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Abstract: Soursop (Annona muricata L.) is climacteric fruit with a short ripening period and posthar-
vest shelf life, leading to a rapid softening. In this study, transcriptome analysis of soursop fruits was
performed to identify key gene families involved in ripening under postharvest storage conditions
(Day 0, Day 3 stored at 28 ± 2 ◦C, Day 6 at 28 ± 2 ◦C, Day 3 at 15 ± 2 ◦C, Day 6 at 15 ± 2 ◦C, Day 9 at
15 ± 2 ◦C). The transcriptome analysis showed 224,074 transcripts assembled clustering into 95, 832
unigenes, of which 21, 494 had ORF. RNA-seq analysis showed the highest number of differentially
expressed genes on Day 9 at 15 ± 2 ◦C with 9291 genes (4772 up-regulated and 4519 down-regulated),
recording the highest logarithmic fold change in pectin-related genes. Enrichment analysis pre-
sented significantly represented GO terms and KEGG pathways associated with molecular function,
metabolic process, catalytic activity, biological process terms, as well as biosynthesis of secondary
metabolites, plant hormone signal, starch, and sucrose metabolism, plant–pathogen interaction, plant–
hormone signal transduction, and MAPK-signaling pathways, among others. Network analysis
revealed that pectinesterase genes directly regulate the loss of firmness in fruits stored at 15 ± 2 ◦C.

Keywords: de novo assembly; differential gene expression; functional annotation; plant cell wall;
refrigeration; pectin; softening

1. Introduction

Soursop (Annona muricata L.) is a member of the Annonaceae family that is cultivated
in tropical and subtropical countries such as Mexico, Venezuela, Ecuador, Colombia, and
Brazil [1,2]. Mexico is the top producer of this crop worldwide and Compostela, Nayarit
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represents approximately 81% of the total production at a national level, with an annual
income of 12.2 millions of dollars [3,4]. The fruits are mainly consumed fresh and the pulp
can be used to develop several products such as ice-cream, juice, nectar, jelly, yogurt, among
others [2]. Furthermore, in the last years there has been an increase in the interest of this crop
due to its medicinal properties such as anthelmintic, antihypertensive, anti-inflammatory,
antidiarrhea, antiparasitic, antimalarial, anticancer activities, among others [5]. Soursop
is a climacteric fruit with a high respiration rate and ethylene production causing a fast
fruit softening, leading to postharvest decay [6–8]. The peak of ethylene production of
soursop is between five and six days of storage, which seems to be associated with the
activation of several enzymes [7,9]. Fruit ripening is a complex process that involves
modifications in the cell wall and secondary metabolism, leading to changes in flavor,
texture, and aroma, among others [10]. The loss of firmness and textural changes is related
to the action of cell wall enzymes such as polygalacturonase (PG), pectinesterase (PME),
pectate lyase (PL), glucosidase (Glu), expansin (EXP), among others [11,12]. Nonetheless,
the molecular mechanism of this process remains unclear. The short postharvest shelf life of
soursop is one of the main factors limiting exportation to international markets. Therefore,
some methods have been studied to maintain the quality and delay fruit ripening of
soursops such as refrigeration, waxes, emulsions, edible coatings, 1-methylcyclopropene,
and the combinations of all these [6]. Among them, refrigeration is the most simple,
efficient, and commonly used postharvest technology utilized in fruit conservation [7,9,13].
Some authors have shown that soursop fruits stored at 15 ± 2 ◦C delay ripening and
prolong the shelf life of the fruit up to 7 or 8 days without physiological damage [7,14].
However, few studies have been focused on the changes during postharvest storage of
soursop fruit at the molecular level. In this regard, our research group has identified the
reference and differentially expressed genes by quantitative real-time polymerase chain
reaction (qRT-PCR) during postharvest storage [11,15,16]. Nevertheless, the regulatory
mechanism of this process has not been fully elucidated due to the lack of transcriptomic
resources. Transcriptomic (RNA-seq) analysis is a sequencing technology that has the
potential to unravel the metabolic pathways, action mechanisms and identify the differences
in gene expression levels of an organism under certain conditions [17]. Moreover, few
transcriptomics of the Annonaceae family have been analyzed. RNA-seq analysis has been
used in flowers and fruits of sugar apple (Annona squamosa L.), identifying several genes
involved in floral development and pathways related to primary, secondary metabolism,
seed and fruit development expressed, respectively [18–20]. To the best of our knowledge,
only sequence data without annotation of soursop leaves have been generated [6,21] and
no soursop fruit transcriptome can be found.

To better understand the mechanisms involved in fruit ripening, the objective of
this study was to analyze the soursop fruit transcriptome under different postharvest
storage conditions. This study provides transcriptome data of the soursop fruits and gives
important information about the genes and mechanisms that are being regulated.

2. Results
2.1. Physicochemical Analysis

The experimental strategy consisted of fruits stored at 28 ± 2 ◦C and 15 ± 2 ◦C on
different days of storage, as shown in Figure 1A. The effect of temperature on firmness,
total soluble solids, titratable acidity, and pH was determined (Figure 1B). The soursop
fruits stored at 28 ± 2 ◦C showed a dramatical decrease of firmness from Day 0 to Day 6
at 28 ± 2 ◦C, losing 87.95% of firmness. Otherwise, the fruits stored at 15 ± 2 ◦C reached
a mean value of 53.7 N up to Day 9 of storage, indicating a loss of firmness percentage
of 80.14% compared to Day 0 (Figure 1B). The temperature of 15 ± 2 ◦C delays the rate
of loss of firmness in the soursop fruit compared to fruits stored at 28 ± 2 ◦C (p < 0.05).
The total soluble solids and titratable acidity increased from Day 0 to Day 3, followed by a
decrease on Day 6 in the fruits stored at 28 ± 2 ◦C. This same behavior was observed in
fruits stored at 15 ± 2 ◦C from Day 3 to Day 9. Nevertheless, the temperature of 28 ± 2 ◦C
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showed significant changes in comparison with the fruits stored at 15 ± 2 ◦C (p < 0.05). On
the contrary, pH decreased from Day 0 to Day 3 followed by an increase on Day 6. Indeed,
the fruits stored at 15 ± 2 ◦C showed the same behavior from Day 3 to Day 9. Moreover,
the fruits stored at 15 ± 2 ◦C presented significant differences in pH compared to those
stored at 28 ± 2 ◦C. The same conditions were used for RNA extraction, cDNA libraries
construction, and sequencing.

Figure 1. Experimental strategy and physicochemical analysis. (A) Soursop fruits stored at 28± 2 ◦C
and 15 ± 2 ◦C (days of storage are the sample points after storage). (B) Firmness, Total soluble solids,
Titratable acidity, and pH of soursop fruits. The points represent the mean of nine measurements and
the vertical lines indicate the standard deviation of the means. Different letters indicate statistically
significant differences at p < 0.05 between temperatures using the means of 27 and 36 data per the
temperature stored at 28 ± 2 ◦C and 15 ± 2 ◦C, respectively.

2.2. De Novo Assembly and Functional Annotation of Soursop Fruit Transcriptome

RNA-seq libraries were constructed using RNA from different days and temperature
conditions of soursop fruits. In total, 170.38 GB of raw reads were obtained. Low-quality
reads and adapters were removed (Q < 20) and clean reads were used for the de novo
transcriptome assembly. The final assembly generated 224,074 transcripts (445.2 MB) with
a median contig length of 928 bp, average contig length of 1554.49, N50 value of 2839, and
average GC percent content of 41.18%, clustering into 95,832 unigenes (90 MB) of which
21,494 had ORF. The stats of these unigenes were median contig length of 407 bp, average
contig length of 915.70, and N50 of 1971 bp. For the functional annotation, the de novo
assembled transcripts were queried (with BLAST) against several databases using the
Trinotate annotation protocol. The Trinotate annotation results are shown in Table 1.
Homology searches using BLASTx against the UniProt/SwissProt and Uniref90 databases
were able to annotate 104,280 and 132,770 unique sequences, respectively. Indeed, BLASTp
annotation against UniProt/SwissProt and Uniref90 databases found 94,538 and 136,059
unique proteins, respectively (Table 1). Moreover, unique GO terms using BLASTx and
BLASTp were 11,829 and 13,307, respectively. The number of hits of candidate coding
regions against other databases, including Pfam, SignalP, TmHMM, KEGG, and eggNOG,
is also shown in Table 1.

On the other hand, the number of unique genes, transcripts, and proteins with Pfam
annotation was 22,319 (23.28% of all genes), 94,352 (42.10% of all transcripts), and 125,655,
respectively. The BLAST top annotation hits distribution showed that the highest number
of ORF and transcripts were for the genus Arabidopsis followed by Oryza, as shown in
Figure 2A. Based on sequence homology against the eggNOG database, soursop fruit genes
were categorized into three main groups: information storage and processing (J, A, K, L, B),
cellular processes and signaling (D, Y, V, T, M, N, Z, U, O), and metabolism (C, G, E, F, H, I,
P, Q), finding the highest number of transcript in posttranslational modifications followed
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by signal transduction mechanisms, corresponding to the cellular processes and signaling
as shown in Figure 2B.

Table 1. Number of unique and total functional annotation of the soursop fruit transcriptome using
Trinotate pipeline.

Annotation Results Unique Number of Sequences Total Number of Sequences

Protein hits (BLASTx-Uniref90) 132,770 5,598,731

Protein hits (BLASTx-Uniprot/Swissprot)
sprot_Top_BLASTX_hit 104,280 4,673,452

GO (BLASTx)
gene_ontology_BLASTX 11,829 4,483,769

eggNOG 5699 4,042,793

KGG 18,287 3,902,577

TmHMM 81,118 3,55,812

Protein hits (BLASTp-Uniref90) 136,059 2,31,177

Protein hits (BLASTp-Uniprot/Swissprot)
sprot_Top_BLASTP_hit 94,538 1,55,333

GO (BLASTp)
gene_ontology_BLASTP 13,307 149,975

Pfam 77,368 125,655

GO Pfam
gene_ontology_Pfam 2388 78,880

SignalP 5579 47,554

RNAMMER 30 442

Figure 2. Functional annotation using BLASTx, (A) Top-hit genus taxonomic distribution (ORF
and transcripts). (B) Number of transcripts matching with the eggNOG database. Different color
represents the pathways categorized in information storage and processing (J, A, K, L, B), cellular
processes and signaling (D, Y, V, T, M, N, Z, U, O), and metabolism (C, G, E, F, H, I, P, Q).
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Further, the soursop transcripts were classified into three GO categories: Biological
process, cellular component, and molecular function, as shown in Figure 3A. Under the
biological process category, transcription, DNA-templated represented the highest num-
ber of transcripts with 8113 transcripts (1770 unigenes). Within the cellular component
category, the nucleus showed 21,790 transcripts (4734 unigenes). ATP-binding was highly
represented in the molecular function category, with 19,925 transcripts (4575 unigenes).
Likewise, genes were also analyzed in the KEGG database, finding that the most significant
pathways regarding the number of hits were related to overview and carbohydrates of
the Metabolism type, with 3910 genes and 789 genes, respectively (Figure 3B). On genetic
information processing type, 238 genes were detected in the transcription pathway, and in
environmental information processing, 125 genes were involved in the membrane trans-
port pathway. Transport and catabolism showed 500 genes related to the cellular process
and 264 in environmental adaptation to the organismal system as shown in Figure 3B.
Focusing on the pathways associated with ripening, according to the eggNOG database,
1996 transcripts code for proteins located in the cell wall or in the membrane (Figure 2B).
Further, transcripts related to the cell wall were found in the ontology of biological pro-
cess (470 genes) and cellular components (712 genes), as well as cell growth and death
(Figure 3A,B).

Figure 3. Gene ontology and KEGG pathways annotation. (A) Number of transcripts by GO category.
(B) Number of transcripts by KEGG pathways. Different colors represent the GO category and
KEGG pathways.
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2.3. DEG in Response to Postharvest Storage

Annotated DEG were used to develop an online public database called Annomics,
which can be freely http://perseo.uan.mx/bioinformatica/annomicsdatabase (accessed
on 5 July 2022). The number of DEG (up and down-regulated) by each pairwise compar-
ison against Day 0 is shown in Figure 4A,B. The Day of storage 9 followed by Day 6 at
15 ◦C ± 2 ◦C presented the highest DEG (up and down), as shown in Figure 4B. Day 9 at
15 ◦C ± 2 ◦C presented 9291 DEG, including 4772 up and 4519 down-regulated genes and
Day 6 at 15 ◦C ± 2 ◦C displayed 9013 DEG, involving 4279 up and 4734 down-regulated
genes. Furthermore, the Venn diagram revealed that the number of down-regulated genes
shared between the days of storage was higher than the up-regulated in both temperatures
(Figure 4C,D). The temperature of 28 ± 2 ◦C showed a higher number of up-regulated
genes shared between the days of storage compared to the temperature of 15 ± 2 ◦C
(Figure 4C,D). On the other hand, the temperature of 15 ± 2 ◦C presented a higher number
of down-regulated genes shared by the days of storage than the temperature of 28 ± 2 ◦C.

Figure 4. DEG under different temperatures (A) Up and down-regulated genes per day of storage at
28 ± 2 ◦C. (B) Up and down-regulated genes per day of storage at 15 ± 2 ◦C. (C) Venn Diagram of
shared up and down-regulated per day of storage at 28 ± 2 ◦C. (D) Venn Diagram of shared up and
down-regulated per day of storage at 15 ± 2 ◦C.

Based on the functional annotation by BLASTx, a heatmap with hierarchical clustering
analysis of the DEG associated with ripening was performed using the highest LogFC
per selected gene family (Figure 5). The cluster analysis showed three clusters (k = 3)
formed on low, high, and middle LogFC, respectively. In this context, the group with the
highest LogFC was found in DEG involved mainly in the degradation of pectin, a principal
component of the plant cell wall, followed by the group with middle LogFC comprising
DEG related with starch and sugar metabolism, carbohydrates metabolic process, and
hydrolase activity, among others (Figure 5).

http://perseo.uan.mx/bioinformatica/annomicsdatabase
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Figure 5. Heatmap of the DEG associated with ripening per day of storage at 28 ± 2 ◦C and 15 ± 2 ◦C.
The dendrogram shows the relationship between gene expression by hierarchical clustering. The
color key indicates the LogFC of the DEG (FDR < 0.001), ranging from blue to red.

Finally, the DEG group with the lowest LogFC is involved in several pathways such as
hormone regulation, oxidation, among others. The pectinesterase gene showed the highest
LogFC in all the temperatures and days of storage evaluated. Indeed, functional enrichment
analysis showed more than 10 significant (corrected p-value < 0.05) GO terms related
to ripening, including GO:0030599, which is associated with the pectinesterase activity
(Table 2). The GO annotation of these terms was related with cell wall modification and
organization, enzyme activity (pectinesterase and polygalacturonase), hydrolase activity,
and polysaccharide activity, as shown in Table 2.
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Table 2. Enriched GO terms related to the cell wall, pectin, carbohydrates (polysaccharide and
disaccharides), and glycosylation.

GO ID GO Annotation

Corrected p-Value

28 ◦C ± 2 ◦C 15 ◦C ± 2 ◦C

Day 3 Day 6 Day 3 Day 6 Day 9

GO:0042545 cell wall modification 1.28 × 10−10 1.33 × 10−11 2.71 × 10−8 6.42 × 10−3 5.65 × 10−4

GO:0071555 cell wall organization 1.45 × 10−10 2.03 × 10−11 2.20 × 10−7 1.48 × 10−2 1.93 × 10−3

GO:0071554 cell wall organization or biogenesis 4.52 × 10−10 7.37 × 10−11 4.89 × 10−7 2.12 × 10−2 3.213 × 10−3

GO:0005618 cell wall 5.67 × 10−10 7.05 × 10−10 1.025 × 10−7 5.44 × 10−4 1.83 × 10−4

GO:0030599 pectinesterase activity 1.28 × 10−10 1.33 × 10−11 2.71 × 10−8 6.42 × 10−3 5.65 × 10−4

GO:0004650 polygalacturonase activity 2.45 × 10−8 1.81 × 10−12 2.88 × 10−7 6.40 × 10−6 4.24 × 10−7

GO:0000272 polysaccharide catabolic process 1.03 × 10−5 2.33 × 10−5 3.42 × 10−6 4.50 × 10−5 3.06 × 10−5

GO:0005976 polysaccharide catabolic process 1.26 × 10−3 5.58 × 10−5 2.57 × 10−4 2.89 × 10−5 5.45 × 10−4

GO:0046351 disaccharide biosynthetic process 3.00 × 10−4 3.71 × 10−6 5.30 × 10−5 4.26 × 10−4 5.25 × 10−4

GO:0005984 disaccharide metabolic process 3.35 × 10−5 2.66 × 10−9 6.99 × 10−4 2.53 × 10−5 3.13 × 10−5

GO:0004553 hydrolase activity, hydrolyzing
O-glycosyl compounds 5.49 × 10−24 1.25 × 10−30 3.39 × 10−15 3.99 × 10−16 3.36 × 10−15

GO:0016798 hydrolase activity, acting on
glycosyl bonds 3.91 × 10−23 1.19 × 10−29 9.95 × 10−15 3.40 × 10−15 2.69 × 10−14

We performed a GO biological process and KEGG pathway enrichment analysis of the
DEG by each pairwise comparison and the top 10 were plotted, as shown in Figures 6 and 7.
Among the GO terms, the most DEG were significantly enriched in biological process and
catalytic activity between all conditions (Figure 6A–E). Indeed, molecular function and
metabolic process also had significant enrichment between all conditions except for Day 3
at 15 ± 2 ◦C (Figure 6C). According to the Rich Factor of the KEGG pathway, metabolic
pathways, biosynthesis of secondary metabolites, plant hormone signal, starch, and su-
crose metabolism, plant–pathogen interaction, plant–hormone signal transduction, and
MAPK-signaling pathway were functionally enriched between Day 3 at 28 ± 2 ◦C–Day 6
at 15 ± 2 ◦C against Day 0 (Figure 7A–D). The high number of DEG were enriched in the
metabolic pathway followed by biosynthesis of secondary metabolites and starch sucrose
metabolism (Figure 7A–D). Metabolic and MAKP-signal pathways were enriched in all the
conditions evaluated (Figure 7A–E). In the case of Day 9 at 15 ± 2 ◦C, most of the DEG
were enriched in pathways related to human diseases (Figure 7E).

2.4. Correlation and Gene Expression Networks

Due to the DEG with the highest LogFC being related to degradation of pectin, we
used the GO terms related to the plant cell (Table 2) to perform a correlation analysis
between the firmness and enriched DEG. We found 20 and 40 unique enriched DEG at
15 ± 2 ◦C and 28 ± 2 ◦C, respectively. The highest correlation genes with the firmness
(r > 0.05 and p < 0.05) were xyloglucans endotransglycosylase and pectinesterase at both
temperatures. Additionally, chitinase genes showed a high correlation for the temperature
of 28 ± 2 ◦C. On the other hand, the gene network analysis showed positive (red color
of edges) and negative (blue color of the edges) interaction between the enriched DEG,
forming a complex expression network at 28 ± 2 ◦C (Figure 8A). Interestingly, the gene
expression network at 15 ± 2 ◦C showed a key Pectinestarese (PMEI) gene-regulating
this process (Figure 8B). Further, PMEI presented a direct relationship with another two
Pectinase genes, PME8 (high correlation) and PME1 (low correlation). These genes (PME8
and PME1) are interacting (positive and negative) with the other enriched DEG genes
(Figure 8B). This indicates that pectinesterase genes directly regulate the loss of firmness in
the fruit at 15 ± 2 ◦C.
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1 
 

 Figure 6. Top 10 significantly enriched GO terms of the DEG by each pairwise comparison against
Day 0, (A) Day 3 at 28 ± 2 ◦C, (B) Day 6 at 28 ± 2 ◦C, (C) Day 3 at 15 ± 2 ◦C, (D) Day 6 at 15 ± 2 ◦C,
(E) Day 9 at 15 ± 2 ◦C. The y-axis represents the GO terms, and the x-axis represents the percentage
hits of enriched genes. The circle size indicates the genes in each GO term. Color scale means adjusted
p-value.

2.5. RNA-Seq Data Validated through qRT-PCR

To validate the RNA-seq data, four unigenes with different expression patterns (up and
down-regulated genes) were selected for qRT-PCR analysis under all the conditions evalu-
ated. These genes were involved in plant cell wall metabolisms such as ethylene-responsive
protein kinase (EDR1), Expansine (EXP4), pectate lyase (PL15), and pectinesterase (PME2).
The LogFC results in all conditions are shown in Figure 9A. Considering the normalization
of gene expression with Day 0 as one, the LogFC showed that the EDR1 gene was down-
regulated in all conditions tested, presenting Day 6 and Day 9 at 15 ± 2 ◦C with the highest
down-regulation values (p < 0.05) compared to the other conditions. On the other hand,
EXP4 and PL15 genes were up-regulated in all the conditions evaluated. Furthermore,
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Day 6 and Day 9 at 15 ± 2 ◦C significantly promoted (p < 0.05) the up-regulation of the
PL15 gene. Finally, in the PME2 gene, considerable (p < 0.05) up-regulation was recorded
on Day 3 and Day 6 at 15 ± 2 ◦C and down-regulation on Day 6 at 28 ± 2 ◦C and Day 3 at
15 ± 2 ◦C, respectively. The selected genes had the same pattern between the RNA-seq and
qRT-PCR results (Supplementary Material Table S1). Linear regression analysis and correla-
tion analysis between the LogFC data from RNA-seq and qRT-PCR showed a coefficient of
R2 = 0.75711 (Figure 9B) and R = 0.88 (Figure 9C) with a p-value <0.01. Therefore, qRT-PCR
results were consistent with the expression profiles found by the RNA-seq, considering a
good validation of the DEG. 

2 

 
Figure 7. Top 10 significantly enriched KEGG pathways of the DEG by each pairwise comparison
against Day 0, (A) Day 3 at 28 ± 2 ◦C, (B) Day 6 at 28 ± 2 ◦C, (C) Day 3 at 15 ± 2 ◦C, (D) Day 6 at
15 ± 2 ◦C, (E) Day 9 at 15 ± 2 ◦C. The y-axis represents the KEGG enriched pathways and the x-axis
represents the Rich Factor. The circle size indicates the number of genes in each KEGG pathway.
Colors correspond to the adjusted p-value.
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3 

 

 

 

Figure 8. Network analysis of genes related to ripening (A) Genes at 28 ± 2 ◦C and (B) Genes at
15 ± 2 ◦C. Red lines mean high correlation while blue means low correlation.

 

3 

 

 

 
Figure 9. Validation of RNA-seq results using qRT-PCR. (A) Gene expression of four genes. (B) Linear
regression. (C) Correlation. Different letters per gene indicate a significant difference (p < 0.05).

3. Discussion

Soursop fruit suffers rapid senescence after harvest, leading to several physiological
changes at room temperature. The temperature of 15 ± 2 ◦C delayed ripening, formation of
soluble solids, acidity, and pH without chilling injury, increasing the postharvest shelf life
of the soursop fruits by three days compared with the fruits stored at 28 ± 2 ◦C. Previous
studies have shown that refrigeration technology prolongs the postharvest shelf life of
the fruit without causing cold damage [7,14]. On the other hand, approximately 90% of
the soursop fruit production is consumed at a national level, however, it is not evenly
distributed around Mexico and is only available in two seasons per year. [4]. Therefore,
the stored temperature at 15 ± 2 ◦C will increase the accessibility to this fruit by transport-
ing the fruit by truck, ship, or plane, reaching other regions of Mexico and, in the near
future, this will favor the commercialization to other countries such as the USA, which is
approximately 1400–1500 km distance by road from Nayarit to Arizona. The information
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about how genes and mechanisms are being regulated in soursop fruits during ripening
at postharvest storage is practically null. Here, we used RNA-seq analysis and reported
global transcriptional changes as well as pathways associated with ripening. The assembly
statistics of this study showed a higher number of assembled transcripts and unigenes
compared to other Annonaceae transcriptomes [19–21]. Recently, the first soursop genome
was assembled at a chromosome level from PacBio and Illumina short-reads, identifying
23,375 protein-coding genes using de novo RNA-seq and homology searches [22]. In this
study, similar results were obtained, finding 21,494 ORF from 95,832 unigenes under differ-
ent postharvest storage conditions. On the other hand, the functional annotation showed
genes related to pathways highlighting, transcription, signal transduction, and metabolism
that respond to different postharvest storage conditions. Taken together, the transcriptomic
results presented here expand the knowledge of soursop fruit.

We identified several DEG in soursop fruit at 28 ± 2 ◦C and 15 ± 2 ◦C on different
days of storage, allowing us to gain insights into the gene regulation during postharvest
storage in soursop fruits. Within this information, we created the first public database
of DEG in soursop fruit under different postharvest storage conditions. In this regard,
14,701 datasets with unique annotation were fully uploaded, including its sequence, symbol,
Pfam, and annotation http://perseo.uan.mx/bioinformatica/annomicsdatabase (accessed
on 5 July 2022). The temperature of 15 ± 2 ◦C showed the highest number of up-regulated
genes. Indeed, the number of DEG increased according to the days and temperature storage
conditions. In this context, the largest number of DEG, as well as up-regulated genes, was
recorded after nine days of storage at 15 ± 2 ◦C, representing 10.31% of the total genes
assembled in this study. A possible explanation for this result is that the temperature has a
direct impact on plant growth and development due to the structure and composition of
the cell wall can change. Moreover, this condition coincides with the onset of senescence,
leading to the accumulation of secondary metabolites and cell wall breakdown, involving
several genes.

Transcriptomic studies applying low storage temperatures (below 15 ◦C) showed
the highest DEG in different fruits and vegetables [23,24]. These results suggest that the
regulation of gene expression is mediated by the combination of days and temperature of
postharvest storage. On the other hand, Day 6 of storage at the temperature of 28 ± 2 ◦C
showed the highest number of DE and up-regulated genes. This indicates that more
genes are induced during the maturity of consumption than physiological maturity, which
directly impacts the soursop fruit softening, an important characteristic of the ripening.
Similar results were obtained in mango fruits using RNA-seq technology [10].

The maturation involves several enzymes associated with the pectin, a polysaccha-
ride that plays a critical role in the plant cell wall architecture. Remarkably, the top DEG
were related to pectin, showing all these DEG high expression in all the conditions eval-
uated. Methyltransferases (S-adenosyl-L-methionine-dependent-methyltransferases) are
a large plant family that contain enzymes that methylate the oxygen atom of several sec-
ondary metabolites such as phenylpropanoids, flavonoids, and some alkaloids, playing
an important function in lignin biosynthesis [25]. Otherwise, PE plays a key role in cell
wall metabolism during fruit ripening at the early stages of softening, specifically in the
assembly and disassembly of the pectin [26]. It has been detected in soursop pulp, be-
ing one of the most heat-resistant enzymes [27,28]. On the other hand, enzymes such as
glycosyl hydrolases, lyases, and glycosidases catalyze the degradation of polysaccharide
connection [29]. In this context, we found Glycohydrolase highly expressed in all the
conditions evaluated. Additionally, other cell wall enzymes located in the pectin such
as PL and Rhamnogalacturonan lyase (RGL) were highly expressed. These are classified
as pectin degrading enzymes and are implicated in fruit softening [30,31]. Tomato and
strawberry have been used as plant models to study fruit ripening by using genetically
modified plants. The results of that studies have demonstrated that PL and RGL contribute
to fruit softening [32–36]. The ripening process is regulated by a diverse number of genes
that control softening, the accumulation of sugars, and acids, among others [37]. In our
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study, we found that metabolic, biosynthesis of secondary metabolites, plant hormone
signal, starch and sucrose metabolism, plant–pathogen interaction, plant–hormone signal
transduction, and MAPK-signaling pathways were functionally enriched in most of the
conditions evaluated. These KEGG pathways are closely related to the changes that occur
during fruit softening, impacting the soursop characteristics such as color, firmness, taste,
and flavor. Indeed, based on enriched DEG, we found a high correlation between firm-
ness and pectin-associated genes. Previous studies on soursop fruits have demonstrated
a negative correlation between the PME activity and the firmness of the fruits [7]. The
pectinesterase gene family has several members with distinct biological roles, leading to a
different function in the plant cell wall. Therefore, some pectinesterase genes are positive
and others are negatively correlated with firmness. Moreover, the gene co-expression
network at 15 ± 2 ◦C showed a key pectinesterase gene interacting with another two
pectinesterase from the same family.

Collectively, these results indicate that multiple gene families associated with pectin,
such as pectinesterase, xyloglucanase, Glycohydrolase, and rhamnogalacturonan lyase,
among others, are involved in cell wall composition, directly impacting the loss of firmness
of soursop fruits. Further, some members of the xyloglucans endotransglycosylase families
have demonstrated differential expression under stress conditions, leading to delayed
growth of the cell due to the increase of ROS [38].

Taking all these results, it seems that the temperature of 15 ± 2 ◦C modifies the
structure of the plant cell wall, activating multiple cell wall-related genes depending on the
development stage. Further, our results suggest that a set of pectin-associated genes are
regulating these complex reactions.

We validate the RNA-seq results using qRT-PCR by analyzing the expression of
up and down-regulated genes related to plant cell wall that impacts fruit softening. We
demonstrated that our results were reliable due to the good linear and correlation coefficient
values reported. Fruit ripening involves several genetic, biochemical, and physiological
changes which are caused by a range of modifications in the polymers of the plant cell
wall [39]. The plant hormone ethylene regulates a variety of physiological processes
including fruit ripening. Ethylene is sensed by several receptors that, together with the Raf-
like kinase constitutive triple response (CTR1), negatively regulate the ethylene signaling
transduction [40,41]. In accordance, EDR1 expression showed a down-regulation in all
the conditions evaluated, suggesting that other receptors may exist for modulation of the
ethylene in soursop fruit.

Pectin is solubilized in fleshy fruits, increasing the content of pectin, and causing the
cell wall to dissemble in the plants [39]. Further, the most important pectin degrading
enzymes are PG, EXP, PME, and PL, which are associated with fruit softening [31]. We
found that in the fruits stored at 15 ± 2 ◦C, higher expression was recorded at nine days of
storage compared to day three in the EXP4, PL15, and PME2 genes. These results suggest
that the combination of temperature and the onset of ripening induced the pectin degrading
enzymes evaluated during postharvest storage.

4. Materials and Methods
4.1. Plant Material

Soursop fruits ‘GUANAY-1′ were hand-harvested at physiological maturity according
to fruit shape, peel color, and size from 10 ungrafted trees in a 23 year-old orchard located
in Venustiano Carranza, Nayarit, Mexico (21◦32′2.77′ ′ N, 104◦58′39.73′ ′ W) as reported
by [15]. Five fruits per tree (50 fruits in total) without mechanical and pathogenic damage
were selected, disinfected with 2.0% sodium hypochlorite, and washed with distilled
water. Soursop fruits were stored at 28 ± 2 ◦C and 15 ± 2 ◦C in a controlled temperature
chamber (Climacell® CLC-B2V-M/CLC404-TV, Angelbachtal, Germany) until reaching
senescence. Fruit mesocarp was collected in three developmental stages: physiological
maturity (0 days), maturity of consumption (3 days at 28 ± 2 ◦C), and onset of senescence
(6 days at 28 ± 2 ◦C). Further, the postharvest shelf life was prolonged up to 9 days at
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15 ± 2 ◦C (onset of senescence). Hence, fruit mesocarp was taken at 0, 3, 6, and 9 days
at 15 ± 2 ◦C as reported by [15]. The samples were quickly placed in RNAlater solution
(Sigma-Aldrich), frozen in liquid nitrogen, and stored at −80 ◦C.

4.2. Physicochemical Analysis

Five fruits per each condition tested were used to measure the following physicochem-
ical parameters: firmness, total soluble solids, titratable acidity, and pH. Firmness was
measured with a digital penetrometer (SSEYL GY-4 Digital Fruit Penetrometer) in three
different areas of fruit and reported as Newtons (N). The pH of the pulp was measured
with a potentiometer (Hanna Instruments HI2210). The total soluble solids (TSS) were de-
termined using a digital refractometer (Hanna HI 96801). Titratable acidity was determined
according to the official method of the [42] by volumetric titration with 0.01 N of NaOH
and phenolphthalein as an indicator.

4.3. RNA Extraction and RNA-seq Library Construction

Total RNA was extracted from 75 mg of soursop mesocarp tissue with the Spectrum
Plant Total RNA kit (Sigma-Aldrich) following the manufacturer’s instructions. The RNA
extracted was treated independently with the NEBNext Ultra RNA Library Prep Kit for
Illumina Kit (New England BioLabs, Ipswich, MA, USA, Cat.E7530S). We used 700 ng of
RNA as input for each library, adjusted the size select conditions for average insert sizes
of 400 bp, and the enrichment PCR to 15 cycles. The quantity and quality of all libraries
were assessed by Qubit Fluorometer (Invitrogen, Waltham, MA, USA, Cat.Q32851) and
Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA, Cat. 5067-4626),
respectively. Good quality RNA was used to create independent RNA-seq libraries per each
condition evaluated. The libraries were sequenced using the Illumina Next-Seq 500 High
Output in a 300-cycle paired-end format at the National Institute of Genomic Medicine
(INMEGEN) in Mexico City, Mexico.

4.4. De Novo Transcriptome Assembly

First, the quality visualization was performed with FastQC (version 0.11.5) [43]. After,
we used Trimmomatic (version 0.36) [44] to remove the sequencing adapters, ambiguous
nucleotides, and filter the quality of the reads with a sliding window of 4 bases and a
minimum Phred score >20. Those quality-filtered reads were the input for the de novo
transcriptome assembly with Trinity transcriptome assembler (version 2.5.1) [45], with
the default parameters and the metadata file containing all the samples separated by
condition evaluated. To validate the assembly, the reads of each sample were realigned to
the transcriptome using Bowtie2 (version 2.3.0) [46]. The raw reads were deposited in the
NCBI repository under the BioProject ID number PRJNA804904.

4.5. Functional Annotation

De novo assembled transcriptome was annotated using Trinotate pipeline (https:
//trinotate.github.io/ (accessed on 19 February 2021)) as reported in the axolotl transcrip-
tome [47].

TransDecoder v2.0.1 was used to predict coding sequences and identify open reading
frames (ORFs). The ORFs were scanned to search homology against the UniProt/SwissProt
and UniRef90 databases using BLASTx and BLASTp (e-value < 1 × 10−5), respectively. Pro-
tein domains were identified using the Pfam domain database using HMMER v3.1b2 [48].
Potential signal peptides were identified using SignalP v4.1 [49] and transmembrane regions
were predicted with TmMM [50] and rRNA with RNAmmer [51]. Moreover, assembled
transcripts were also searched against the evolutionary genealogy of genes: Non-supervised
Orthologous Groups (eggNog), Kyoto Encyclopedia of Genes and Genomes (KEGG), and
Gene Ontology (GO) annotation databases. Transcriptome annotations were loaded into an
SQLite database and reported in a tab-delimited file. Further, the trinotateR package was

https://trinotate.github.io/
https://trinotate.github.io/
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used to summarize the results of the transcriptome annotations. KEGG mapper pathway
was used to identify the KO terms and then plot in Rstudio using the ggplot2 package.

4.6. Differential Expression and Functional Enrichment Analysis

The expression was calculated with RSEM (RNA-Seq by Expectation Maximization)
(version 1.2.31) [52] filtering the features with an FPKM <1. The differential expression
analysis was performed using the “run_DE_analysis.pl” script of the Trinity suite with
the edgeR method [53]. Genes with a false discovery rate (FDR) cut-off p ≤ 0.001 and
Log2FoldChange (LogFC) >2 were considered significant differentially expressed genes
(DEG). Additionally, a subset annotation from the DEG was generated using the trinotateR
package, and with this information, an online public database was created. The number of
up and down-regulated genes was calculated by each pairwise comparison against Day
0. Then, Venn diagrams were generated to analyze the shared up and down-regulated
genes by each temperature. Subsequently, genes associated with ripening were plotted in a
heatmap with hierarchical clustering. These plots were carried out using the Venndiagram,
pheatmap, and ggplot2 packages in Rstudio, respectively. Gene Ontology (GO) terms of
DEG were performed in Rstudio using the GOseq package [54]. Indeed, GO terms related
with ripening with a corrected p-value < 0.05 were considered significant, then enriched
and summarized in Table 2. Then, KEGG functional enrichment analysis was performed
with KOBAS [55] from the Entrez gene ID identified in the Arabidopsis thaliana database
using the org.At.tair.db package in Rstudio. A scatter plot by each pairwise comparison
against Day 0 of the top 10 GO terms and KEGG pathways was made using the ggplot2
package in Rstudio.

4.7. Correlation Analysis and Network Construction

To identify genes that show a significant association between the expression levels
and firmness, correlation matrix between the GO enriched DEG related to cell wall and
firmness was estimated by using Pearson correlation coefficient (r) and p < 0.05. Further,
gene co-expression networks were constructed with the igraph package in Rstudio using
the enriched DEG at 28 ± 2 ◦C and 15 ± 2 ◦C. Edges below r < 0.8 and vertices with no
edges were removed.

4.8. Transcriptome Validation of Differential Expressed Genes by qRT-PCR

The previously extracted RNA was quantified using a NanoDrop ND-1000 UV-Vis
spectrophotometer at 260 nm (Nano Drop Technologies Inc., Wilmington, DE, USA) and
the integrity was analyzed by 1.5% agarose gel electrophoresis. Then, the first-strand cDNA
was synthesized from 1 µg of total RNA using the SuperScriptIII reverse transcriptase kit
according to the manufacturer’s instructions.

Primers and probe sequences of four selected genes were designed using the soft-
ware Primer3 [56] as shown in Table 3. The specificity of the primers was tested by
the Primer-Blast tool (http://www.ncbi.nlm.nih.gov/tools/primer-blast/ (accessed on
14 September 2021)). The qRT-PCR was carried out in a StepOnePlus™ Real-time PCR Sys-
tem (Applied Biosystems Inc, Foster City, CA, USA) with a final volume of 20 µL including
1X TaqMan Fast Advanced Master Mix (10 µL), 0.4 µM (0.8 µL) of forward and reverse
primer, 0.18 µM (0.72 µL) of the probe, and 40 ng de cDNA (2 µL). Amplification conditions
were one cycle of 95 ◦C for 5 min followed by 45 cycles of 95 ◦C for 1 min and 55 ◦C for
1 min with a signal acquisition in the FAM channel at the end of the annealing/extension
step. Non-template controls were also included. Relative gene expression was calculated
with the 2−∆∆CT method [57] using Ubiquitin (UBC) as a reference gene to normalize the
data as previously reported by Berumen-Varela et al., 2020b, under the same conditions.
Day 0 was considered the calibrator sample to calculate the final values. Gene expression
values were reported as LogFC and plotted in Rstudio using the ggplot2 package.

http://www.ncbi.nlm.nih.gov/tools/primer-blast/
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Table 3. Primer’s sequence used to amplify the genes of this study. Fw and Rv mean forward and
reverse primers, respectively.

Gene Name Sequence (5′–3′) Amplicon Size (bp)

EDR1

Fw: TTTTGGCAGACAGTGTGGGT

Rv: TCAGATGGGATAAGCGTGCC 151

Probe: GGTTGATCAAAGGGCAGCAA

EXP4

Fw: GAGGACGGATTGGATGGCTA

Rv: TCGGAAGGAGAGAGACTGGG 88

Probe: CAGAACAGGCAGTCGAACG

PL15

Fw: GGACAATGGCTGACGGTGAT

Rv: TGCATCTACAAGGCCATCGG 101

Probe: ATCACTGCTCCCTCTCCAAC

PME2

Fw: GCCGGTCTCTCCCTGTAAAC

Rv: TAAGGCTCCATCCGAATCGC 80

Probe: CATGTAGGATGCCATTGCCA

4.9. Statistical Analysis

A randomized complete block design (days of storage as blocks) was used to analyze
the physicochemical parameters (firmness, titratable acidity, TSS, and pH). On the other
hand, LogFC for each gene was evaluated under a complete randomized design. Shapiro–
Wilk test and Bartlett test were performed to all data to verify the normality and the
homogeneity of variances, respectively. These data were analyzed by analysis of variance
(ANOVA) with p < 0.05 significance level. Tukey’s HSD test (Honestly Significant Differ-
ences) was carried out when ANOVA showed significant differences. Linear regression
and Pearson correlation analysis were done to validate the LogFC gene expression values
obtained by qRT-PCR and RNA-seq results. Plots and statistical analysis were performed
in RStudio using the ggpubr, ggplot2, and agricolae packages.

5. Conclusions

The temperature of 15± 2 ◦C is a promising strategy and viable technology to transport
soursop fruits long distances and reach national and international markets, leading to an
increase in the income for the Mexican producers. The gene expression of soursop fruits
is regulated by the temperature and days of postharvest storage. This study provides
valuable information to establish the molecular basis to start a germplasm bank and
breeding program to develop a soursop variety with longer postharvest shelf life.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants11141798/s1, Table S1: LogFC values obtained by RNA-
Seq and qRT-PCR.
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