6]. How-
ever, MRI interpretation in the knee joint is susceptible 
to variability among readers depending on the experience 
level, even when performed by a musculoskeletal radiolo-
gist or a sports orthopaedic surgeon. It has been reported 
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that overall accuracy and specificity could improve with 
each year of additional training, thus suggesting that 
inexperienced physicians are at higher risk of misdiag-
nosis [7]. An accurate diagnosis of a torn ACL may be 
difficult for non-musculoskeletal radiologists, general 
orthopedic surgeons, or clinicians not specialized in the 
knee surgery field [8].

The development of computer-assisted image analysis 
technologies may offer a solution for diagnosing ACL 
rupture. Deep learning is a class of machine learning 
which has recently yielded breakthroughs in computer 
vision tasks. In particular, convolutional neural network 
(CNN)-based deep learning approaches are of interest 
in various areas, including medical imaging, and several 
applications support diagnostics created by CNN learn-
ing methods [9]. CNNs are designed to automatically and 
adaptively learn features from data through backpropaga-
tion using multiple building blocks, such as convolution 
layers, pooling layers, and fully connected layers. Due 
to large datasets’ availability and increased computing 
power, CNNs have outperformed conventional image 
analysis methods and resulted in significant progress in 
the medical imaging field. Recently, many clinical appli-
cations for CNNs have been reported in radiology for 
detection, classification, and segmentation tasks. How-
ever, the number of studies applying a CNN to knee 
MRIs is limited [10–12].

The development of technologies that can assist physi-
cians in diagnosing ACL injury from a knee MRI would 
be beneficial. It would aid non-specialists who are not as 
familiar with knee injuries and could also support knee 
joint specialists in the diagnostic process. To implement 
these technologies in clinical practice, the diagnostic per-
formance of the CNN must be reliable. At the same time, 
a versatile system that would work on a simple platform 
and with few requirements regarding the number and 
quality of the images would be desired.

This study aims to evaluate the accuracy of a CNN for 
the diagnosis of ACL ruptures using a single slice from 
a knee MRI. Furthermore, we compared the accuracy to 
that of experienced human readers. We hypothesized 
that the CNN could generate an accurate classification 
and thereby demonstrate the utility of this system to 
assist with ACL injury diagnosis.

Methods
Subject
The institutional review board has approved this research 
of the authors’ affiliated institutions. The need for con-
sent from each patient was waived due to the study 
design as a retrospective analysis of anonymized imag-
ing data. All patients who received arthroscopic surgery 
in our institution between June 2009 and October 2019 

were eligible for the study. We included the patients with 
and without ACL injury, in which the diagnosis was con-
firmed by arthroscopy. Patients who did not receive pre-
operative imaging by either a 1.5 T (T) or a 3.0 T scanner 
were excluded. The patients with intact ACLs underwent 
arthroscopic surgery for other reasons, such as a discoid 
meniscus or meniscus tears. MR images of ACL tears 
were collected regardless of a complete or incomplete 
tear. The images of consecutive patients were retrospec-
tively reviewed and included until both groups con-
sisted of 100 images. The images were anonymized and 
extracted from the Picture Archiving and Communica-
tion System (PACS) for analysis.

MRI dataset
The sagittal images of proton density-weighted MRIs 
were used for the CNN training. The images were 
extracted from Digital Imaging and Communications in 
Medicine (DICOM) files, acquired on either a 1.5  T or 
3.0 T MRI scanner. Since the images were collected from 
multiple institutions, there was variation in the imaging 
protocol. The proton density-weighted MR images were 
obtained with the following parameters: repetition time 
(TR) = 2000–2400 ms; echo time (TE) = 20–30 ms; field 
of view (FOV) = 135–140  mm; matrix size = 192 × 192–
416 × 416; slice thickness = 0.7–3.0  mm; slice 
gap = 0–0.3 mm.

Image preprocessing for the CNN
The MRIs were converted to JPEG format from the 
DICOM files. A single image slice was selected from each 
MRI series where the ACL was depicted continuously 
from the femoral attachment to the tibial attachment. 
According to the margin defined, the selected images 
were then cropped into the area of interest (Fig. 1). The 
anterior border was defined as the anterior end of the 
capsule attachment to the tibia, thus ensuring the tibial 
attachment of the ACL would be included. The poste-
rior margin was defined at the posterior edge of the tibial 
attachment of the posterior cruciate ligament, ensuring 
the identification of the femoral attachment of the ACL. 
The upper and lower margins were defined to make the 
cropped area square with all sides of the same length and 
include both the femoral and tibial attachments in the 
area.

CNN model
The CNN was built using Python programming language 
version 3.6.7 and Keras, version 2.2.4 with Google’s open-
source deep learning framework Tensorflow, version 
1.12.0 at the backend. In this study, the fine-tuning was 
performed using Xception, which had been trained on 
ImageNet images [13]. The weights of the first 108 layers 
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were frozen, and the remaining layers were retrained 
using our dataset. The network was trained to 100 epochs 
with a learning rate of 0.1, but this was reduced if no 
improvement was seen. The model training convergence 
was monitored using cross-entropy loss. To increase 
the size of the dataset, we performed data augmenta-
tion. Using the ImageDataGenerator (https://​keras.​
io/​prepr​ocess​ing/​image/), all images were augmented 
with a random rotation between -20 and 20 degrees, a 
width and height shift range of 0.2 each, and a random 
horizontal flip. The CNN was trained on a computer 
equipped with a GeForce GTX 1650 Ti graphics process-
ing unit (NVIDIA, Santa Clara, CA), a Core i5-3470 CPU 
3.2  GHz (Intel, Santa Clara, CA), and 8  GB of random 
access memory.

Performance evaluation
The performance of the CNN was evaluated with five-
fold cross-validation. First, images of ACL tears were 
randomly divided into five equal-sized independent sub-
groups. In each iteration, four subgroups were designated 
as training data, and the remaining independent sub-
group served as validation data. In the validation phase, 
the diagnostic performance to discriminate an ACL tear 
was assessed using the remaining independent subgroup. 
This cross-validation process was repeated five times.

Classification
The final decision by the CNN was based on the prob-
ability of an ACL tear from a single MRI slice using the 
optimal cut-off point of the probability score.

Image assessment by knee surgeons and radiologists
Ten board-certified knee surgeons (K1—K10 with 
8 to 31  years of experience) and two board-certified 

radiologists (R1 and R2, with 16 and 14 years of experi-
ence, respectively) reviewed the same images used for 
training of the CNN. The evaluators were selected by 
including all board-certified knee surgeons in the insti-
tution and the two radiologists who routinely read mus-
culoskeletal images. To directly compare the diagnostic 
ability between the CNN and human doctors under the 
same conditions, the readers were required to judge if 
the ACL was torn or intact from the single cropped slice 
image without any other information on patient his-
tory and results from the physical exams. Each reader 
assessed 200 images in a randomized order and labeled 
each image as 0 for intact and 1 for torn ACL.

Statistics and data analysis
All statistical analyses were conducted using SAS (ver-
sion 9.4 for Windows) and R (3.6.1). Based on the pre-
dictions, we calculated the true-positive, true-negative, 
false-positive, and false-negative rates. To evaluate the 
performance of the CNN, we plotted the receiver oper-
ating characteristic (ROC) curve and calculated the area 
under the curve (AUC). Then we calculated the sensitiv-
ity, specificity, and accuracy of the CNN and each knee 
surgeon and radiologist. The sensitivity, specificity, and 
accuracy were determined from the optimal threshold 
using the highest Youden index (sensitivity + specificity – 
1) on the ROC analysis. Finally, the sensitivity, specificity, 
and accuracy of the diagnostic performance of the CNN, 
the knee surgeons, and the radiologists were compared 
using a McNemar test.

Results
One hundred ninety-three patients were included in the 
study. One hundred MR images from 93 consecutive 
patients with an ACL injury (mean age 27.2 ± 10.6 years, 

Fig. 1  Image preparation. a The anterior border of the image was cropped at the articular capsule attachment of the anterior border of the tibia, 
and the posterior border was cropped at the tibial attachment of the posterior cruciate ligament. b The cropped image is used for reading

https://keras.io/preprocessing/image/
https://keras.io/preprocessing/image/
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46 images in 45 males and 54 images in 48 females) and 
100 MR images from 100 consecutive patients with an 
intact ACL (mean age 26.1 ± 11.9  years, 67 images in 
67 males and 33 images in 33 females) were obtained 
(Table  1). Seven patients in the ACL injured group had 
two MRI scans in the presurgical period mainly due to a 
delay between the time of surgery and the initial injury. 
The clinical diagnoses before surgery in the intact ACL 
group are shown in Table 2.

The sensitivity, specificity, accuracy, positive predictive 
value, and the negative predictive value calculated from 
the interpretation results of the CNN as well as the knee 
surgeons and radiologists are shown in Table 3. The sen-
sitivity, specificity, accuracy, positive predictive value and 

negative predictive value of the CNN reading was 91.0%, 
86.0%, 88.5%, 87.0%, and 91.0%, respectively. The physi-
cians’ overall values were similarly good, but the specific-
ity was lower than the CNN reading for some physicians 
(K5 and K9), resulting in lower accuracy. The ROC curve 
created from the results of the CNN is presented in 
Fig.  2, and the physicians’ results are plotted. The AUC 
was 0.942 (95% confidence interval (CI), 0.911–0.973), 
and the cut-off of the probability score to detect a torn 
ACL by the CNN with the highest accuracy was 0.78.

The accuracy was compared between the CNN and 
each physician (Table 4). The accuracies obtained by two 
knee surgeons (K5 and K9) were below 80% and were sig-
nificantly lower than the accuracy of the CNN.

Discussion
This study was conducted to evaluate the ability of the 
CNN to assist with the diagnosis of a torn ACL from a 
single cropped MRI image of the knee, using the results 
from an arthroscopic examination as the gold standard. 
Our system revealed sufficient capability to define the 
presence of ACL tears with better specificity compared to 
experienced human readers.

In a recent report on CNN-based MRI reading of ACL 
injuries, Bien et al. [14] tested a CNN model predicting 
an ACL tear from three slices of an MRI and reported a 
sensitivity of 75.9%, a specificity of 96.8%, and an accu-
racy of 86.7%. The reported AUC in this study was 0.965. 
More recently, Chang et  al. [8] reported a sensitivity of 
100%, a specificity of 93.3%, and an accuracy of 88.5% for 
a CNN model, which used five slices per MRI to define 
an ACL rupture. Our CNN model presented slightly 
inferior results in specificity but with a similar accuracy 

Table 1  Patient characteristics

Torn ACL group Intact ACL group

n (patients) 93 100

Age 27.2 ± 10.6 26.1 ± 11.9

Sex (M/F) 45 / 48 67 / 33

Table 2  Clinical diagnoses before surgery in the intact ACL 
group

Meniscus tear 32

Tumor 12

Osteochondritis dissecans 6

Cartilage injury 8

Recurrent patella dislocation 3

Other 3

Table 3  Sensitivity, specificity, accuracy, PPV, and NPV of the CNN and physicians

K Knee surgeon, R Radiologist

Evaluator
(years of experience)

Sensitivity(%) Specificity(%) Accuracy(%) PPV(%) NPV(%)

CNN 91.0 86.0 88.5 87.0 91.0

K1 (31) 91.0 87.0 89.0 87.5 90.6

K2 (21) 96.0 89.0 92.5 89.7 95.7

K3 (17) 97.0 80.0 88.5 82.9 96.4

K4 (11) 95.0 79.0 87.0 81.9 94.0

K5 (9) 99.0 36.0 67.5 60.7 97.3

K6 (10) 91.0 88.0 89.5 88.3 90.7

K7 (9) 97.0 73.0 85.0 78.2 96.1

K8 (9) 95.0 81.0 88.0 83.3 94.2

K9 (9) 89.0 58.0 73.5 67.9 84.1

K10 (8) 88.0 82.0 85.0 83.0 87.2

R1 (16) 89.5 80.0 84.8 81.7 87.9

R2 (14) 97.0 74.0 85.5 78.9 96.1
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compared to these two reports. The difference between 
our study and these previous reports is that they used 
multiple MRI slices to predict the presence of an ACL 
tear. Considering the model’s utility in clinical practice, 
ease of implementation would be essential. The imple-
mentation would be affected by the number of images 
needed, the image preparation process, and the complex-
ity of the training protocol. Our CNN model presented 
a similar ability to classify an ACL rupture from a sin-
gle slice and required fewer training sessions. Thus the 

proposed method may be more easily implemented in 
clinical practice and would be expected to reduce errors, 
leading to more effective medical care. This would most 
apply to general orthopedic surgeons, trainees, and clini-
cians who are not in the field of knee surgery that may 
have poor diagnostic accuracy when reading the images.

Previous reports of MRI reading of ACL injuries by 
human readers have shown that the accuracy of ortho-
pedic surgeons is 80 ~ 90%, and that of musculoskeletal 
radiologists is 92 ~ 98% [14–19]. In addition, it has been 
reported that the accuracy of the reading is not influ-
enced by the magnetic field strength (either 1.5  T or 
3.0 T) or the acquisition conditions of the MRI scanner 
[15, 16]. Compared to previous reports, the knee sur-
geon’s overall reading sensitivity in this study was good, 
with similar results in terms of specificity and accuracy. 
The results obtained by the two radiologists in our study 
were also comparable to previous reports.

By plotting the results from the knee surgeons and radi-
ologists together with the ROC curve derived from the 
results of the CNN system, the overall performances of 
the human readers and the CNN were comparable. The 
McNemar test revealed a significant difference between 
the CNN and knee surgeons, indicating a lower specific-
ity and inferior performance by two of the surgeons. The 
specificity obtained from the diagnosis of these two read-
ers was below 80%, which may be insufficient in a clini-
cal setting. However, it would be unfair to conclude that 
CNN was superior to human readers since the human 
readers were required to assess the images under unu-
sually stringent conditions. Still, considering that the 
overall quality of the readers included in our study was 
reasonable compared to previous reports, we conclude 
that our CNN model would help screen ACL tears from a 
single MRI slice and with good sensitivity and specificity.

This study is not without limitations. First, we included 
only one MRI slice per exam and cropped the image to 
a small area, including the ACL. By this image modifi-
cation, many MRI features of a torn ACL, such as tor-
tuosity, bulging, bone bruise, and PCL bowing [20], 
were excluded from the image and were not taken into 
account. Since the CNN had limited information for 
training, the diagnostic ability may have been under-
estimated. Also, the additional process of cropping the 
image, instead of simply using the entire image sets, 
could be cumbersome in practice. A system to diagnose 
a torn ACL with an accuracy better than human readers, 
and a simplification of the training conditions with less 
image modification, would be ideal. Still, we consider it 
a strength of our system that an acceptable level of diag-
nostic assistance can be provided from the limited infor-
mation of a single slice. Furthermore, the knee surgeons 
and radiologists who evaluated the images were required 

Fig. 2  The ROC curve based on the CNN and physicians’ 
performance. AUC = 0.942 (95% CI, 0.911–0.973). ROC: receiver 
operating characteristic. CNN: convolutional neural network. AUC: 
area under the curve

Table 4  Difference in the Accuracy between the CNN and 
Physicians (McNemar test)

K Knee surgeon, R Radiologist

*p < 0.05

Accuracy(%) P-value

CNN 88.5 -

K1 89.0 0.8788

K2 92.5 0.1824

K3 88.5 1.0000

K4 87.0 0.6617

K5 67.5  < .0001*

K6 89.5 0.7456

K7 85.0 0.3173

K8 88.0 0.8759

K9 73.5 0.0001*

K10 85.0 0.2858

R1 84.8 0.6717

R2 85.5 0.3657
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to make a judgment with less information than usual, 
which would have affected their diagnostic performance. 
The readers included in the current study determined the 
ACL tears with comparable quality to previous reports. 
Therefore, we consider that this limitation did not result 
in an overestimation of the diagnostic capability of the 
CNN. Finally, the number of images included in the study 
was relatively small. A larger number of patients would 
improve the quality and reliability. Still, by conducting 
the five-fold cross-validation and data augmentation, 
we were able to achieve an acceptable quality of MRI 
reading by our CNN model. From a future perspective, 
improved diagnostic performance would be expected by 
implementing more patients and incorporating clinical 
information.

Conclusion
We developed a CNN system to diagnose ACL tears with 
acceptable accuracy, comparable to that of human read-
ers. An artificial intelligence-based diagnostic model for 
MRI could help non-experts diagnose and determine if 
consultation with experts is needed for a suspected ACL 
injury. Further studies to automatically prepare the image 
for analysis and compare the single slice evaluation to 
multiple slice evaluation would be expected to improve 
the clinical application.
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