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Introduction
There is substantial evidence that the growth hormone 
(GH)/insulin-like growth factor (IGF) system is involved in 
the pathogenesis of obesity. This includes effects on adipose 
tissue development and function which indicate that it is a 
potential therapeutic target.1–5 Obesity is defined as excess 
body fat, with body mass index (BMI; weight [kg]/height 
[m2]) being used as a marker throughout the literature. 
However, there are those with normal BMI that are ‘meta-
bolically obese’,6,7 and those meeting a definition of obese 
(BMI > 30 kg/m2) who are ‘metabolically healthy’.8 The risk 
of metabolic and cardiovascular diseases as a consequence of 
obesity has been explained by the degree of visceral adipos-
ity,9,10 and a measure of central adiposity is incorporated into 
the International Diabetes Federation’s most recent defini-
tion of metabolic syndrome.11

This review addresses the following questions. (1) How is 
the GH/IGF system involved in the pathophysiology of vis-
ceral adiposity? (2) Is the GH/IGF system a target in the 
design of therapeutic approaches to visceral obesity? (3) 
What are key issues that should be addressed in future 
research? Articles included were retrieved through PubMed 
and ScienceDirect using the search terms ‘GH’ or ‘IGF’ and 
‘visceral obesity’ or ’visceral adiposity’ and identified by a 
manual search for English-language, full-text papers. 
Reference lists of papers identified further articles. An over-
view of the GH/IGF system in normal physiology will first 
be presented, followed by a description of adipose tissue dis-
tribution and function. This will set the scene for the focus 
on the role of the GH/IGF system in visceral adipose tissue 
(VAT) and the potential of this system as a therapeutic tar-
get. Signposting to future research will be included in the 
final section.

Overview of the GH/IGF System in Metabolism
Ancestral predecessors of GH and IGF-I had key roles in sig-
nalling pathways for growth and metabolism.12 In humans, 
GH is secreted by the anterior pituitary in a pulsatile fashion, 
regulated by the stimulatory effect of GH-releasing hormone 
(GHRH) and the inhibitory effect of somatostatin. These 
hypothalamic factors are regulated by a range of physiological 
stimuli, including sleep, exercise, and free fatty acids (FFAs). 
The secretory pattern of GH from the pituitary, with nocturnal 
bursts, leads to circadian oscillations in metabolism. Growth 
hormone secretion is inhibited by IGF-I and, as IGF-I synthe-
sis is stimulated by GH, the latter represents a negative feed-
back loop (Figure 1). IGF-I in the circulation is derived mainly, 
but not exclusively, from the liver and enters the circulation 
associated in a ternary complex of approximately 140 kDa with 
IGF-binding proteins (IGFBPs – IGFBP-3 or IGFBP-5) and 
a third acid-labile subunit (ALS).13 IGF-I unbound, or asso-
ciated in binary complexes with IGFBPs, can pass the endothe-
lial barrier to reach peripheral tissues, where actions are 
determined by the patterns of IGF receptor expression, the 
action of other growth factors, and the local IGFBP milieu, 
influenced by the action of IGFBP proteases.14 The physiolog-
ical role of IGF-II is less well understood; however, it is likely 
to have a metabolic role that is distinct from IGF-I15 that will 
be highlighted in the last section of this review.

In humans, GH has a central metabolic role through stimu-
lating a diverse array of genes.16 It is the major anabolic hor-
mone during famine and stress and effects a switch in fuel 
consumption from carbohydrates and proteins to lipids. It does 
this indirectly, through activation of GH receptors (GHRs) 
and the production of IGF-I, which stimulates protein synthe-
sis and inhibits protein breakdown, and directly, by stimulating 
lipolysis and FFA release.17 IGF-I synthesis is also dependent 
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on sufficient nutrient intake and portal insulin levels so that 
under conditions of fuel shortage, the direct actions of GH 
dominate. The role of GH as a metabolic hormone is further 
illustrated by studies in rodents with tissue-specific GHR dele-
tion, described later in this review. Insulin-like growth factors 
and proinsulin evolved from a common ancestral gene18 and 
have evolved complementary functions. Insulin is the major 
anabolic hormone when there is food surplus and stimulates 
energy storage as glycogen and fat. Insulin also inhibits hepatic 
transcription of one of the IGFBPs, IGFBP-1, which inhibits 
IGF bioactivity in peripheral tissues in the fasted state.13

Adipose Tissue Distribution and Function
It is now recognised that the role of adipose tissue goes beyond 
the simple storage of lipids and supply of energy by mobilising 
FFAs during fasting. It is a complex dynamic endocrine organ 
with different anatomical ‘depots’ that have distinct character-
istics. In addition to adipocytes and adipose stem cells, adipose 
tissue comprises stromal vascular cells, including fibroblasts, 
endothelial cells, and macrophages. These cells contribute to 
the cytokine milieu and therefore the adipose tissue secretome19 
and the systemic role of white adipose tissue in metabolism.20 
The roles of brown adipocytes, specialised for thermogenesis, 
are less well studied in humans compared with rodents, 
although it is recognised that they are present throughout 
life.21–23 There is evidence that IGF-I is necessary for full func-
tionality of brown adipose tissue.24

It has long been recognised that body shape has an impact 
on the health risk of overweight and obesity,25 and it is now 

known that this is a reflection of the functions of adipose tis-
sue in different anatomical sites. In metabolically unhealthy 
obesity, dysfunctional white adipose tissue expands in visceral 
depots. A systematic classification of VAT has been pro-
posed.26 Visceral adipose tissue is present in intrathoracic 
sites, comprising intrapericardial and extrapericardial com-
partments. Although little is known about the role of the 
GH/IGF system in these sites, it has been observed that 
accumulation of intrathoracic fat is associated with increased 
risk of cardiovascular disease.27–33 Visceral adipose tissue is 
also present in intra-abdominopelvic locations which, in 
addition to intraperitoneal adipose tissue (eg, omental and 
mesenteric) that is drained by the portal vein, also comprises 
extraperitoneal intra-abdominal (pre- and retroperitoneal) 
and intrapelvic compartments. In addition to adipose tissue, 
fat can accumulate within other tissues, eg, liver and muscle, 
with important metabolic consequences and in which the 
GH/IGF system may also play key roles.

Using BMI alone as a marker of obesity does not discrimi-
nate between fat and muscle mass and does not distinguish 
the distribution of body fat. Gender differences in obesity-
associated cardiovascular risk are explained by differences in 
body fat distribution, hence the terms ‘android’ and ‘gynoid’ 
obesity. When this was recognised, waist-to-hip ratio was 
used as a marker of fat distribution and was found to be pre-
dictive of cardiovascular risk in women and men.34,35 It then 
became clear that waist measurement alone was a good esti-
mate of the amount of VAT36 and could be used to track 
weight changes and complement BMI in assessing adiposity 
in clinical practice,37 where imaging techniques, such as com-
puted tomography, magnetic resonance imaging, and dual-
energy x-ray absorptiometry are not practical. Waist 
circumference is an even more reliable measure in this context 
if corrected for height.38–40 A ‘visceral adiposity index’ that 
uses waist circumference and BMI, in combination with 
metabolic markers, triglyceride, and high-density lipoprotein 
cholesterol levels, is predictive of an altered adipokine profile 
associated with increased cardiovascular risk in type 2 diabe-
tes.41 Some 50% of the variance in adipose tissue distribution 
is genetically determined,42,43 and there is evidence that 
change in insulin sensitivity in response to exercise is medi-
ated by changes in abdominal adiposity.44,45

Development of the adipocyte lineage is complex. Murine 
studies indicate that the process is systematic and that VAT 
depots principally form postnatally.46 Expansion of adipose 
tissue in both subcutaneous adipose tissue (SAT) and VAT is 
associated with adipogenesis (hyperplasia) and adipocyte 
hypertrophy.23,37,46,47 In the healthy state, SAT expands to 
accommodate increased energy intake by hyperplasia, and 
this is associated with maintenance of insulin sensitivity and 
is protective against metabolic disease. It is reported that dur-
ing overfeeding, lower-body (femoral site) SAT responds 
with hyperplasia, whereas upper-body (abdominal) SAT 
responds with hypertrophy.48 In nutritional overload, 

Figure 1. Overview of the GH/IGF system, with a focus on the interplay 

between pituitary, liver, and visceral adipose tissue. Green lines 

represent stimulatory actions and red lines inhibitory effects. FFA 

indicates free fatty acid; GH, growth hormone; GHRH, growth hormone–

releasing hormone; IGF-I, insulin-like growth factor-I; IGFBP-1, IGF-

binding protein 1; SS, somatostatin.
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a dysfunctional expansion of SAT is associated with the 
expansion of VAT, accumulation of fat in liver, and develop-
ment of hepatic and peripheral insulin resistance.49–51 Visceral 
adipose tissue expansion depends primarily on adipocyte 
hypertrophy and is associated with infiltration of immune 
cells, fibrosis, and an adipokine profile that predisposes to 
atherosclerosis and metabolic disease.20,52 Gene expression 
patterns also differ between SAT and VAT. The smaller cells 
present in SAT, eg, express higher levels of leptin, whereas the 
larger cells in VAT express higher levels of interleukin 6.53 
Although many adipocyte characteristics persist in cell cul-
ture, systemic hormones also determine important differ-
ences. Catecholamine and glucocorticoid responsiveness lead 
to a greater mobilisation of FFAs from VAT, whereas there is 
greater responsiveness to insulin in SAT.21 These differences 
may be due to differences in receptor expression, local parac-
rine factors, or different modes of neural innervation. Adipose 
tissue is also an important site of synthesis of active corticos-
teroids. Mice overexpressing 11-beta-hydroxysteroid dehy-
drogenase develop visceral adiposity,54 and in humans, visceral 
adiposity is associated with relatively elevated 11-beta-
hydroxysteroid dehydrogenase activity in VAT.55,56

Expansion of VAT is associated with increased infiltration 
by classically activated resident macrophages that secrete pro-
inflammatory cytokines, such as tumour necrosis factor α and 
interleukin 6.37 This low-grade inflammatory state contributes 
to cardiometabolic risk in part because of its anatomical loca-
tion. Products of intraperitoneal VAT are delivered directly 
into the portal circulation and thence to the liver,57,58 where 
they affect hepatic glucose and lipid metabolism and contrib-
ute to hepatic insulin resistance, dyslipidaemia, and therefore 
peripheral insulin resistance.21,22,59 The hepatic insulin resist-
ance appears to be selective, and oxidative stress selectively pro-
motes insulin effects on lipogenesis and steatosis in liver, in the 
face of suppressed gluconeogenesis.60

GH/IGF System and VAT
Growth hormone has important direct effects on mature adi-
pocytes, through multiple signalling pathways that include 
activation of signal transducers and activators of transcription 
(STAT), leading to stimulation of lipolysis and decreased lipo-
genesis.3 Growth hormone also has indirect effects on adipo-
cyte growth and differentiation through stimulating IGF-I 
synthesis. IGF-I stimulates the proliferation of pre-adipocytes 
and, in concert with insulin, stimulates adipocyte differentia-
tion. With differentiation from pre-adipocyte to adipocyte, 
levels of expression of type 1 IGF receptors decline, and IGF-I 
plays a less important direct metabolic role, compared with 
insulin, in mature adipocytes.61 Receptor activation by IGF-I 
and insulin triggers several intracellular kinases, including the 
serine/threonine kinase Akt. In white adipose tissue, subse-
quent activation of the mechanistic target of rapamicin path-
way plays a central role in the proliferative response to IGF-I 
and insulin.62 Activation of this pathway also promotes 

senescent-like changes that are associated with hypersecretion 
of pro-inflammatory cytokines.63 In obese subjects, IGF acti-
vation of the Akt pathway is impaired in pre-adipocytes from 
VAT compared with those from SAT,64 and this may in part 
explain the differences in proliferative response between these 
tissues. IGF-I and insulin-mediated pathways also activate 
FoxO2, a transcription factor that coordinates a variety of 
genes, including those modulating adipose differentiation.65 
The GH/IGF system may have a role in modifying glucocorti-
coid sensitivity in adipose tissue.66,67 Reduced 11-beta-hydrox-
ysteroid dehydrogenase expression in GH deficiency is likely to 
cause altered tissue metabolism of steroids that would contrib-
ute to visceral adiposity.68

In humans, a reduction in GH with age is associated with 
increased total body fat, increased proportion of visceral fat, 
decreased muscle mass and fitness, and decreased immune 
function.69,70 Although normal ageing is associated with rela-
tive GH deficiency, it is suggested that altered IGF signalling, 
through reduced type 1 IGF receptor function, might confer 
longevity in humans centenarians.71 Animal models have been 
used to explore the role of GH/IGF system as a link between 
nutrition and longevity.69,72 Although these studies provide 
valuable insights, it should be kept in mind that this is a com-
plex system, that there are differences between species and 
indirect effects, such as altered caloric intake, may be con-
founding.73 Nevertheless, these have also contributed greatly to 
our current understanding of the role of GH/IGF system in 
VAT, and some of this work is therefore briefly reviewed here.

Animals with GH deficiency that is associated with 
enhanced insulin sensitivity are healthy and long-lived.74,75 
Despite increased visceral adiposity, eg, long-lived hypopitui-
tary Ames mice are insulin sensitive, and transplantation of 
VAT improves insulin sensitivity in other mice fed with a high-
fat diet.76 However, mice with a knockout of GH and the pro-
lactin receptor have late-onset obesity and insulin resistance.77 
Mice overexpressing bovine GH have reduced total body fat.78 
Mice with knockout of the somatotroph type 1 IGF receptor, 
and a modest increase in GH expression, have less visceral and 
SAT with adipocytes that are small in size and have increased 
expression of lipolytic genes and decreased lipid content.79 A 
rat transgenic model with human GH expression targeted to 
the posterior pituitary leads to inhibited endogenous GH pro-
duction and moderate GH deficiency.80 The resulting pheno-
type is remarkable, and unexplained, with males developing a 
late-onset, selectively visceral, adiposity and preserved insulin 
sensitivity. These rodent models in which GH is targeted high-
light the complexity of the system and its impact on longevity 
and metabolism.

Knockout of GHR function has led to unique insights into 
the role of GH in fat. Growth hormone receptor knockout 
mice are obese, with the preferential deposition of fat in subcu-
taneous sites that appears to have a protective metabolic 
effect.81–83 Reduction in levels of inflammatory markers in the 
hypothalamus in response to a high-fat diet is also observed.84 
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These mice are insulin sensitive, small, and long-lived through 
mechanisms that overlap with those of caloric restriction.85 In 
contrast to tissue from normal mice, transplantation of visceral 
fat from these animals appears to have a beneficial metabolic 
effect.86 When IGF-I is given to heterozygous GHR knockout 
mice, weight gain is observed.87 Growth hormone receptor 
antagonist transgenic mice, however, have generalised obesity 
and no extension of lifespan.88 Tissue-specific knockout mod-
els give further insights. Muscle-specific GHR knockout mice 
have increased or reduced adiposity, depending on the pro-
moter used.89,90 Fat-specific GHR knockout mice have 
increased total body fat and no improvement in glucose home-
ostasis,91 and when the type 1 IGF receptor is knocked out in 
adipocytes, there is accumulation of epigonadal fat, increased 
serum IGF-I concentrations, and enhanced somatic growth.92 
Liver-specific GHR knockout mice are not obese but exhibit 
severe hepatic steatosis.93 These mice have a reduction in total 
body fat, most marked in males, suggesting that liver-derived 
IGF-I is involved in cross-talk with adipocytes.94 Liver-specific 
IGF-I knockout mice also have reduced fat mass.95,96

In humans, altered cross-talk between adipose tissue and 
liver, and the pituitary, is likely to be of key importance in vis-
ceral obesity. With expansion of VAT, it is likely that reduced 
GH concentrations are in part the result of the inhibitory effect 
of increased circulating FFAs (Figure 1). Visceral obesity is 
regarded as a state of relative GH deficiency97 and explains the 
variability in circulating total IGF-I concentrations more than 
total adiposity.98,99 There is an impaired GH response to 
GHRH.100–104 In young women, oestrogen availability and vis-
ceral fat mass determine pulsatile GH secretion,105 whereas in 
older men, visceral fat and pulsatile GH action account for half 
of the variability in the efficacies of GHRH or GHRP-2 under 
conditions of sex-steroid depletion.106

A family of 6 high-affinity IGFBPs is of key importance in 
regulating the circulating half-life of IGFs and influences the 
spectrum of IGF activities in tissues. One of these, IGFBP-1, 
is secreted by hepatocytes under transcriptional inhibition by 
insulin and blocks the actions of ‘free’ IGFs, not bound in a 
ternary complex with IGFBP-3 or IGFBP-5 and a third ALS 
in a range of peripheral tissues.13,14,107 In human obesity, 
increased portal insulin concentrations inhibit IGFBP-1108,109 
and low IGFBP-1 concentrations predict the development of 
glucose intolerance and type 2 diabetes mellitus.2 Expansion of 
VAT, with subsequent effects on hepatic lipid metabolism 
including the action of pro-inflammatory cytokines, is associ-
ated with decreased hepatic insulin sensitivity and increased 
insulin clearance which limits suppression of IGFBP-1. 
Although IGFBP-1 concentrations are inversely related to vis-
ceral adiposity in humans,110 levels are increased relative to 
peripheral insulin concentrations.40,111 Removal of visceral fat 
in moderately obese Sprague-Dawley rats improves hepatic 
insulin sensitivity and decreases IGFBP-1 concentrations.112 
Stimulation of adenosine monophosphate–activated protein 

kinase113 or ghrelin114 is also associated with reduced inhibition 
of IGFBP-1 by insulin in liver cells. These complex relation-
ships, including the impact of visceral adiposity, contribute to 
the wide variation in IGF-I and IGFBP-1 levels in obese 
states.115–117 It has been proposed that reduced IGFBP-1 in 
obesity increases the availability of ‘free’ IGFs and is responsi-
ble for increased negative feedback on GH secretion. It should 
be emphasised, however, that the effect of suppressed IGFBP-1 
on ‘free’ IGF action is not solely responsible for the decline in 
GH secretion in obesity. In addition to the inhibitory effect of 
FFAs, it has also been demonstrated that oxidative stress in 
obesity enhances STAT-5 signalling and leads to increased 
hepatic IGF-I production60 that might also contribute to 
increased negative feedback on GH secretion.

Circulating IGFBP-2 concentrations are reduced in human 
obesity, and there is increasing evidence that IGFBP-2 has 
important direct metabolic roles.118 Much of the evidence 
comes from animal and cell studies. In pigs, a high-fat diet pro-
motes visceral adiposity and insulin resistance, and these cor-
relate with IGFBP-2 expression in VAT and skeletal muscle, 
and not SAT.119 Male IGFBP-2 knockout mice have increased 
fat mass,120 and female IGFBP-2 knockout mice have less fat 
accumulation, and less decrease in insulin sensitivity, in response 
to oophorectomy, compared with wild type.121 Studies of 
IGFBP-2 overexpression demonstrate protection against the 
development of obesity and insulin resistance in vivo, and there 
is impaired adipocyte differentiation in vitro.107 Compared 
with SAT, VAT produces more IGFBP-2 that inhibits adipo-
genesis and lipogenesis in an IGF-independent manner.122

Other members of the IGFBP family may play unique 
roles in obesity, through both IGF-dependent and IGF-
independent mechanisms. IGFBP-3, eg, inhibits adipogenesis 
through a direct interaction with peroxisome proliferator–
activated receptor gamma.123 Mice overexpressing IGFBP-3 
that cannot bind IGFs have increased visceral adiposity.124 
However, IGFBP-3 knockout mice consume less food, are 
heavier compared with wild type, and have hepatic steatosis 
and higher fasting circulating glucose concentrations, but 
preserved insulin sensitivity.125 Mice with a triple knockout 
of IGFBP-3, IGFBP-4, and IGFBP-5 have decreased 
gonadal fat pad weight and smaller adipocyte size compared 
with wild type.126 Further evidence for a role of IGFBP-4 
comes from mice with a knockout of the zinc metallopro-
teinase, pregnancy-associated plasma protein A (PAPP-A).127 
Pregnancy-associated plasma protein A in tissues cleaves 
IGFBP-4 and increases local IGF bioavailability. It has been 
demonstrated that PAPP-A is preferentially expressed in VAT 
and that, in PAPP-A knockout mice, there is reduced enlarge-
ment of VAT in response to high-fat feeding.127 In response to 
a high-fat/high-sucrose diet, female PAPP-A knockout mice 
increases in subcutaneous and retroperitoneal fat are 
reduced128; however, this effect was not observed in another 
study of male mice fed with a high-fat diet.129
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GH/IGF System in the Management of Visceral 
Obesity
There is clear evidence that the GH/IGF system should be 
considered as a target in the management of visceral obesity.130 
The system is dysregulated in clinical conditions that are asso-
ciated with accumulation of VAT. These changes are summa-
rised in Table 1. Therapeutic use of GH and IGF-I is always 
approached with caution because of the links between the 
activity of this axis and cancer.131 Visceral adiposity is an inde-
pendent risk factor for malignancy, and it has been proposed 
that this is due to an increase in ‘free IGF-I’ action.132 In 
oesophageal adenocarcinoma, type 1 IGF receptor expression 
in resected tumours is higher in viscerally obese, compared 
with normal weight patients.133 Nevertheless, there are several 
clinical fields in which altering the activity of the GH/IGF 
system is promising in reducing visceral adiposity and its con-
sequences, which are summarised in Table 1.

GH deficiency

The study of adult GH deficiency has provided key insights into 
the role of the GH/IGF system in visceral adiposity. Visceral fat 
accumulation was recognised early as a feature of GH defi-
ciency,134 and administration of GH leads to a reduction in vis-
ceral adiposity.135 In children, GH treatment stimulates lipolysis 
and reduces abdominal SAT in GH deficiency,136–138 but not in 
non–GH-deficient short stature.139 In adults, GH treatment 
reduces visceral adiposity more than subcutaneous fat mass.134,140 
In acromegaly, patients with uncontrolled disease have some vis-
ceral adiposity141 that correlates with IGF-I concentrations.142 
After definitive management of acromegaly, development of 
GH deficiency also has an adverse impact on body composition 
and inflammatory biomarkers143 and, under these conditions, 
GH therapy reduces abdominal obesity.144

Obesity

The evidence, presented in previous sections, suggests that 
obesity is a state of relative GH deficiency, and that this is 

particularly the case where there is increased VAT size and 
activity. Along with the potential reduction in muscle mass that 
may accompany dietary management, this contributes to an 
argument for the use of GH, where its anabolic effects may be 
advantageous. The use of GH treatment for visceral adiposity 
in the absence of GH deficiency, however, remains controver-
sial,145,146 with concerns about the consequences of increased 
activity of the GH/IGF system on metabolism and carcino-
genesis. Growth hormone treatment reduces visceral adiposity, 
increases lean body mass, and improves lipid profiles; however, 
supraphysiologic doses are associated with an increase in insu-
lin resistance.147 There is evidence that it is effective at lower 
doses, when negative effects on glucose tolerance are small or 
absent, in abdominally obese men148 and women.149 In these 
studies, reductions in liver fat, and improvements in mitochon-
drial function and inflammatory profiles, were observed. The 
mode of administration of GH is also important. If not admin-
istered in pulsatile mode in obese subjects, there is a greater 
increase in IGF-I150 and therefore potentially a greater nega-
tive feedback effect on endogenous GH secretion. The use of 
GHRH analogues has been considered as an alternative 
approach to increase pulsatile GH secretion while preserving 
appropriate IGF-I feedback signalling.146 In these studies, a 
GHRH analogue, administered to obese patients with reduced 
GH secretory capacity, reduced visceral adiposity, decreased 
triglyceride, and reduced measures of cardiovascular risk, with 
no change in insulin sensitivity.146

Prader-Willi syndrome is characterised by short stature, 
severe hyperphagia, and obesity. Although there is evidence of 
partial GH deficiency in these patients, with reduced secre-
tory reserve and low circulating total IGF-I concentrations, 
the degree of visceral adiposity is less than expected compared 
with other similarly obese individuals.151,152 The degree of 
insulin resistance is also less than expected152 and is accompa-
nied by relatively non-suppressed IGFBP-1 concentra-
tions,151 which may be due to elevated ghrelin concentrations.114 
Growth hormone treatment increases growth in Prader-Willi 
children, and in adults, GH has been shown to reduce visceral 

Table 1. GH/IGF system in conditions associated with visceral adiposity in humans.

CONdITION GENERAL AdIPOSITy VISCERAL AdIPOSITy GH IGF-I IGFBP-1 INSULIN SENSITIVITy

Normal — — N N N N

Ageing ↑ ↑ ↓ ↓ N/↑ ↓

Simple obesity ↑ ↑ ↓ ↓ ↓ ↓/N

Metabolic syndrome ↑/— ↑ ↓ ↓ ↓/↑ ↓

GH deficiency —/↑ ↑ ↓ ↓ ↑ ↑

GH insensitivity ↑ ↑ ↑ ↓ ↑ ↑

HIV lipodystrophy ↓/— ↑ ↓ ↓ ↑ ↓

Prader-Willi syndrome ↑ ↑ ↓ ↓ N N

Abbreviations: GH, growth hormone; HIV, human immunodeficiency virus; IGF-1, insulin-like growth factor 1; IGFBP-1, IGF-binding protein 1.
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adiposity.117,153,154 Cessation of GH leads to worsening body 
composition in these patients.155

Lipodystrophies

The importance of fat as an endocrine organ is highlighted 
by the transgenic mouse model of lipoatrophy that is char-
acterised by the complete absence of white adipose tissue, 
hepatic steatosis, elevated FFAs, and severe insulin resist-
ance.156 In humans, a similar phenotype is seen in the rare 
Seip-Berardinelli syndrome of generalised lipoatrophy and 
in partial lipodystrophic states that have varying degrees of 
visceral adiposity.157 It has been proposed that despite low 
IGFBP-1 concentrations, elevated ‘free’ IGF action is 
responsible for the acromegaloid appearance of these 
patients.158 Patients with tumours secreting unprocessed 
IGF-II are also reported to have acromegaloid features, in 
addition to hypoglycemia.159

Even when total body fat is within normal limits, 
approximately half the patients with human immunodefi-
ciency virus (HIV) infection have significantly altered 
body fat distribution to visceral depots.160 This phenom-
enon is associated with dyslipidaemia and insulin resist-
ance and increased cardiovascular risk. In contrast to the 
pattern of GH resistance seen with malnutrition (increased 
GH and low IGF-I), individuals with HIV lipodystrophy 
have increased somatostatin tone, reduced ghrelin, and 
impaired GHRH stimulation of GH, in part due to excess 
FFAs.161 Impaired GH secretion correlates with visceral 
adiposity in HIV-infected adolescents.162 Although GH 
treatment reduces excess VAT, adverse effects are frequent, 
even at low doses.163,164 Use of a synthetic analogue of 
GHRH has been shown to be effective in reducing vis-
ceral adiposity and improving lipid profiles.146,165 IGF-I 
increases in responses to treatment, there is a preservation 
of glucose sensitivity166 and a beneficial effect on markers 
of inflammation.167 In a clinical study, IGF-I reduced 
lower abdominal fat in HIV-associated lipoatrophy168; 
however, in another trial, when co-administered with 
IGFBP-3, IGF-I was shown to improve glucose metabo-
lism and decrease total body fat but had no effect on vis-
ceral adiposity.169

Conclusions and Recommendations
Obesity is a complex condition, and VAT has a central role in 
its association with metabolic disease. This review has pre-
sented evidence that the GH/IGF system is involved in the 
development and function of VAT. Furthermore, it is likely that 
this system is involved in development of an obesity phenotype 
that is predisposed to increased metabolic and cardiovascular 
disease risks. Current research is producing new insights into 
the obesity phenotype,170 and furthering our understanding of 
these and their impact on the GH/IGF system is an exciting 
prospect for the future. Today, however, there are clear gaps in 

knowledge that inform the following questions and recom-
mendations for research.

What is the role of IGF-II in VAT? Little is known about the 
role of IGF-II in VAT. It is important that this is pursued, as 
there is evidence that IGF-II has distinct roles in metabolic 
disease.15 IGF-II, and not IGF-I, has high affinity for the cat-
ion-independent mannose-6-phosphate receptor, reducing 
IGF-II availability for signalling through type 1 IGF receptors, 
insulin receptors, or their hybrids. Compared with IGF-I, 
IGF-II has higher affinity for IGFBP-6, and for insulin recep-
tors,171 that suggests an important role in metabolism, as well 
as an autocrine role in tumours expressing IGF-II and insulin 
receptor A subtypes.172

What is the role of the GH/IGF system in other visceral fat depots?  
Measurement of epicardial fat has been used as a marker of 
visceral adiposity in response to GH treatment.173 A further 
understanding role of this system in visceral fat in other sites 
other than the abdomen may explain site-specific cardiovascu-
lar risk and suggest new treatment approaches.

Does low-dose IGF-I have a role in the treatment in visceral obe-
sity? It has been recommended that longer term studies of 
GHRH are undertaken.146 Because IGF-I acts as an insulin 
sensitiser, it is worth considering its use in reducing insulin 
resistance of obesity and lipodystrophies, in low dose, and in 
combination with other approaches. The potential role of the 
IGFBPs, with their IGF-dependent and IGF-independent 
actions, particularly IGFBP-2, should be considered as poten-
tial therapeutic targets in visceral obesity.

What is the role of the GH/IGF system in the later development 
visceral adiposity in small-for-gestational age children? The 
endocrine IGF system develops late in gestation.174 Children 
with visceral adiposity who are born small-for-gestational age 
have higher IGF-I levels than those appropriate for gestational 
age.175 The interaction between this system and nutrition, in 
the critical windows of fetal development in particular,176 will 
lead to strategies for prevention of visceral adiposity and meta-
bolic syndrome.
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