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Abstract 

Background:  Lung cancer, one of the most common malignant tumors, exhibits high inter- and intra-tumor hetero-
geneity which contributes significantly to treatment resistance and failure. Single-cell RNA sequencing (scRNA-seq) 
has been widely used to dissect the cellular composition and characterize the molecular properties of cancer cells 
and their tumor microenvironment in lung cancer. However, the transcriptomic heterogeneity among various cancer 
cells in non-small cell lung cancer (NSCLC) warrants further illustration.

Methods:  To comprehensively analyze the molecular heterogeneity of NSCLC, we performed high-precision single-
cell RNA-seq analyses on 7364 individual cells from tumor tissues and matched normal tissues from 19 primary lung 
cancer patients and 1 pulmonary chondroid hamartoma patient.

Results:  In 6 of 16 patients sequenced, we identified a significant proportion of cancer cells simultaneously express-
ing classical marker genes for two or even three histologic subtypes of NSCLC—adenocarcinoma (ADC), squamous 
cell carcinoma (SCC), and neuroendocrine tumor (NET) in the same individual cell, which we defined as mixed-lineage 
tumor cells; this was verified by both co-immunostaining and RNA in situ hybridization. These data suggest that 
mixed-lineage tumor cells are highly plastic with mixed features of different types of NSCLC. Both copy number vari-
ation (CNV) patterns and mitochondrial mutations clearly showed that the mixed-lineage and single-lineage tumor 
cells from the same patient had common tumor ancestors rather than different origins. Moreover, we revealed that 
patients with high mixed-lineage features of different cancer subtypes had worse survival than patients with low 
mixed-lineage features, indicating that mixed-lineage tumor features were associated with poorer prognosis. In addi-
tion, gene signatures specific to mixed-lineage tumor cells were identified, including AKR1B1. Gene knockdown and 
small molecule inhibition of AKR1B1 can significantly decrease cell proliferation and promote cell apoptosis, suggest-
ing that AKR1B1 plays an important role in tumorigenesis and can serve as a candidate target for tumor therapy of 
NSCLC patients with mixed-lineage tumor features.
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Background
Lung cancer is one of the most common malignant 
tumors with the highest incidence and morbidity accord-
ing to the GLOBCAN 2018 [1]. There are two major his-
tological subtypes of lung cancer: small cell lung cancer 
(SCLC) and non-small cell lung cancer (NSCLC) [2]. 
NSCLC, accounting for 84% of lung cancer cases, mainly 
includes three histological subtypes: adenocarcinoma 
(ADC), squamous cell carcinoma (SCC), and large cell 
carcinoma (LCC). Accumulating evidence suggests that 
NSCLC has high heterogeneity, not only with different 
histologies but also with different molecular and cellular 
features [3, 4].

Accurately identifying the subtypes of lung cancer is 
important for its clinical treatment. In clinical practice, 
lung cancer subtypes are mainly identified through a 
combination of histological features and immunologi-
cal markers. In general, ADCs have glandular histology 
or mucin production and express hallmark genes such 
as TTF1 (also known as NKX2-1), NAPSA, cytokeratin 
7 (KRT7), and MUC1 [5]. SCCs have squamous differ-
entiation features and are clinically diagnosed by immu-
nostaining of p63 or p40 (TP63), cytokeratin 5/6 (KRT5/
KRT6), and transcription factor SRY-box  2 (SOX2) [6]. 
Finally, SCLCs and large cell neuroendocrine carcinoma 
(LCNEC) are neuroendocrine tumors (NETs) that usu-
ally have neuroendocrine differentiation properties and 
are defined by the specific expression of chromogranin A 
(CHGA), synaptophysin (SYP), and neural cell adhesion 
molecule 1 (NCAM1) [7].

The potentially distinct cell origins of the lung cancer 
subtypes also contribute to the heterogeneity of lung 
cancers at tumor initiation. The exact cell origins of lung 
cancer subtypes are still elusive, but previous studies 
revealed that SCCs, SCLCs, and ADCs are roughly dis-
tributed in the lung following a proximal-to-distal pat-
tern; furthermore, these three major subtypes originate 
from different lineages of cells in the lung [8]. Geneti-
cally engineered mouse models showed that AT2 cells in 
the alveoli are the predominant cell-of-origin of ADCs, 
although club cells can also give rise to ADCs [9, 10]. 
SCCs are generally considered to arise from basal cells in 
proximal airways, and SCLCs are speculated to originate 
from pulmonary NE cells [11–14]. Although the three 
lung cancer subtypes originated from different lineages, 
recent works reported that the tumor state transitions 

can occur with cellular program dysregulations in epi-
genetics and transcriptomics during tumor development 
[15–17].

As the lung is a complex organ composed of more than 
40 different types of cells [18, 19], including epithelial, 
endothelial, stromal, and immune cells, it is important 
to separate different cell types to profile their charac-
teristics. Due to technological limitations, conventional 
sequencing methods require millions of cells. Hence, 
studies on NSCLC were limited to bulk samples, and 
these results only showed the average molecular features 
of NSCLC, concealing the intratumoral heterogeneity. 
With the development of high-throughput sequencing 
techniques, especially single-cell sequencing techniques, 
detailed molecular characterization of lung cancer is now 
feasible. Recent advances in single-cell RNA sequenc-
ing (scRNA-seq) studies on NSCLC provided a compre-
hensive cellular diversity landscape within lung tumor 
tissues. Previous studies characterized the stromal cells 
such as T cells, macrophages, fibroblasts, and endothelial 
cells in the lung tumor microenvironment [20–23], dis-
sected the tumor heterogeneity and cellular reprogram-
ming in advanced and metastasis lung cancer [24–26], 
comparatively analyzed the differences in heterogeneity 
and cellular compositions between ADC and SCC [27], 
and revealed the molecular mechanisms of tumor ther-
apy-induced tumor evolution and resistance [28]. How-
ever, efforts in profiling lung tumor cells of primary 
NSCLC and understanding their cellular biology by 
scRNA-seq are still limited. In this study, we performed 
high-precision single-cell RNA-seq analysis with surgical 
tissues from 19 primary lung cancer patients as well as 
1 pulmonary chondroid hamartoma patient. By analyz-
ing the epithelial cells from tumor tissues and matched 
normal tissues of 16 patients at the single-cell transcrip-
tome level, we identified an interesting subpopulation 
of mixed-lineage cancer cells simultaneously expressing 
classical marker genes for two or even three histologic 
subtypes of NSCLC. Then, by in-depth analyzing the 
characteristics of mixed-lineage cancer cells, we iden-
tified gene signatures specific to mixed-lineage cancer 
cells, including AKR1B1. Functional analysis verified that 
AKR1B1 was necessary for tumor growth, suggesting 
that it can serve as a candidate target for tumor therapy 
of NSCLC patients with mixed-lineage features. Our 

Conclusions:  In summary, our work provides novel insights into the tumor heterogeneity of NSCLC in terms of the 
identification of prevalent mixed-lineage subpopulations of cancer cells with combined signatures of SCC, ADC, and 
NET and offers clues for potential treatment strategies in these patients.
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work provides novel insights into the molecular charac-
teristics of NSCLC.

Methods
Clinical human specimen collection
In this study, we collected 19 primary lung cancer 
patients (14 ADC patients, 3 SCC patients, 1 combined 
small cell lung cancer (C-SCLC) patient, and 1 patient 
with mixed adenocarcinoma and neuroendocrine carci-
noma (MANEC)) and 1 pulmonary chondroid hamar-
toma patient undergoing surgical resections. All patients 
were diagnosed based on histologic diagnosis and tumor 
cellularity by pathologists. Patient clinical information 
such as age, gender, TNM classification, and stage can 
be found in Additional file  1: Fig. S2a. The cancer sub-
types were identified according to the 2015 WHO clas-
sification. All patients signed an informed consent prior 
to enrollment and tissue donation. Fresh tissues were 
stored on ice in RPMI-1640 medium supplemented with 
10% fetal bovine serum (FBS) and 1% penicillin/strepto-
mycin for dissociation. Cells from all patients were used 
for single-cell RNA-seq analysis. Cells from some of the 
patients were also used for bulk whole-genome sequenc-
ing. This study was approved by the Research and Ethics 
Committee of the Chinese Academy of Medical Sciences 
& Peking Union Medical College (NCC1798).

Cell lines and culturing
Human H2009 and SW480 cell lines were obtained from 
the Cell Resource Center, Peking Union Medical College 
(which is the headquarter of the National Infrastructure 
of Cell Line Resource, NSTI) and cultured in DMEM/F12 
supplemented with 10% fetal bovine serum (FBS) and 1% 
penicillin/streptomycin antibiotic cocktail. H2009 cell 
line served in this study was verified by short tandem 
repeat STR typing. Both cell lines were validated to be 
free of mycoplasma contamination.

Histopathology
Histopathology images were obtained from Cancer 
Hospital, Chinese Academy of Medical Sciences, where 
3-μm-thick sections were prepared for staining with 
hematoxylin and eosin for further examination.

Dissociation of single cells from lung tissues
Freshly resected lung tissues were dissected in RPMI-
1640 medium + 10% FBS on ice and washed with ice-
cold Dulbecco’s phosphate-buffered saline (DPBS; 
Corning). Then, the tissue was transferred to a tube and 
was cut into small pieces with a scissor. Next, the tissue 
was resuspended in 1 ml of digestion buffer consisting 
of Collagenase Type I (2 mg/ml; Gibco), Dispase II (1 
mg/ml; Millipore), and DNase I (0.2 mg/ml; Roche) in 

RPMI-1640 medium and incubated at 37 °C for 30–40 
min with frequent agitation. The tissue was gently pipet-
ted up and down 40–50 times, and the suspension was 
filtered through 100-μm mesh filters. After being centri-
fuged at 500 × g for 10 min at 4 °C, the cell pellet was re-
suspended in red blood cell lysis buffer and incubated at 
RT for 3 min. Then, the cells were washed again, and the 
cell pellet was re-suspended with RPMI-1640 medium 
+10% FBS. To guarantee the cells for single-cell RNA-seq 
with high cell viability, we checked the cells for viability 
via trypan blue staining after tissue dissociation for each 
sample we collected. If the cell viability is lower than 80%, 
the samples would be given up and will not be processed 
for single-cell transcriptome sequencing.

Single‑cell RNA‑seq library construction and sequencing
Single-cell cDNA amplification was performed based 
on a modified single-cell tagged reverse-transcription 
sequencing (STRT-seq) protocol [29, 30]. Briefly, a sin-
gle clean cell with integral morphology and high cell 
viability under the sight of × 100 magnification micro-
scope was randomly picked into the lysis buffer by mouth 
pipette. Then, the released mRNAs were reverse tran-
scribed into cDNA by poly(T) primer anchored with 
cell-specific barcodes and 8-bp unique molecular identi-
fiers (UMIs). Followed by second-strand cDNA synthe-
sis and pre-amplification, the amplified cDNAs can be 
pooled together, fragmented, and the 3′ ends were used 
for library construction using Kapa Hyper Prep Kit (Kapa 
Biosystems). The constructed libraries were sequenced 
on HiSeq 4000 system as paired-end 150-bp reads.

Bulk DNA extraction and library construction
Genomic DNA of tumor tissues and matched normal 
tissues were extracted using the DNeasy Blood & Tissue 
Kit (QIAGEN) according to the manufacturer’s specifi-
cation. The DNA concentrations were quantified using a 
Qubit Fluorometer and Qubit dsDNA HS Assay Kit (Inv-
itrogen), and the qualities were evaluated with Fragment 
Analyzer (AATI). Approximately 500 ng genomic DNA 
was sheared by Covaris S2, subsequently for library con-
struction with KAPA Hyper Prep Kit. The samples were 
sequenced on HiSeq 2500 system as paired-end 150-bp 
reads.

Bulk RNA extraction and library construction
H2009 cells were seeded on 6-cm cell culture dishes 
and were transfected with two different siRNAs target-
ing AKR1B1 and a non-targeting siRNA control (NC) 
using lipofectamine RNAIMAX (Thermo Life). After 
transfected for 48 h, cells were harvested for bulk RNA 
sequencing. Briefly, about 5 × 105 cells were used for 
total RNA extraction by the RNeasy Mini Kit (Qiagen) 
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according to the manufacturer’s instructions. Total 
RNA quality was assessed by Nanodrop ND-100 (Wilm-
ington). The mRNA was isolated using the NEBNext 
Poly (A) mRNA Magnetic Isolation Module (New Eng-
land Biolabs). The RNA library was constructed using 
the NEBNext ultra RNA library prep kit for Illumina 
(New England Biolabs). The constructed libraries were 
sequenced on Illumina HiSeq 4000 system to generate 
paired-end 150-bp reads.

Multiplex fluorescent immunohistochemistry staining
Collected fresh lung tissue resections were fixed in 4% 
paraformaldehyde, followed by dehydration and embed-
ding in paraffin as routine protocol. Subsequently, the 
paraffin blocks were cut into 3-μm-thick sections and 
adhered to the slices for Multiplex fluorescent IHC stain-
ing. Briefly, the sections were firstly placed in a 65 °C 
oven for 1 h and deparaffinized in xylene, followed by 
rehydrated successively in 95%, 80%, and 70% alcohol. 
Then, antigen retrieval was performed by incubating in 
critic acid buffer at 95 °C for 20 min. Endogenous peroxi-
dase was blocked by incubating in 3% H2O2 at room tem-
perature (RT) for 10 min. Subsequently, 10% normal goat 
serum was added at RT for 1 h to block non-specific sites. 
Then, the sections were incubated with freshly diluted 
primary antibodies at RT for 1h. The primary antibod-
ies that were used for cancer type validation included 
anti-p63 (Abcam, clone EPR5701, diluted at 1:12000), 
anti-TTF1 (Abcam, clone EP1584Y, diluted at 1:250), and 
anti-PGP9.5 (UCHL1) (Abcam, clone EPR4118, diluted 
at 1:250). Next, the second antibody was added to the 
sections and incubated at RT for another 1 h. Finally, 
the sections were incubated in freshly prepared fluoro-
chrome at RT for 10 min. The antigen binding sites were 
visualized and analyzed with the PerkinElmer Vectra 
Automated Multispectral Imaging System.

RNA in situ hybridization
Fresh lung tissues were washed with ice-cold DPBS and 
fixed in fresh cold 4% paraformaldehyde overnight at 4 
°C. Then, the tissues were washed with DPBS  for three 
times and subsequently were dehydrated by incubating 
in 30% sucrose until the tissues sank. The fixed tissues 
were embedded in Tissue-Tek O.C.T. Compound (#4583, 
Sakura) and were frozen at − 80 °C for cryostat sections; 
12-μm-thick sections were prepared for RNA in  situ 
hybridization. RNA in situ hybridization was performed 
with the RNAscope Multiplex Fluorescent Reagent kit 
(Advanced Cell Diagnostics) according to the manufac-
turer’s protocol. Opal 520 and Opal 570 fluorophores 
were used at 1:1500 dilution.

Cell proliferation assays
To assess the effects of AKR1B1 on cell proliferation, 
H2009 cells were transfected with two different siRNAs 
targeting AKR1B1 and NC in parallel using lipofectamine 
RNAIMAX (Thermo Life). After transfection for 24 h, 
cells were reseeded into 96-well plates at 3 × 103 cells/
well. Cells were incubated with CellTiter-Glo® Reagent 
for 5 min on a shaker to induce cell lysis and were incu-
bated for another 10 min at room temperature. Then, 
the cell numbers were detected based on the quantita-
tion of ATP using a luminometer. Cell proliferation was 
monitored every day. Each experiment was conducted in 
triple technical replicates. Sequences of siRNAs were as 
follows: siAKR1B1-1: 5′GUG​AAA​GCU​AUU​GGC​AUC​
UTT3′; siAKR1B1-2: 5′CCA​GUA​CUG​CCA​GUC​CAA​
ATT3′; and siRNA for NC: 5′ UUC​UCC​GAA​CGU​GUC​
ACG​UTT3′.

Cell apoptosis assays
Cell apoptosis assays were performed using Annexin 
V-FITC/PI (bb-4101, BestBio) according to the manufac-
turer’s instructions. Briefly, H2009 and SW480 cell lines 
were treated with epalrestat or DMSO for 48 h, respec-
tively, and then, the cells were harvested and centrifuged 
at 2000 rpm for 5 min, resuspended in 300-μl binding 
buffer containing 5 μl Annexin V-FITC, and incubated in 
the room temperature for 15 min. Subsequently, 5 μl PI 
was added to the cells to incubate another 5 min at RT 
before they were analyzed by flow cytometry. Experi-
ments were performed in triple technical replicates.

Animal experiments
Animal experiments were conducted following the stand-
ard procedures approved by the committee on the Eth-
ics of Animal Experiments of the Health Science Center 
of Peking University. Mice were housed in ventilated 
cages with up to four per cage in an animal barrier facil-
ity at Peking University. All cages were sterilely changed 
weekly and supplied with hardwood bedding. All mice 
were maintained in a specific pathogen-free room at 22 
to 26 °C with a 12-h shift of light-dark schedule and fed 
with sterile pellet food and autoclaved water provided 
ad libitum. Approximately 5 × 105 H2009 cells were sus-
pended in 50 μl PBS and were mixed with equal volumes 
of Matrigel, and then, the suspension was subcutaneously 
injected into the flanks of 6-week-old female NOD-SCID 
mice. Subsequently, the mice were administered intragas-
trically with 75 mg/kg/day epalrestat or the same volume 
of sterile water every day. Animals were monitored regu-
larly. Once signs of morbidity were observed or the sub-
cutaneous tumor size was required for sacrifice, the mice 
would be euthanized. Tumor volume was calculated with 
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a caplier: tumor volume = 1/2 (length × width2). After 
treatment for 36 days, the mice were euthanized by car-
bon dioxide inhalation, and the tumors were collected to 
evaluate the tumor volume and weight.

Quality control and mapping of single‑cell transcriptome 
data
Firstly, paired-end sequencing data were demultiplexed 
according to the 8 bp cell barcode in the Read-2, and 
then, the 8-bp UMI sequence in Read-2 was attached 
to the corresponding Read-1. Then, low quality, poly A, 
TSO, and adapter contaminated reads were removed 
by our quality-control pipeline. Then, the clean reads 
were mapped to the human genome (hg19) by TopHat 
(v.2.0.14) [31], and the uniquely mapped reads were kept 
for further analysis. HTSeq were used to calculate the 
abundance of transcripts with unique UMIs for each gene 
[32]. Finally, the gene expression levels were normalized 
into transcripts per million reads (TPM).

Copy number variantions (CNVs) inferred with single‑cell 
RNA‑seq data
We used previously published methods to deduce the 
CNVs of every single cell [33, 34]. In brief, the CNV score 
for each gene was calculated as the average expression 
level of 100 genes around the gene on the chromosome. 
All normal epithelial cells were used as control, and the 
CNV scores of tumor cells were centered to zero by sub-
tracting the average CNV score of all normal epithelial 
cells. Next, for the 10M window, the relative CNV score 
was calculated by averaging the CNV scores of all genes 
within the window. Finally, the CNV patterns of tumor 
cells were visualized and clustered with the “pheatmap” 
package, and the CNV clusters with cell numbers more 
than 10 were kept in the heatmap.

The confirmation of CNVs with bulk whole‑genome 
sequencing data
Firstly, low-quality and adapter contaminated reads were 
removed with our quality control pipeline. Then, clean 
reads were aligned to the human genome (hg19) with 
BWA (version 0.7.5a). Next, reads were assigned to the 
10M window, and the reads of each window were nor-
malized by the total reads of each sample. Finally, the 
CNV patterns were plotted as a dot plot.

Mitochondria mutation tracing with single‑cell RNA‑seq 
data
The mapped bam files produced by Tophat were used for 
mitochondrial mutation calling following the GATK sug-
gested pipeline for RNA-seq data (https://​github.​com/​
gatk-​workf​lows/​gatk4-​mitoc​hondr​ia-​pipel​ine) [35]. To 
accelerate the calling process, we only called mutations 

on the mitochondria. The detailed code can be found on 
GitHub (https://​github.​com/​WRui/) (https://​github.​com/​
wrui/​pdf ).

Dimensionality reduction and clustering
The SCENIC package was used to establish a gene regu-
latory network and to cluster our single-cell RNA-seq 
data of 7364 cells with inferred gene regulatory network 
simultaneously (Fig.  1b) [36]. Following the SCENIC 
manual, the python version was applied to our data with 
the default setting. Cells were clustered into 30 clus-
ters and were annotated as epithelial cell, T cell, B cell, 
myeloid, fibroblast, and mast cell with well-known cell 
type marker genes (Fig.  1b). After the cell clusters were 
determined, cells were visualized with tSNE in the Seurat 
package (v3.0.2) [37] (Fig. 1b).

Identification of differentially expressed genes
The “FindAllMarkers” function in the Seurat package 
(v3.0.2) [37] was used to identify differentially expressed 
genes (DEGs) among several groups with parameters 
(logfc.threshold = 1.5, min.pct = 0.25, only.pos = T).

Pseudotime analysis of non‑small cell lung cancer
To construct the single-cell trajectories along the NSCLC 
tumorigenesis, the DEGs between all normal and tumor 
epithelial cells were firstly identified with the Seurat 
package (v3.0.2). Then, these genes were used to recon-
struct the trajectories with the Monocle2 software [38]. 
The function “reduceDimension” in monocle2 was used 
to reduce the dimensionality with parameters “max_
components = 2,” method = “DDRTree.” Next, cells were 
ordered into a low-dimensional space with “orderCells” 
function.

Cancer type definition and visualization
To define cancer type of cells, we clustered cells by 
expression of cancer type associated genes: CHGA, 
CHGB, ASCL1, SYP, NEUROD1, NCAM1, and SST 
for neuroendocrine carcinoma; KRT5, KRT6A, TP63, 
and SOX2 for squamous cell carcinoma; and NKX2-1, 
KRT7, NAPSA, MUC1, KRT8, and KRT18 for adenocar-
cinoma (related to Fig. 2a). For each cell, we firstly filter 
out these cancer type-associated genes whose expression 
level (log2(TPM+1)) is lower than 5. Then, the highest 
expression levels of genes associated with each cancer 
type were defined as the corresponding cancer type attri-
bution score. Then, through clustering the cancer-type 
attribution of each cell, we grouped cells into five groups. 
According to the cancer type gene expression pattern 
of each group, we finally redefined the cancer subtype: 
ADC, SCC_ADChigh, SCChigh_ADC, NET_ADC, and 
triple-positive.

https://github.com/gatk-workflows/gatk4-mitochondria-pipeline
https://github.com/gatk-workflows/gatk4-mitochondria-pipeline
https://github.com/WRui/
https://github.com/wrui/pdf
https://github.com/wrui/pdf
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Fig. 1  Single-cell transcriptome atlas of primary lung cancer. a Schematic diagram showing the experimental workflow of this study. Primary 
lung tumor tissues and matched normal tissues were collected from 19 primary lung cancer patients as well as 1 pulmonary chondroid patient 
who underwent surgery. After we got the freshly resected tumor tissues and matched normal tissues, we dissociated the tissues into single-cell 
suspension and rapidly picked the single cell into cell lysis buffer for single-cell RNA-seq analysis. b t-SNE plot of 7364 high-quality single cells 
showing the cell type identification, sample regions (LyM represents lymph node metastasis), patient information, and cell cluster information. c 
Expression levels of canonical cell type markers across 7364 single cells. d Heatmap showing the expression of specific cell type markers in six major 
cell types. e Proportions of identified six major cell types in normal tissues and tumor tissues separately across patients
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The following several marker genes are commonly 
used to distinguish between adenocarcinoma (NKX2-
1, KRT7, NAPSA), squamous cell carcinoma (TP63, 
KRT6A, KRT5), and neuroendocrine carcinoma (CHGB, 
NCAM1, SYP). To find DEGs among different cancer 
types, we firstly calculated the mean expression levels of 
these three cancer type marker genes in each individual 
tumor cell, and for each cancer cell type, the top 50 cells 
that highly expressed corresponding cancer type markers 
were selected for DEG identification among adenocar-
cinoma, squamous cell carcinoma, and neuroendocrine 
carcinoma. Next, we used these newly identified top 50 
DEGs for each cancer type to score other tumor cells by 
calculating the total expression of specific cancer type 
genes. Next, for each cancer type, we scale the score to 
range from 0 to 100. Then, the scores for these three can-
cer types were visualized with the “ggtern” R package 
(Related to Fig. 2b; Additional file 1: Fig. S3c).

Cancer cell type identification from published datasets
To validate the existence of mixed-lineage cancer cells, 
1710 alveolar cells, 214 epithelial cells, and 7447 cancer 
cells characterized by Lambrechts et  al. [20] and 4356 
human non-immune cells (excluding endothelial cells, 
fibroblasts, and smooth muscle cells) characterized by 
Zilionis et  al. [22] were used for cancer type identifica-
tion. The expression levels of lineage-specific markers 
(NKX2-1, KRT7, and NAPSA for ADC; TP63, KRT5, and 
KRT6A for SCC; CHGB, SYP, and NCAM1 for NET) 
were used for cancer type score calculation. Only cells 
expressing any lineage markers were kept for further 
exploration. Cancer types were defined using the same 
analysis method as mentioned above.

TCGA lung ADC and SCC data download and survival 
analysis
The TCGA mRNA expression data and patient clinical 
information were downloaded through the R package 
“cgdsr.” Then, we used the cancer type genes we identi-
fied from our single-cell dataset to score the bulk TCGA 
dataset. First, we calculated the total expression of these 
cancer type genes for each sample and then divided the 

tumor score by the sum of the three tumor scores (A, S, 
N). A represents adenocarcinoma (ADC), S represents 
squamous cell carcinoma (SCC), and N represents neu-
roendocrine tumors (NET). Finally, we used the score to 
define the lineage-mixed features of tumor:

In this way, for each sample, the higher the score is, the 
higher the mixed degree of the samples. Then, we ranked 
the samples and separated them into low scores and high 
scores. For ADC samples, we divided the samples based 
on the score = 1. For SCC samples, we divided the sam-
ples based on the score = 1.33. Then, we used the R pack-
age “survival” to investigate the correlation between the 
lineage-mixing score and patient survival.

Bulk RNA‑seq analysis
The raw sequencing reads were firstly trimmed to remove 
low-quality and adapter-contaminated reads. Then, the 
clean reads were mapped to the human genome (hg19) 
with TopHat, and the gene expression levels were cal-
culated with HTSeq and then normalized to TPM. The 
R package “DESeq2” [39] was used to identify DEGs 
between siAKR1B1 samples and NC samples. For DEGs, 
p-value < 10−15 were used to draw the heatmap. Gene 
Ontology analysis of DEGs was conducted using Metas-
cape (http://​metas​cape.​org).

Results
Transcriptomic landscape and cell type classification 
of NSCLC
To analyze the transcriptional characteristics of NSCLC, 
we performed high-precision scRNA-seq analysis with 
tissues from 19 primary lung cancer patients who under-
went surgery, including 14 ADC patients, 3 SCC patients, 
1 combined small cell lung cancer (C-SCLC) patient, 
and 1 patient with mixed adenocarcinoma and neuroen-
docrine carcinoma (MANEC) [40]. Cells from healthy 
normal tissues from a pulmonary chondroid hamartoma 

score = c (1−max (A, S, N))/max (A, S, N)

(See figure on next page.)
Fig. 2  Different lineage markers are co-expressed in the same individual tumor cells. a Heatmap showing the unsupervised hierarchical clustering 
of 3373 normal and tumor epithelial cells from 16 patients with the expression levels of NET, SCC, and ADC classical lineage markers. b Lineage 
score analysis further confirmed our cancer type identification. The ggtern plot displayed the cancer type score for each individual cell based on 
the expression levels of these cancer subtype lineage markers of SCC, ADC, and NET. “Highlight” cells represented cells from patient P12 with higher 
mixed features of ADC, SCC, and NEC. “Other” cells referred to the remaining cells except for ADC cells, NET cells, SCC cells, and “highlight” cells. c 
Barplot showing the component score for SCC, ADC, and NET cancer subtypes across every patient. d Multiplex fluorescent IHC staining of cells 
from patient P5 with p63 (TP63, SCC marker) and TTF1 (NKX2-1, ADC marker). Arrows indicated the double-positive cancer cells. Scale bar, 100 μm. e 
RNA in situ hybridization for TP63 and NKX2-1 in primary ADC tissues. Scale bar, 100 μm

http://metascape.org
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Fig. 2  (See legend on previous page.)
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(PCH) patient were collected as a control (Fig. 1a; Addi-
tional file  1: Figs. S1, S2a). In total, we obtained the 
single-cell transcriptome of 9002 cells. After stringent 
filtering (Additional file  1: Fig. S2b), we retained 7364 
(81.8%) high-quality individual cells for subsequent anal-
yses (Additional file 1: Fig. S2a).

To classify major cell types, we performed a t-dis-
tributed stochastic neighbor embedding (t-SNE) analy-
sis using SCENIC identified cell clusters [36] (Fig.  1b). 
Based on the expression patterns of known canonical cell 
type markers, we identified six major cell types, includ-
ing epithelial cells (EPCAM), fibroblasts (THY1), B cells 
(CD79A), T cells (CD3D), myeloid cells (CD68), and 
mast cells (KIT) (Fig.  1c, d). We observed variations in 
the proportions of these six cell types in the 16 patients 
sequenced without cell preselection (Fig. 1e). To compre-
hensively analyze the molecular characteristics of cancer 
cells, we focused our study on epithelial cells. Finally, we 
totally obtained 3373 epithelial cells from 16 patients of 
normal and tumor tissues for subsequent analysis, and 
the cell distribution in each patient was shown in Addi-
tional file 1: Fig. S2c.

scRNA‑seq uncovered mixed‑lineage tumor cells in NSCLC
In this study, three different lung cancer subtypes were 
covered: ADC, SCC, and NET. To further distinguish 
these lung cancer lineages at the single-cell level, we clas-
sified the cancer subtypes based on the expression of 
clinically well-established markers (Fig. 2a). According to 
the gene expression patterns of cancer subtype-specific 
markers, we redefined cancer types for each tumor epi-
thelial cell, namely, ADC, SCC_ADChigh, SCChigh_ADC, 
NET_ADC, and triple-positive (coexpressing ADC/SCC/
NET markers) (Fig. 2a, the details are in the “Methods” 
section). Intriguingly, we found that 55–98% of cancer 
cells simultaneously expressed classical marker genes 
(NKX2-1, KRT7, and NAPSA for ADC; TP63, KRT5, and 
KRT6A for SCC; CHGB, SYP, and NCAM1 for NET) for 
two or even three different histologic subtypes of NSCLC 
in the same individual cell (defined as a mixed-lineage 
cell) in six patients (P5, P10, P11, P13, P19, and P22). If 
we extend the marker genes to include the non-classical 
ones such as MUC1 for ADC, SOX2 for SCC, and ASCL1 
for NET, the mixed-lineage cancer cells were notably 
observed in all of the sixteen patients from whom we 
isolated epithelial cells in tumor tissues. The ratio of the 
redefined cancer subtype across every patient is demon-
strated in Additional file  1: Fig. S3a. To the best of our 
knowledge, this is the first study to identify mixed-line-
age cancer cells at the whole-transcriptome level.

Next, to investigate the molecular heterogeneity 
of mixed-lineage cancer cells, we performed princi-
pal component analysis (PCA) for 1400 mixed-lineage 

cancer cells (Additional file  1: Fig. S3b) and found that 
they were not separated by cancer subtypes; instead, 
different cancer subtypes were mixed together within 
the same patients, which indicating that heterogeneity 
across patient was greater than cancer types within the 
patient. Furthermore, for these three lineages of cancer 
cells, we selected the top 50 individual cells that showed 
the strongest lineage-specific marker gene expression sig-
natures for each lineage and performed PCA (Additional 
file 1: Fig. S3c). The cells of these three different lineages 
were divided into three independent clusters accord-
ingly, which indicated that these 150 selected cancer cells 
accurately represent the unique molecular features of the 
ADC, SCC, and NET lineages. Therefore, we performed 
differentially expressed gene (DEG) analysis for these 
cancer cells to identify new markers for each subtype 
(Additional file  1: Fig. S3d; Additional file  2: Table  S1). 
We found that the cancer subtype markers (GRP, CHGB, 
NEUROD1, and CHGA for NET; KRT5, DSC3, KRT6B, 
TP63, and KRT6A for SCC; and NKX2-1, KRT7, NAPSA, 
and MUC1 for ADC) were specifically expressed in the 
corresponding cancer subtypes. Furthermore, genes such 
as TUBB3 and MEST for NET, TRIM29 and CSTA for 
SCC, and CEACAM6 for ADC can be used as candidate 
markers to distinguish these three subtypes.

To verify the identity of each individual cell, we 
entered all tumor epithelial cells into a ggtern plot with 
cells scored based on the expression levels of markers 
specific for the ADC, SCC, and NET lineages (Fig. 2b). 
Consistent with the above cell clustering and cancer type 
redefinition data (Fig.  2a), the ggtern plot also showed 
that some intermediate cells lay in the middle among the 
ADC, SCC, and NET lineages, indicating their mixed-
lineage nature (Fig. 2b). Specifically, the majority of cells 
from patient P12 displayed the molecular features of 
all three lineages (Additional file  1: Fig. S3e). Next, the 
principal component scores of these three lineages for 
each patient were counted (Fig.  2c). Among the three 
patients diagnosed with SCCs, P12 showed a lower SCC 
score than P1 and P2. Meanwhile, ADC patients P5 and 
P10 displayed lower ADC scores than the other patients 
with ADCs. For patient P22 with MANEC, the ADC 
score was higher than the NET score, indicating that P22 
had stronger ADC characteristics. All the results above 
showed that there were mixed-lineage cancer cells that 
coexpressed marker genes of different cancer lineages 
in NSCLC at the whole-transcriptome level. Moreo-
ver, we analyzed the expression of the lineage-specific 
marker genes from previously published datasets using 
the same method [20, 22]. 12.4% (237 out of 1910) and 
11.8% (432 out of 3668) of the cells in the tumor tissue 
were identified as mixed-lineage tumor cells, respec-
tively (Additional file 1: Fig. S3f ). In the former dataset 
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downloaded, the information about every single cell is 
from which individual patient was missing, and we can-
not trace the origin of the mixed-lineage tumor cells 
to each individual patient. However, in the latter data-
set, mixed-lineage cancer cells were identified in every 
one of the seven patients analyzed, with the ratio rang-
ing from 7.3 to 24.8%. These results clearly confirmed 
the prevalent existence of mixed-lineage tumor cells in 
NSCLC patients.

NKX2-1 and TP63 are the best-known markers to dis-
criminate between ADC and SCC. In our study, we found 
that four ADC patients (P5, P10, P11, and P13) had a 
large proportion of tumor cells coexpressing NKX2-1 
and TP63 (Additional file 1: Fig. S4a). To further confirm 
this, we performed multiplex fluorescent immunohisto-
chemistry (IHC) staining. For P5, the tumor areas on the 
section were strongly and diffusely positive for NKX2-1 
and TP63, and 51% (35,654 out of 70,292 cells analyzed) 
of the individual cancer cells co-expressed these two 
markers simultaneously (Fig. 2d). In contrast, cells from 
adjacent normal tissues did not show double positivity 
for NKX2-1 and TP63. Therefore, multiplex fluorescent 
IHC staining verified our scRNA-seq results at the pro-
tein level. For patients P10 and P11, the staining results 
also showed the presence of NKX2-1 and TP63 double-
positive cells in tumor tissues (Additional file 1: Fig. S4b). 
Surprisingly, we found that many cancer cells from P11 
not only coexpressed NKX2-1 and TP63 but also showed 
high expression of CHGB and UCHL1, which are markers 
of neuroendocrine cells [41] (Additional file 1: Fig. S4a). 
Multiplex fluorescent IHC staining of TTF1 and UCHL1 
on tumor tissues from P11 also verified the coexpression 
of these two markers in a high proportion of tumor cells 
(Additional file 1: Fig. S4c). Moreover, we confirmed that 
NKX2-1 and TP63 were coexpressed in the same tumor 
cells by RNA in  situ hybridization (Fig.  2e; Additional 
file  3). In summary, we verified that mixed-lineage can-
cer cells are prevalent in many different patients with 
NSCLC.

Mixed‑lineage and single‑lineage tumor cells in the same 
patient originate from common tumor ancestor cells
Patients P19 and P22 possessed tumors with two com-
bined components. We found that for patient P19, who 
had C-SCLC, most cells highly expressed not only the 
NET markers CHGA, CHGB, ASCL1, and NEUROD1 
but also the ADC marker NAPSA. Only a small frac-
tion of cancer cells solely expressed ADC markers. For 
patient P22 with MANEC, almost all cancer cells highly 
expressed NAPSA, and some of them coexpressed 
ASCL1. Therefore, unlike ADC patients P5, P10, P11, 
and P13, patients P19 and P22 mainly had NET and ADC 
mixed-lineage cancer cells (Fig.  3a). The mixed-lineage 
cancer cells showed mixed features of different subtypes 
of NSCLC, indicating that they were highly plastic.

To determine the relationship of mixed-lineage cancer 
cells and single-lineage cancer cells in the same patient, 
we investigated the cancer phylogenetic structure based 
on our scRNA-seq data using mitochondrial mutation-
based lineage tracking analysis and single-cell copy 
number variation (CNV) analysis following previously 
described methods [33, 34, 42]. We identified two tumor-
specific mutations, 2645_G and 13226_G, in patient P19 
(Fig.  3b). According to the cancer type identification 
above, tumor cells from P19 were mainly composed of 
the NET_ADC and triple-positive subtypes. Interest-
ingly, the NET_ADC and triple-positive cancer subtypes 
shared these two mutations, suggesting that these two 
types of mixed-lineage cancer cells had common tumor 
ancestors in patient P19 (Fig. 3c). In addition, we identi-
fied more mitochondrial mutation sites specific to tumor 
cells for patient P22, such as 3558_T, 66_G, 3916_G, 
5254_C, and 1985_T (Fig.  3d). These mutations were 
shared by all four cancer subtypes: ADC, NET_ADC, 
SCC_ADChigh, and triple-positive (Fig. 3d, e). Therefore, 
the mitochondrial mutation results indicated that the 
mixed-lineage cancer cells and ADC-based single-lineage 
cancer cells in the same patient had common tumor cell 
ancestors. Although we can not deduce the direction of 

Fig. 3  Mixed-lineage and single-lineage tumor cells in the same patient originate from common tumor ancestor cells. a Line plots showing the 
gene expression levels of clinical lineage-specific markers for single tumor cells from P19 and P22. b Heatmap showing the identified mitochondria 
mutations specific to tumor epithelial cells from P19. c PCA plot of single cells from P19, colored by redefined cell type, sample regions, and 
selected mitochondrial mutations. d Heatmap showing identified mitochondria mutations specific to tumor epithelial cells from P22. e PCA plot of 
single cells from P22, colored by cancer type, sample regions, and selected mitochondrial mutations. f PCA profiles of single cells from P19, colored 
by CNV clusters inferred by single-cell RNA-seq data. Only the cells with a corresponding CNV subtype with more than 10 cells were used for PCA 
analysis. g PCA profiles of single cells from P22, colored by CNV clusters inferred by single-cell RNA-seq data. Only the cells with a corresponding 
CNV subtype with more than 10 cells were used for PCA analysis. h Survival analysis of disease-free survival (DFS) and overall survival (OS) in ADC 
and SCC samples from TCGA. Mixed-lineage features were calculated based on the expression levels of the identified lineage marker genes for ADC, 
SCC, and NET. Samples with high scores and low scores represent high lineage-mixing features and low lineage-mixing features, respectively. i 
Mixed-lineage features evaluation for EGFR mutant samples and wild-type samples in ADC and SCC samples from TCGA, respectively. Mixed-lineage 
features were calculated based on the expression levels of the identified lineage marker genes for ADC, SCC, and NET. The higher the score indicates 
the higher lineage-mixed features

(See figure on next page.)
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Fig. 3  (See legend on previous page.)



Page 12 of 18Li et al. Genome Medicine           (2022) 14:87 

the lineage changes, the most likely scenario is that in a 
NSCLC patient, a specific lineage of the normal epithelial 
cells was first transformed to single-lineage tumor cells 
during tumorigenesis, which further changed to mixed-
lineage tumor cells. This does not exclude the possibility 
that at the late stage of tumorigenesis the mixed-lineage 
and single-lineage tumor cells can interchange easily with 
each other due to their plasticity and flexibility.

We next performed a single-cell CNV analysis based 
on the scRNA-seq data to further support the results of 
mitochondrial mutation analysis. We selected single-cell 
gene expression data from all normal epithelial cells as 
a control to calculate the CNVs of tumor epithelial cells. 
As demonstrated in Fig.  3f and Additional file  1: Fig. 
S5a, we found that two mixed subtypes, NET_ADC and 
triple-positive, in patient P19 had the same CNV pat-
terns. To validate the accuracy of our single-cell CNVs, 
we assessed CNVs using the data generated from whole-
genome sequencing (WGS) on bulk cells from the same 
patient and found that the results were consistent with 
these CNVs inferred by single-cell RNA-seq analysis 
(Additional file 1: Fig. S5b). For example, gain of chromo-
some 3 and chromosome 5 and loss of chromosome 4 in 
tumor cells were clearly evident in CNVs inferred by both 
scRNA-seq and bulk WGS. For patient P22, ADC cells 
and other mixed-lineage cancer cells also had the same 
CNV patterns (Fig.  3g and Additional file  1: Fig. S5c). 
As a result, we further confirmed that the mixed-lineage 
cancer cells and single-lineage cancer cells in the same 
patient had common tumor ancestors. Interestingly, we 
also found that a number of individual cells from adjacent 
normal tissues had copy number losses in chromosomes 
4q and 8p (Additional file 1: Fig. S5a, c, d).

Intratumor heterogeneity contributes to clinical ther-
apy failure and tumor progression [43]. Our scRNA-
seq results highlighted the molecular heterogeneity and 
diversity in an individual tumor of NSCLC containing 
mixed-lineage cancer cells. These mixed cancer cells may 
have an aberrant cellular differentiation program or be 
associated with the transformation between the different 
subtypes. To analyze the relationship between mixed-
lineage cancer cells and prognosis, we partitioned bulk 
RNA-seq samples of NSCLC from The Cancer Genome 
Atlas (TCGA) into two clusters based on the calculated 
lineage-mixing score. Patients with high lineage-mixing 
features (high score) were correlated with decreased sur-
vival, which indicates that a higher percentage of cells 
with mixed-lineage features in NSCLC predict poorer 
prognosis (Fig. 3h). Since data of TCGA were generated 
on bulk samples, it is possible that instead of expressing 
multi-cancer subtype markers in the same individual cell, 
marker genes of different cancer subtypes were sepa-
tately expressed in different subpopulations of cancer 

cells in the tumor tissue. But the score can still reflect the 
general mixed trend of different cancer subtypes in the 
tumor tissues. To further investigate the potential con-
nections between mixed-lineage cancer cells and EGFR 
mutation, we partitioned TCGA samples into two clus-
ters based on EGFR mutation, EGFRWT and EGFRMut. 
We found that for ADC, the patients with EGFR muta-
tion have lower mixed-lineage features than those with 
wild-type EGFR. In contrast, for SCC, the patients with 
EGFR mutation have higher mixed-lineage features than 
the patients with wild-type EGFR (Fig.  3i). Combined 
with the anticancer therapeutic effect of drugs against 
EGFR mutation, the ADC patients with mutated EGFR 
have better responses to epidermal growth factor recep-
tor tyrosine kinase inhibitors (EGFR-TKIs) than the SCC 
patients. We speculate that the heterogeneity of mixed-
lineage cancer cells may underlie variants in therapeutic 
responses to the EGFR-TKI target therapy between ADC 
and SCC patients.

Transcriptome dynamics analysis reveals gene regulation 
changes during tumorigenesis
To determine the transcriptional signatures of tumor 
cells, DEGs were identified between all normal epithe-
lial cells and tumor epithelial cells. Eighty downregulated 
genes and 225 upregulated genes (log2fold change (tumor 
versus normal) > 2) were identified in tumor epithe-
lial cells. Then, we constructed a pseudotime trajectory 
to uncover the transcriptome changes during tumori-
genesis from the normal epithelium (left) to carcinoma 
(right) (Additional file  1: Fig. S6a). The genes whose 
expression levels changed along the trajectory were 
grouped into 4 distinct clusters based on the dynamic 
expression patterns (Additional file 2: Table S2). To bet-
ter understand the biological significance of each cluster 
of genes, we performed a Gene Ontology (GO) analysis 
(Additional file 1: Fig. S6b). Genes in cluster 1 were dra-
matically downregulated in cancer epithelial cells. GO 
analysis showed that these genes were mainly involved 
in the regulation of defense (response to bacterium and 
antimicrobial humoral response), homeostasis, and 
activation of innate immunity by increasing cell chemo-
taxis and cytokine levels. Genes in clusters 2 and 3 were 
widely upregulated in tumor epithelial cells. Genes in 
cluster 2 were mainly enriched in the immune response 
to the virus and interferon signaling pathway, and genes 
in cluster 3 were enriched for the following GO terms: 
extracellular matrix organization, response to toxic sub-
stances, and P53 signaling pathway. Genes in cluster 4, 
which are mainly highly expressed in late-stage tumors, 
were strongly enriched in cell proliferation-related 
terms, including cell division, cell cycle, and mitosis, thus 
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indicating why late-stage tumor cells are more likely to 
proliferate and metastasize.

AKR1B1 is necessary for tumor cell growth
To further investigate the molecular signatures that were 
involved in mixed-lineage features of tumor cells, we 
identified the DEGs among normal epithelial cells, ADC-
based single-lineage tumor cells, and combined mixed-
lineage tumor cells (Fig.  4a; Additional file  2: Table  S3). 
We found that mesenchymal-related markers such as 
FN1, TGFBI, and COL1A1 were enriched in mixed-
lineage tumor cells. It is known that tumor transforma-
tion may occur via EMT, during which process epithelial 
cells acquire mesenchymal-related features [44, 45]. In 
addition, epithelial cell differentiation regulation-related 
genes, such as AKR1B1, SPRR1B, and keratin genes 
KRT6A, KRT19, and KRT17 were also highly expressed in 
mixed-lineage tumor cells. Specially AKR1B1 displayed 
high expression in all four mixed-lineage tumor subtypes 
in tumor tissues (Fig. 4b). AKR1B1 is involved in the glu-
cose transforming polyol pathway and has been reported 
to have the capacity to facilitate breast cancer tumorigen-
esis and metastasis via EMT process [46]. In addition, a 
study also showed that the expression of AKR1B1 was 
strongly correlated with EMT in lung cancer and colon 
cancer, during which process that tumor cells could 
obtain properties of cancer stem cells manifesting diverse 
plasticity [47]. Therefore, we speculated that AKR1B1 
may be one of the master regulators of mixed-lineage 
tumor cells’ plasticity. To further understand the under-
lying molecular mechanisms of  the tumorigenesis  of 
mixed-lineage tumor cells, we focused on functional 
analysis of AKR1B1. First, we performed siRNA knock-
down experiments with two different siRNAs of AKR1B1 
in the H2009 cell line (Additional file 1: Fig. S7a). Knock-
down of AKR1B1 can significantly decrease the prolif-
eration of H2009 cells compared with the non-targeting 
siRNA control (NC) (Fig.  4c). Moreover, knockdown of 

AKR1B1 strongly reduced the proportion of cells in the S 
phase and G2/M phase of the cell cycle (Fig. 4d).

Next, we treated H2009 cells with 100 μM epalrestat, 
a specific inhibitor of AKR1B1 that has been approved 
for the treatment of diabetes complications [48]. As 
demonstrated in Additional file 1: Fig. S7b, we observed 
that the cell numbers in the epalrestat treatment group 
also decreased compared to those in the control group 
(treated with DMSO). To further exclude the potential 
side effects caused by the high concentration of epalr-
estat and to test the drug specificity, the colon cancer cell 
line SW480, which essentially does not express AKR1B1 
according to the Cancer Cell Line Encyclopedia (CCLE) 
RNA-seq data (Additional file  1: Fig. S7c), was treated 
with the same concentration of epalrestat. After H2009 
cells and SW480 cells were treated with 100 μM epal-
restat in parallel for 48 h, the percentage of apoptotic 
cells was significantly higher in H2009 cells but not in 
SW480 cells, suggesting that epalrestat can specifically 
promote apoptosis by inhibiting AKR1B1 (Fig. 4e; Addi-
tional file 1: Fig. S7d). There is a minor possibility that the 
different tissue origins of H2009 cells and SW480 cells 
may also cause the differences in response to epalrestat 
between these two cancer cell lines. In addition, we per-
formed bulk RNA-seq to analyze the gene expression in 
epalrestat treated cells and control (DMSO only) cells. 
We identified 1540 upregulated genes and 1737 down-
regulated genes (fold change (epalrestat versus DMSO) 
> 1.5, P value < 0.01) in epalrestat treated H2009 cells 
(Additional file 4: Table S4). As epalrestat is a non-com-
petitive inhibitor of aldolase reductase, we found that 
when treating H2009 cells with epalrestat to inhibit the 
activity of aldolase reductase, the expression of AKR1B1 
was slightly upregulated potentially though a nega-
tive feedback regulation mechanism. AKR1B1 could be 
involved in different metabolic and physiological pro-
cesses and participate in a complex network of signal-
ing pathways, such as inflammation, cell cycle, epithelial 

(See figure on next page.)
Fig. 4  AKR1B1 is essential for the proliferation of lung tumor cells. a Heatmap showing differentially expressed genes among normal epithelial cells, 
ADC-based single-lineage tumor cells, and combined four mixed-lineage tumor cells. b Box plot in the left shows the single-cell gene expression 
level of AKR1B1 in normal epithelial cells and five cancer cell subtypes. Box plot in right shows the single-cell gene expression levels of AKR1B1 in 
epithelial cells from normal tissues, tumor tissues, and LyM tissues. LyM represents lymph node metastasis. c Proliferation analysis of H2009 cells 
after AKR1B1 was knockdown with two different siRNAs. Compared with non-targeting control (NC), siAKR1B1-1 and siAKR1B1-2 significantly 
reduced the proliferation of H2009 cells. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. p values were determined by t-test. d Cell cycle analysis 
after H2009 cells were transfected with two different siRNAs of AKR1B1 for 48 h. Compared with NC, both siAKR1B1-1 and siAKR1B1-2 significantly 
decreased the cell fractions of S and G2/M phases of the cell cycle. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. p values were determined by 
t-test. e Cell apoptosis analysis after H2009 cells were treated with DMSO or 100 μM epalrestat for 48 h. Epalrestat treatment significantly promoted 
the apoptosis of H2009 cells. ****p < 0.001. p values were determined by t-test. f Photograph of tumors treated with sterile water or epalrestat 36 
days after injection. These 11 tumors in the control group were derived from 7 mice, and these tumors in the treatment group were derived from 
6 mice. Scale bar, 10 mm. g Quantitation of tumor volumes. The tumor volumes were calculated by the following formula: volume = length × 
(width)2 × 0.5. The maximum and minimum detected in each time point were removed. ***p < 0.001; ****p < 0.0001. p values were determined 
by t-test. h Quantitation of tumor weight from tumors in f. Epalrestat treatment significantly inhibited tumor growth. ***p < 0.001. p values were 
determined by t-test
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to mesenchymal transition, and mTOR pathway [49]. By 
analyzing the differentially expressed genes, we found 
that downregulated genes in epalrestat treated cells were 
mainly enriched in cell-cell adhesion, positive regulation 
of cell migration, negative regulation of cell differentia-
tion, cell cycle, mitotic, prostaglandin biosynthetic pro-
cess, and  related metabolic processes, consistent with 
the proposed function of AKR1B1 (Additional file  1: 
Fig. S7e). Upregulated genes were mainly enriched in 
the cellular response to extracellular stimulus, response 
to nutrient levels, and cellular response to glucose star-
vation-related biological processes. In addition, positive 
regulation of the apoptotic process was also enriched in 
these upregulated genes, which was consistent with the 
observation that epalrestat treatment group samples had 
a higher proportion of apoptotic cells (Additional file 1: 
Fig. S7e). To further examine the effect of epalrestat on 
tumorigenesis in vivo, we injected H2009 cells into NOD-
SCID mice. Then, the mice were intragastrically adminis-
tered epalrestat daily. One month later, the tumors were 
collected for further analysis. Compared to control mice, 
epalrestat-treated mice exhibited significantly reduced 
tumor cell growth in vivo (Fig. 4f–h). In summary, these 
data demonstrated that AKR1B1 could play important 
roles in the tumorigenesis of lung cancer. However, as we 
did not detect the effectiveness of epalrestat on AKR1B1 
target for tumor cells of mice, further evaluations on the 
potential off-target effectiveness of epalrestat in  vivo 
should be carried out in the future.

To further understand the transcriptomic regulation 
of AKR1B1, we performed bulk RNA-seq to analyze the 
gene expression in H2009 cells with AKR1B1 knock-
down. We identified 143 upregulated genes and 473 
downregulated genes (fold change (siAKR1B1 versus 
NC) > 2, p value < 10−15) in H2009 cells with AKR1B1 
knockdown (Additional file 1: Fig. S7f; Additional file 5: 
Table  S5). Downregulated genes were mainly enriched 
in metabolism-related pathways, consistent with the 
known function of AKR1B1. In addition, cancer-related 
pathways, such as the p53 signaling pathway, the HIF-1 
signaling pathway, focal adhesion, and cell cycle DNA 
replication, were also enriched in these downregulated 
genes, which is in line with the observation that knock-
down samples had lower levels of proliferation charac-
teristics (Additional file  1: Fig. S7f ). Upregulated genes 
were mainly enriched in biosynthetic processes and 
negative regulators of cell proliferation (Additional file 1: 
Fig. S7g). To further explore the inhibition specificity of 
epalrestat toward AKR1B1, we compared these differ-
entially expressed genes (DEGs) (fold change (epalrestat 
versus DMSO) > 1.5, p value < 0.01) of epalrestat-treated 
cells with those DEGs (fold change (siAKR1B1 versus 
NC) > 1.5, p value < 0.01) of siAKR1B1-treated cells. We 

identified 1179 upregulated genes and 1684 downregu-
lated genes in siAKR1B1 treated cells. When we merged 
the DEGs of these two datasets, we found 84 overlapped 
upregulated genes and 170 overlapped downregu-
lated genes (Additional file 6: Table S6). The overlapped 
downregulated genes were involved in many pathways, 
such as interferon alpha/beta signaling, response to 
decreased oxygen levels, positive regulation of cell migra-
tion, metabolism of carbohydrates, glucose metabolism, 
regulation of protein serine/threonine kinase activity, 
cell cycle, and cell population proliferation, which were 
correlated with the mentioned functions of AKR1B1 
(Additional file  7: Table  S7). The overlapped upregu-
lated genes were mainly enriched in the metabolism 
and transport process, such as cellular amide metabolic 
process, tetrapyrrole metabolic process, long-chain fatty 
acid transport, and monocarboxylic acid transport. In 
addition, other GO terms such as cellular component 
morphogenesis, epithelial cell differentiation, and nega-
tive regulation of cell population proliferation were also 
enriched in these upregulated genes (Additional file  7: 
Table  S7). Although analysis of common DEGs of epal-
restat-treated cells and siAKR1B1-treated cells revealed 
that these overlapped genes enriched GO terms were 
consistent with the functions of AKR1B1, significant 
differences were also observed between these two data-
sets. Considering that our RNA sequencing results of 
siAKR1B1-treated cells were more reliable with 90% 
knockdown efficiency of AKR1B1, we speculated that 
epalrestat may have some off-target effects in the H2009 
cell line. It has been reported that epalrestat also has a 
binding affinity toward AKR1B10, a member of aldo–
keto reductase superfamily, and could suppress the enzy-
matic activity of AKR1B10. Therefore, we speculated that 
epalrestat may have some off-target effects in the H2009 
cell line by targeting other members of aldo–keto reduc-
tase superfamily, such as AKR1B10, but the in-depth 
mechanism of AKR1B1 inhibition mediated by epalr-
estat in lung cancer need to be further investigated in the 
future. Collectively, our functional analysis of AKR1B1 
showed that AKR1B1 was necessary for tumor growth 
and elucidated its transcriptomic regulation in NSCLC.

Discussion
NSCLC is a complex disease and can be categorized into 
several cancer subtypes. The accurate diagnosis of the 
NSCLC subtypes plays a pivotal role in clinical treatment. 
The 2011 WHO classification for lung cancer elucidated 
the need for IHC in classification and diagnosis [50]. The 
use of IHC has improved the accuracy of classification, 
particularly for poorly differentiated tumors that are dif-
ficult to judge cancer subtypes from the histopathological 
characteristics. However, it is still challenging and tricky 
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when selecting different antibodies or antibody batches. 
scRNA-seq technology as a powerful tool can provide the 
whole transcriptome information at single-cell resolu-
tion, which makes it feasible to dissect the heterogeneity 
of complex tumors. Here, we performed a high-preci-
sion single-cell transcriptome analysis of cells from pri-
mary lung tumor tissues and matched normal tissues of 
NSCLC patients. By focusing on the transcriptome of 
cancer cells, we comprehensively analyzed the molecular 
characteristics of NSCLC. For the first time, we identi-
fied a significant proportion of mixed-lineage cancer cells 
co-expressing different cancer subtype lineage markers 
in the same individual cells in many NSCLC patients at 
the single-cell whole-transcriptome level. We further 
validated the finding by both multiplex fluorescent IHC 
staining and RNA in  situ hybridization. Although three 
recent papers reported three unusual cases of NSCLC 
with co-expression of TTF1 (NKX2-1) and p40 (TP63) 
in the same cells by IHC staining [51–54], they failed to 
observe the molecular heterogeneity present in an indi-
vidual tumor. Our single-cell whole-transcriptional anal-
ysis of NSCLC is a powerful tool that provides molecular 
heterogeneity and cellular diversity in individual tumors 
and gives great promise in a more accurate classification 
of NSCLC.

The major subtypes of lung cancer—ADC, SCC, 
and NETs—are considered different diseases originat-
ing from distinct lineages of epithelial cells and thus 
have very different clinical treatment strategies. The 
cancer phylogenetic structure analysis using mito-
chondrial mutation-based lineage tracking analysis 
and single-cell CNV analysis based on our scRNA-seq 
data revealed that the mixed-lineage tumor cells and 
single-lineage tumor cells in the same patient actually 
originated from common tumor ancestors. This also 
indicates that, regardless of  which normal epithelial 
cell the tumor cells originated, these mixed-lineage 
tumor cells are highly plastic to acquire double- or 
even triple-lineage features (ADC, SCC, NET) during 
tumorigenesis, and this multi-lineage plasticity of the 
cancer cells is probably connected to their prevalent 
drug resistance in NSCLC patients. Upon linking the 
cellular plasticity of mixed-lineage tumor cells with 
the mixed-lineage features of different subtypes of 
NSCLC, we hypothesized that these mixed-lineage 
tumor cells contribute to tumor transformation, drug 
insensitivity, and therapeutic resistance in NSCLC. 
The survival analysis indicated that the patients with 
higher mixed-lineage features of different NSCLC 
subtypes had decreased survival time. By combining 
the transcriptomic analysis and molecular characteri-
zation, these mixed-lineage cancer cells are worth fur-
ther study and investigation.

To uncover the molecular regulation of NSCLC, we 
constructed a pseudotime trajectory from the nor-
mal epithelial cells to the cancer cells. We identified a 
tumor-specific gene set and revealed the gene expres-
sion dynamics during tumorigenesis. Furthermore, we 
identified gene signatures specific to mixed-lineage 
tumor cells including AKR1B1. We found that AKR1B1 
was significantly upregulated in all mixed-lineage 
tumor cells of the majority of patients we analyzed. 
AKR1B1 is involved in the polyol pathway of glucose 
metabolism and has been reported to have the capacity 
to facilitate breast cancer, lung cancer, and colon cancer 
tumorigenesis via EMT [46, 47]. Our functional analy-
sis of AKR1B1 showed that it can promote lung tumor 
proliferation and growth both in vitro and in vivo and 
play an important role in tumorigenesis, such as the 
regulation of the p53 signaling pathway and cell cycle. 
This suggests that AKR1B1 can serve as a candidate tar-
get for tumor therapy of NSCLC patients with mixed-
lineage features. Collectively, our study provides novel 
insights into NSCLC and offers clues for the more 
refined classification, diagnosis, and treatment of its 
various subtypes.

Conclusions
In conclusion, we utilized high-precision single-cell 
RNA-seq analysis to dissect the molecular heteroge-
neity of cancer cells of human NSCLC. We identified a 
subpopulation of mixed-lineage tumor cells and found 
that these mixed-lineage tumor features were associ-
ated with a poorer prognosis. Furthermore, gene sig-
natures specific to mixed-lineage tumor cells were 
identified including AKR1B1. Gene knockdown experi-
ment verified that AKR1B1 is necessary for tumor 
growth, suggesting that it can serve as a candidate tar-
get for tumor therapy of NSCLC patients with mixed-
lineage features. These results provide a high-resolution 
overview of tumor cells of human NSCLC and highlight 
a novel mixed-lineage tumor subpopulation that may 
contribute to tumor progression and tumor transdif-
ferentiation between different subtypes of NSCLC and 
offer clues for potential therapeutic strategies for these 
patients with mixed-lineage features.
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