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Abstract 

Background:  TOAST subtype classification is important for diagnosis and research of ischemic stroke. Limited by 
experience of neurologist and time-consuming manual adjudication, it is a big challenge to finish TOAST classification 
effectively. We propose a novel active deep learning architecture to classify TOAST.

Methods:  To simulate the diagnosis process of neurologists, we drop the valueless features by XGB algorithm and 
rank the remaining ones. Utilizing active learning framework, we propose a novel causal CNN, in which it combines 
with a mixed active selection criterion to optimize the uncertainty of samples adaptively. Meanwhile, KL-focal loss 
derived from the enhancement of Focal loss by KL regularization is introduced to accelerate the iterative fine-tuning 
of the model.

Results:  To evaluate the proposed method, we construct a dataset which consists of totally 2310 patients. In a series 
of sequential experiments, we verify the effectiveness of each contribution by different evaluation metrics. Experi-
mental results show that the proposed method achieves competitive results on each evaluation metric. In this task, 
the improvement of AUC is the most obvious, reaching 77.4.

Conclusions:  We construct a backbone causal CNN to simulate the neurologist process of that could enhance the 
internal interpretability. The research on clinical data also indicates the potential application value of this model 
in stroke medicine. Future work we would consider various data types and more comprehensive patient types to 
achieve fully automated subtype classification.
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Backgroud
Stroke is one of the leading causes of death and disabil-
ity. The burden of stroke is rapidly increasing worldwide 
[1, 2]. As the most common type of stroke in China, 
Ischemic stroke (IS) patients constitute about 60%-80% in 

all stroke patients [3]. Therefore, it is of great significance 
to understand the etiological mechanism of IS for indi-
vidualized treatment, prediction, prognosis and second-
ary prevention [4, 5]. Numerous medical studies focused 
on the subtype of IS [6–8]. One of the most important 
researches is TOAST classification, which was developed 
in a multicenter clinical trial of heparinoid (Org 10172) in 
the treatment for acute ischemic stroke [9]. TOAST clas-
sifies acute ischemic stroke into 5 subtypes: Large artery 
atherosis (LAA), Cardiogenic embolism (CE), Small 
artery occlusion (SAO), Other determined cause (OC), 

Open Access

*Correspondence:  rzli@ha.edu.cn; xuyuming@zzu.edu.cn
2 Cooperative Innovation Center of Internet Healthcare, Zhengzhou 
University, Zhengzhou, China
4 The Department of Neurology, The First Affiliated Hospital of Zhengzhou 
University, Zhengzhou, China
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12911-021-01721-5&domain=pdf


Page 2 of 12Zhang et al. BMC Medical Informatics and Decision Making            (2022) 22:3 

and Undetermined Cause (UND). It has been an effective 
tool in predicting various outcomes of stroke, including 
mortality, functional recovery, length of stay, and compli-
cations [10–12].

To determine the subtypes of IS, a trained neurologist 
needs to consider multiple data modalities, including 
patient history, laboratory tests, and medical image and 
so on. This process is time-consuming and introduces 
subjective variability. Meanwhile, it is limited by the size 
of dataset and experience of neurologist. At present, 
although machine learning method becomes a popu-
lar choice for diagnosis [13], prediction [14], prognosis 
[15, 16] and subtype of stroke [17], it is still plagued by 
the lack of interpretability. This deficiency will limit its 
popularization and application in the medical field. Fur-
thermore, we could tackle the workload of neurologists 
through active learning regime. The essence is to select 
the most valuable data samples in the active cycle and 
append them to the training set. In the training process, 
active cycle is an efficient method to reduce the number 
of worthless training samples and save the computing 
resource.

In this work, we propose a causal neural network model 
with active model adaptation to interpretably identify 
TOAST subtypes of IS. The causal padding drives the 
proposed network architecture to interpretively extract 
patient features according to doctors’ clinical process. 
Meanwhile, the addition of active learning strategy with 
Mixed uncertainty ensures the whole training cycle more 
efficiently.

Figure 1 exhibits the basic schematic. It is a circulation 
that consists of four parts: TRAIN, FINETUNE, QUERY 
and APPEND. First, the original dataset is TRAINed for 
the initial model. QUERY calculates the selection crite-
rion of all samples and selects the most valuable ones. 
APPEND adds them to the original training dataset for 
the FINETUNE step.

The main contributions of this work are summarized as 
follows:

•	 Utilizing active learning framework, we propose a 
novel causal convolutional neural network to classify 
IS subtype. It simulates the diagnosis process of neu-
rologists to further enhance model interpretability.

•	 We design an active selection strategy, Mixed uncer-
tainty, that actively selects samples based on dynamic 
trade-off between different uncertainty strategies. It 
could select the most representative data by consid-
ering comprehensively.

•	 KL-focal loss is introduced in our causal convolution 
neural network, which could ensure data diversity, 
achieve better accuracy and avoid overfitting.

Methods
In this work, a general framework integrating active 
learning and deep learning is proposed. The detailed 
framework could improve the interpretability of deep 
learning and alleviate the dilemma of insufficient medi-
cal available data, resolve the problem of overfitting 
and reduce the manpower consumption of data anno-
tation in clinical application, as shown in Fig.  2. In this 
section, we introduce the framework in three compo-
nents: Causal CNN architecture, Active selection cri-
terion and KL-focal loss. Based on the original dataset, 
the customized causal convolutional neural network is 
adopted to train the initial model for simulating diagno-
sis and treatment process. The network is composed of 
causal convolution, which could be explained internally. 
Then, an active selection criterion (Mixed uncertainty) 
is designed to fully consider and dynamically adjust the 
uncertainty of samples. Actively querying the most valu-
able samples could reduce the onerous medical data labe-
ling costs. Meanwhile, the size of the dataset is expanded 
by appending the selected samples. We use the newly 
dataset to finetune the initial model trained by the origi-
nal dataset. Meanwhile, we equip KL-focal loss to avoid 
overfitting of the network and ensure the data diversity.

Causal CNN architecture
In this work, we design a novel Causal CNN architecture 
to mimic neurologists as shown in Fig. 3. The causal con-
volution [18] was proposed to process time series data. 
According to the characteristics of data, causal padding 
in the convolution is set to ensure that the model could 
not violate the input order. It can only operate on the 
input of the past time. The output of causal convolu-
tion is only related to the input of present time (t) and 
past time ( t − 1 ). It does not involve the information of 
the future time ( t + 1 ). In clinical practices, neurologists 
firstly select the most important features for diagnosis, 
and then secondary important features are superim-
posed for further diagnosis and so on. This process is Fig. 1  The basic schematic of our work
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sequential. We regard the final TOAST subtype as the 
last results given by neurologists based on all previous 
information. It could be described that given an input 
feature sequence as x0, x1, x2, ..., xt , the output at final 
time t is Yt . Meanwhile, we customize a series of convolu-
tion kernels with different strides to accelerate the con-
vergence and enrich the receptive field. Figure 3 gives the 
different versions of microscopic transformations after 
the first causal convolution layer. CNN-V4 in green is the 
model proposed in this work. The implementation details 
are listed in the Fig. 3. The best experimental results are 
obtained through multi angle fusion denoted as CNN-
V4. The verification is analyzed in the result section.

Active selection criterion
The essence of active learning is to design an active data 
selection criterion for the training set, according to the 
existing training sample information, and actively select 
the most uncertain new samples. Based on the selected 
samples, the model could be further improved to make the 

(1)Yt = f (x0, x1, x2, ..., xt)

whole process a gradual exchange process. Therefore, the 
key point is to establish the active selection criterion. In 
information theory, entropy is used to describe the uncer-
tainty of information. Similarly, it is also used as a standard 
to measure the uncertainty of samples in the active selec-
tion strategy, denoted as the Entropy based uncertainty xa:

where yj is the possibility of belonging to the jth category 
in xi . xa considers the possibility of the sample belong-
ing to each category to measure the uncertainty. When 
the sample is divided into all categories of possibilities 
with the same probability, the entropy value is the high-
est, that is, the sample is considered to have the greatest 
uncertainty. In the study of multi classification, each sam-
ple has a scoring value for the possibility of each category. 
The difference between the top 1 and top 2 prediction 
category is selected as the selection criterion xb , which is 
based on Margin:

(2)xa = arg maxi=1,...,n −
∑

j

P(yi | xi)logP(yi | xi)

(3)xb = arg mini=1,...,n(P(y1 | xi)− P(y2 | xi))

Fig. 2  The detailed schematic of our proposed network with active model adaptation
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where y1 and y2 are the top 2 categories with the high-
est probability of xi respectively. The minimum prob-
ability difference between them means that the classifier 
is the least able to distinguish the specific category of 
the sample. The sample is considered to have the high-
est uncertainty. xb measures the difference between the 
two highest categories of possibilities, and takes the dif-
ference as uncertainty without considering the specific 
value. To select samples with highest uncertainty, Mixed 
uncertainty x∗ is calculated by weighting the rows of xa 
and xb:

where α is a trade-off parameter to dynamically balance 
the two parts of Mixed uncertainty.

Benefit from the active selection criterion of Mixed 
uncertainty, we add selected samples into the original 
training dataset to finetune the initial model. This oper-
ation could not only expand the dataset, but also select 
more valuable samples.

KL‑focal loss
In the dataset, the distribution of TOAST subtypes is 
shown in Table  2. The largest number of patients with 
LAA is 1290, and the least number of patients with OC 
is 81. According to the 3 subtypes (LAA, CE and SAO) 
clearly defined in TOAST, the patients numbers are 
1290, 107 and 550, respectively, and there is still imbal-
ance. Therefore, we take the focal loss as the basis of loss 
function. Meanwhile, we use the newly dataset contain-
ing the selected samples to finetune the model trained by 
the original dataset, so that overfitting is easy to occur 
in the cyclic active learning. To overcome these limita-
tions, we choose KL divergence developed from informa-
tion theory as a regularization technique to upgrade the 
focal loss function. KL divergence could also be used as 
an indicator of data diversity. It can consolidate the diver-
sity of data and avoid overfitting in the process of model 
iteration. The specific calculation of KL focal loss is as 
follows:

where γ adjusts the rate of the weight decrease. px is 
the prediction result. P(x) is the estimated probability 

(4)
x∗ = arg mini=1,...,n(α ∗ xa + (1− α) ∗ xb)

= arg mini=1,...,n(α(P(y1 | xi)logP(y1 | xi))

+ (1− α)(P(y1 | xi)− P(y2 | xi)))

(5)FL(px) =− (1− px)
γ log(px)

(6)KL(P � Q) =P(x) ∗

[

log(
P(x)

Q(x)
)

]

(7)KFL =FL(px)+ KL(P � Q)

distribution of sample x, Q is the real probability distribu-
tion. The focal loss function is described in [19]. KL(P||Q) 
is the divergence between Q and P. Obviously, the smaller 
the divergence, the closer the estimated probability dis-
tribution is to the true distribution.

Result
Clinical dataset description
This dataset was collected from all the patients admitted 
to the department of neurology during 2014 to 2016 in a 
AAA Hospital. It includes 2310 stroke patients and each 
patient with 122 items of features. Table 1 shows Inclu-
sion and Exclusion criteria. Professional neurologists 
label the TOAST subtypes for each anonymous patient 
records. Table  2 displays the distribution of TOAST 
subtypes.

Data preprocessing
We employ XGBoost to select and rank the original fea-
tures in preprocessing to mimic diagnosis and treatment 
process of neurologists. XGBoost is a tree structure 
model, which could not only complete the feature selec-
tion and ranking, but also ensure the interpretability of 
the whole selection process. Meanwhile, the dataset is 
from clinic and completed by neurologists one-to-one 
statistics. Therefore, we choose to drop the features with 
feature importance ≤ 0.005 and rank the left 93 features. 
Table 3 summarizes the features. Detailed feature statis-
tics are sorted as Additional file 1.

The missing data is due to the accidental operation of 
the registrant, and the average integrity is 99.53%. We 

Table 1  Inclusion and exclusion criteria

Inclusion criteria Exclusion criteria

Age of patient over 18 years Hemorrhagic stroke

Cerebral infarction and TIA

Time of onset and admission over 7days Non-cerebrovascu-
lar disease event

Sign informed consent

Table 2  Distribution of TOAST subtype in the cohort of patients

Etiologic subtypes of ischemic stroke Number of 
patients

Proportion of 
subtypes (%)

Large artery atherosclerosis (LAA) 1290 56

Cardioembolism (CE) 107 5

Small artery occlusion (SAO) 550 24

Other determined cause(OC) 81 3

Undetermined cause(UND) 282 12
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adopt the mode method to fill in the missing data with-
out any scaling of feature values. Meanwhile, the data 
filling operation has also been confirmed by clinicians. 
It should be noted that, the operation is applied to all 
data sets, including training set and test set.

Experiments setup
In this study, all experiments are implemented based on 
an Intel CoreTM i7-8700K Processor at 3.70 GHz with 
32 GB of RAM, one NVIDIA GeForce GTX 1080 Ti 
and ubuntu 18.04 operating system. We train models in 
Scikit-learn 0.22.1 [20] and Keras 2.2.4 with Tensrflow 
1.12.0 as the backend. We adopt 10 fold cross validation 
to evaluate these models and epochs and batch size are 
set to 100 and 32.

Firstly, we construct an experiment of the compari-
son of 4 versions for our model to verify the most effec-
tive one.

Then we set up a set of experiments to verify the 
validity of the data preprocessing operations.

Next, we build a series of experiments, including 
machine learning and deep learning algorithms, as the 
baseline. Most of them are analyzed in these related 
work [21–24]. Meanwhile, we compare some related 
and advanced deep learning algorithms [25]. We select 
the default parameter in Scikit-learn and Keras for 
most models with Adam. In the LSTM-based models, 
the lstm-dim is set as 25.

Then we compare 8 loss functions in our task to ver-
ify the effectiveness of KL-focal loss and further extend 
it to other deep learning models.

Finally, we explore different strategies for active selec-
tion criterion in this task and verify the performance in 
individual classes.

Evaluation metrics
The performance evaluation indicators are given by fol-
lowing formulas:

In the formulas TP, TN, FP and FN are for true posi-
tive, true negative, false positive and false negative 
respectively.

Comparison of different versions for causal CNN 
architecture
Table 4 lists the performance of the causal CNN architec-
ture at various stages of evolution to further explain the 
effectiveness of model customization. Figure  3 displays 
the architecture of causal CNN architecture and the dif-
ferent versions of the custom part. We left the rest of the 
architecture unchanged, and only the parts highlighted in 
green were updated for different versions. All the 4 mod-
els are based on the causal convolution to simulate the 
diagnosis and treatment of neurologists. The CNN-V1 

(8)Accuracy =
TP + TN

TP + FP + TN + FN

(9)AUC =Area under the ROC curve

(10)Precision =
TP

TP + FP

(11)Recall =
TP

TP + FN

(12)F1− score =
2 ∗ Precesion ∗ Recall

Precision+ Recall

Table 3  Features of the analyzed cohort

Feature Description

Gender Male: 1557, Female: 753

Age Mean age: 59.2

Demography Nationality, Marital status, Living condition, Education level

Personal situation Smoking, Drinking

Past medication Antiplatelet, Antihypertensive, Antidiabetic, Antilipemic

Family history Hypertension, Diabetes, Stroke, Cardiovascular disease

Past history Hypertension, Stroke, TIA, Coronary atherosclerotic cardiopathy, Atrial 
fibrillation, Diabetes, Dyslipidemia, Renal disease, Surgery, mRS score

Treatment during hospitalization Medication, Surgery, Rehabilitation training

Admission examination Initial symptoms, Thrombolytic status, Basic information, NIHSS score

In-hospital adverse events Adverse cardiac events, Adverse vascular events
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achieved an accuracy of 0.5578, an AUC of 0.6557, a 
recall of 0.5578, a precision of 0.6012 and an F1-score of 
0.4948. The CNN-V2 achieves a precision of 0.5912 and 
a F1-score of 0.4683, which is significantly lower than all 
the other models. The number of model parameters is 
8997. The unique difference between CNN-V1 and CNN-
V2 is the max pooling operation and the causal convo-
lution operation in the second layer. In CNN-V3, the 
outputs of max pooling layer and convolution layer are 
spliced together with the concatenate layer. It achieves 
higher precision of 0.6081 and higher F1-score of 0.4973 
than CNN-V1 and CNN-V2. The best classifier is CNN-
V4, although the number of parameters is as high as 
12,997. On the basis of CNN-V3, we continue to fuse the 
original output of the first causal convolution layer to 
derive CNN-V4. This operation changes the parameters 
slightly by increasing 1280 model parameters. However, 
it performs an accuracy of 0.6020, an AUC of 0.6757, a 
recall of 0.6020, a precision of 0.6213 and an F1-socre of 
0.5141. Considering the improvement of performance, 
we choose CNN-V4 as skeleton in the following analysis.

Validation of the data preprocessing operations
Table  5 displays the validation of data preprocessing 
operations in our work. It can be seen that after feature 
dropping with feature importance and ranking, the per-
formance of the model changes from an accuracy and 
a recall of 0.5704–0.6020, an AUC of 0.6484–0.6757, a 
precision of 0.5942–0.6213, a F1-score of 0.4926–0.5141. 
Table  6 lists the comparison of different preprocessing 

method. Ours denotes that the data set we trained with-
out any scaling of feature values. The preprocessing 
methods reduces the model performance by scaling the 
feature values.

Figure  4 shows the comparison of different subsets of 
features with Ours and ET. We set 10 as the sampling 
step to construct the feature subsets and select the top 
10, 20...70, 80 features. We mark the highest and lowest 
values of the evaluation metrics. Figure  4a is the per-
formance of different subsets of features with Ours. It 
appears that 93 features achieves the best result in all 
evaluation metrics. We select ET as the representative of 
the baseline models to analyze the performance changes 
of different feature subsets in Fig. 4b. Although the per-
formance does not change significantly with the number 
of features from 70 to 93, it still shows an upward trend.

Comparison of different models for baseline
Table 7 enumerates the baseline results of various mod-
els, including machine learning and deep learning. We 
choose 16 kinds of classical machine learning models and 
various machine learning models mentioned in refer-
ences. Among them, we classify simple neural networks 
(NN) and multi-layer perceptron (MLP) into machine 
learning algorithms. Meanwhile we select 4 LSTM 
based deep learning models for comparison, in which 
the lstm_dim is 25. Here we select CNN-V4 as our base-
line model without the active adaption circulation and 

Table 4  Comparison of different versions for causal CNN architecture

The bold values are to highlight our results

Model Accuracy AUC​ Recall Precision F1-score Number of 
parameters

CNN-V1 0.5578 0.6557 0.5578 0.6012 0.4948 11077

CNN-V2 0.5682 0.6505 0.5682 0.5912 0.4683 8997

CNN-V3 0.5652 0.6474 0.5652 0.6081 0.4973 11717

CNN-V4 0.6020 0.6757 0.6020 0.6213 0.5141  12997

Table 5  Validation of data preprocessing operations

The bold values are to highlight our results

Dataset Accuracy AUC​ Recall Precision F1-score

122 raw features 0.5704 0.6484 0.5704 0.5942 0.4926

93 unranked 
features

0.5682 0.6479 0.5682 0.6018 0.4948

93 ranked fea‑
tures

0.6020 0.6757 0.6020 0.6213 0.5141

Table 6  Comparison of different preprocessing method

The bold values are to highlight our results

Preprocessing 
method

Accuracy AUC​ Recall Precision F1-score

Scale 0.4621 0.5927 0.4621 0.6040 0.4614

Standard Scaler 0.4534 0.5878 0.4534 0.6007 0.4541

Min–Max 0.4903 0.6052 0.4903 0.5980 0.4760

Max Abs Scaler 0.5110 0.6165 0.5110 0.6087 0.4894

L1 0.5539 0.6192 0.5539 0.5720 0.4398

L2 0.5535 0.6372 0.5535 0.5829 0.4702

Ours 0.6020 0.6757 0.6020 0.6213 0.5141
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record it as Ours. In Table  4, we describe the detailed 
comparison of model version. Based on the existing clini-
cal data, machine learning methods are generally better 
than deep learning methods. Among them, RF achieves 
the best AUC of 0.6532, ET achieves the best accuracy of 
0.5786, precision of 0.5022, recall of 0.5786 and F1-score 
of 0.5016. Most tree structured machine learning algo-
rithms could obtain a noteworthy baseline result. Among 
the deep learning methods, Bi-LSTM achieves the preci-
sion of 0.7009 and Bi-LSTM+att obtains the precision of 

0.6986, which are all higher than Ours. However, LSTM-
based models perform poorly in accuracy, recall and 
F1-socre, all of which are below 0.2. Our model outper-
forms all the best results listed above in all indexes except 
precision by attaining an accuracy of 0.6020, an AUC of 
0.6757, a recall of 0.6020 and a F1-score of 0.5141. The 
precision of 0.6213 is also better than most of these 
methods.

Comparison of different loss function
Table  8 exhibits the detailed results of different loss 
functions in this task to prove the significance of the 
proposed loss function. The 4 loss functions based on 
error perform general but stable. Among them, the per-
formance of Mean squared logarithmic error is the best 
(accuracy:0.5643, AUC: 0.5928, recall: 0.5643, preci-
sion: 0.5895, F1-score: 0.4693) and that of Mean absolute 
error is the worst (accuracy: 0.4647, AUC: 0.5100, recall: 
0.4647, precision: 0.3886, F1-score: 0.3115). The recall 
of Focal loss is 0.2287 and the F1-score is 0.2379, which 
are significantly lower than the results of other loss func-
tions. The performance of Kullback leibler divergence 
loss function (accuracy: 0.5660, AUC: 0.6532, recall: 
0.5660, precision: 0.5939, F1-score: 0.4815) and Categori-
cal cross entropy loss function (accuracy: 0.5665, AUC: 
0.6515, recall: 0.5665, precision: 0.5940, F1-score: 0.4863) 
are the closest to the best performance of KL-focal loss. 
KL-focal loss obtains an accuracy of 0.6020, an AUC of 
0.6757, a recall of 0.6020, a precision of 0.6213 and a 
F1-score of 0.5141. We integrate KL regularization and 
focal loss, and combine the advantages of them. KL regu-
larization could trade off the distance in the iterative pro-
cess, and could keep the diversity of data. Focal loss could 
further alleviate the limitation of imbalance.

Fig. 4  Comparison of different subsets of features with Ours and ET

Table 7  Comparison of different models for baseline

The bold values are to highlight our results

Method Accuracy AUC​ Recall Precision F1-score

NB [22] 0.5023 0.6054 0.5023 0.4493 0.4231

Multinomial NB 
[23]

0.1728 0.5402 0.1728 0.4471 0.2070

DT [22] 0.5421 0.6138 0.5421 0.4538 0.4594

RF [21, 22, 24] 0.5671 0.6532 0.5671 0.4865 0.4755

ET [21, 23] 0.5786 0.6504 0.5786 0.5022 0.5016

CART [24] 0.4431 0.5476 0.4431 0.4527 0.4557

GDBT [21] 0.5639 0.5956 0.5639 0.4321 0.4544

XGBoost [21] 0.5605 0.6453 0.5605 0.4734 0.4702

AdaBoost [23] 0.5409 0.5812 0.5409 0.4639 0.4716

LDA 0.5647 0.6302 0.5647 0.4577 0.4653

QDA 0.2616 0.5667 0.2616 0.4144 0.2039

LR [22, 24] 0.5565 0.6309 0.5565 0.4452 0.4290

KNN [21, 22, 24] 0.5366 0.6031 0.5366 0.4513 0.4564

SVM [21, 22, 24] 0.5646 0.6228 0.5646 0.4461 0.4570

NN [22, 26] 0.5539 0.5192 0.5539 0.3649 0.4083

MLP [23] 0.5353 0.5015 0.5353 0.3140 0.3956

LSTM 0.1295 0.5544 0.1295 0.4978 0.1252

LSTM+Att 0.0879 0.5781 0.0879 0.2701 0.0634

Bi-LSTM [25] 0.1923 0.6032 0.1923 0.7009 0.1924

Bi-LSTM+Att 0.1515 0.6020 0.1515 0.6986 0.1446

Ours 0.6020  0.6757 0.6020 0.6213 0.5141
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Comparison of different models for KL‑focal loss
To demonstrate the generalization ability of KL-focal 
loss function, we equip the loss function with LSTM-
based models in Fig. 5. It appears that the loss function 
not only improves our model, but also has remarkable 
adaptability to LSTM-based models. It could greatly 

improve the performance of the models in terms of 
accuracy, recall and F1-score, except for the precision 
of Bi-LSTM based models. We take LSTM+att model 
as an example to analyze. The KL-focal loss has the 
most significant effect on accuracy, recall and F1-score. 
The accuracy and recall of LSTM+att model increases 

Table 8  Comparison of different loss function for our model

The bold values are to highlight our results

Loss function Accuracy AUC​ Recall Precision F1-score

Mean absolute error 0.4647 0.5100 0.4647 0.3886 0.3115

Mean absolute percentage error 0.4933 0.5082 0.4933 0.4457 0.3383

Mean squared error 0.5189 0.5464 0.5189 0.5085 0.3908

Mean squared logarithmic error 0.5643 0.5928 0.5643 0.5895 0.4693

Categorical Cross entropy 0.5665 0.6515 0.5665 0.5940 0.4863

Kullback leibler divergence 0.5660 0.6532 0.5660 0.5939 0.4815

Focal loss 0.2287 0.6104 0.2287 0.5704 0.2379

KL-focal loss 0.6020 0.6757 0.6020 0.6213 0.5141

LSTM LSTM+a� Bi-LSTM Bi-LSTM+a� CNN-V4 LSTM_KL LSTM+a�_KL Bi-LSTM_KL Bi-LSTM+a�_KL CNN-V4_KL

0.2701
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Fig. 5  Comparison of different models for KL-focal loss. The orange ones are the result of using Focal Loss, the blue ones are the result of using 
KL-focal loss function
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Fig. 6  Comparison of different strategies for active selection criterion
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from 0.0879 to 0.5634, and the F1-score increases from 
0.0634 to 0.4340. It leads to more than 5 times improve-
ment. The precision increased by 2 times, from 0.2701 
to 0.5705. Similarly, there are obvious improvements 
in other LSTM-based models. Although in the item of 
precision, Bi-LSTM-based models show a decline, the 
models are all improved to achieve a similar and more 
balanced performance.

Comparison of different strategies for active selection 
criterion
Figure  6 verifies the performance of Mixed uncertainty 
strategy as the active selection criterion in this work. 
According to previous results, the comparison is con-
ducted on the CNN-V4 model equipped with KL-focal 
loss. The results show that the introduction of active 
learning could improve the performance of our model. 
The Mixed uncertainty with α = 0.3 shows the best per-
formance. It achieves an accuracy of 0.6060, an AUC of 
0.7440, a recall of 0.6060, a precision of 0.6605 and an 
F1-score of 0.5888. However, the effect of the two inde-
pendent active selection strategies is worse than that of 
the mixed ones. The Entropy based uncertainty achieves 
an AUC of 0.7406, a recall of 0.5885, a precision of 0.6401 
and an F1-score of 0.5717. The Margin based uncertainty 
attains an accuracy of 0.5967, an AUC of 0.7383, a recall 
of 0.5967, a precision of 0.6482 and an F1-score of 0.5798. 
With the change of parameters α , the performance of 
Mixed uncertainty also has a slight swing. After the 
experimental verification, we finally choose the param-
eter of 0.3. It is worth noting that in the data append pro-
cess, we select the top 50% of the samples, about 1200 
samples. In the finetune process, the result in Fig.  6 is 
obtained by only once active adaption circulation.

With the increase of datasets, the time complexity of 
the model will increase correspondingly without causing 
more time consumption. Due to the limitation of dataset 
and GPU computing power, our work does not need to 
worry about the burden of time consumption. The confu-
sion matrix of the best model is displayed in Fig. 7. The 
detailed etiological distribution of the addition patients 
is shown in the Table  9. The number of SAO patients 
increased the most, 400, up to 72%, followed by OC 
patients, an increase of 60%, a total of 49. Because the 
number of such patients in the original data set is only 
81. The largest number of is LAA patient, and its increase 
rate is the least, 42%. CE and UND increased by 44% and 
56% respectively. Table 10 lists the comparison of classifi-
cation performance in individual classes. ‘*’  indicates the 
model results without adding the active learning cycle. 
Numbers in italics in parentheses indicate the changes of 
model performance. ‘+’ indicates increase and ‘−’ indi-
cates a decline in the evaluation metrics. It appears that 
the classification performance of SAO is improved most 
obviously. The precision increased from 0.3966 to 0.5392, 
the recall increased from 0.2821 to 0.5392, the F1-score 
from 0.2910 to 0.5446. There is a decrease in recall and 
F1-score in LAA, due to the lowest percentage 42% 
increase in addition patients in the active learning cycle. 
However, the other four diseases and their overall perfor-
mance improved.

Discussion
Although the TOAST subtype could be determined 
by experienced neurologists after synthesizing clini-
cal information, it is difficult for general physicians to 
make a correct diagnosis. Meanwhile, the consensus 
among scholars on TOAST subtype is only in a moder-
ate level. Many scholars studied the clinical application 
of TOAST subtype [27–31]. In addition, more stud-
ies focused on systematic reviews and meta-analysis 
to describe the prognosis and distribution of TOAST 
subtype [32, 33]. Although these clinical studies have 
achieved certain degree of success, additional man-
ual work is needed to extract features to apply these 
research results. Recently, machine learning methods Fig. 7  Confusion matrix of the best model

Table 9  Distribution of TOAST subtype in the addition patients

Etiologic subtypes of ischemic stroke Number of 
patients

Proportion 
of initial data 
(%)

Large artery atherosclerosis (LAA) 545 + 42

Cardioembolism (CE) 47 + 44

Small artery occlusion (SAO) 400 + 72

Other determined cause(OC) 49 + 60

Undetermined cause(UND) 159 + 56
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have been a powerful tool for precision medicine in 
stroke [17, 21–24, 26]. Meanwhile, these methods are 
also applied to different data formats [25, 34–36]. Nev-
ertheless, applications of machine learning for TOAST 
subtypes classification is very scarce. On the one hand, 
controversy over the consistency of TOAST in the 
medical field limits this kind of research. On the other 
hand, the interpretability of clinical machine learning 
methods needs further research to improve its applica-
tion. In this work, we propose a causal CNN with active 
model adaptation to classify TOAST subtype. We 
firstly select and rank features based on the importance 
analysis of machine learning algorithms. This process 
ensures interpretability from the data source. Then a 
customized causal CNN skeleton enhances intrinsic 
interpretability. Next, we design selection criterion in 
active model adaptation to solve the performance con-
straints caused by insufficient data. Furthermore, the 
modified KL-focal loss avoids the occurrence of overfit-
ting in the cycle and ensures the diversity of data.

Limitations and future considerations
Our study has several limitations. First, although our 
work focuses on the inherent interpretability of the 
model, the effect of the baseline model is indeed lim-
ited. The consistency of TOAST classification and 
applicability in different regions are controversial in 
clinic, which is reflected in the unsatisfactory classifica-
tion effect of many baseline models. We will continue 
to focus on the localization of TOAST and further opti-
mize the patient classification criteria.

Second, our research focuses on the design and opti-
mization of classification model and simply removes the 
features whose feature importance is less than 0.005. 
Although we verify the selection of features, we do not 
consider the influence of different feature combinations. 
More comprehensive optimization data could provide 
more accurate prediction, which could not only improve 
the performance of the model, but also provide risk fac-
tor analysis for stroke etiology classification.

Then, although we retain many features, there are still 
some other data types in clinic for etiological typing 

prediction, including laboratory values, diagnostic 
tests, imaging and reports. Multiple data types could 
more comprehensively reflect and provide patient 
information that better matches TOAST.

The last limitation is that our data comes from the 
manual statistics of the same clinical hospital depart-
ment, and the amount of data is limited, although the 
patient information has been counted for three years. 
Meanwhile, the single center data source must be fur-
ther expanded to enhance the clinical value and signifi-
cance of our work.

Conclusion
With the development of precision medicine and person-
alized healthcare, disease subtype classification plays an 
increasingly important role in prediction, treatment and 
prognosis. Although a large number of clinical data could 
provide strong support for disease subtype classification, 
manual classification is resource intensive and time-con-
suming, which limits the development. Automatic sub-
type classification based on computer-aided technology 
has become a more powerful tool. This study attempts to 
explore an automated IS subtype classification method 
based on machine learning technology on clinical data. 
We construct a backbone causal convolutional neural 
network to simulate the diagnosis and treatment process 
of neurologists. Active learning is introduced to reduce 
the workload and further improves the performance with 
the designed Mixed uncertainty. Finally, we upgrade the 
focal loss function by combining with KL regularization 
to robustly distinguish different subtypes of IS.

Future work could extend our method to EHR docu-
ments and medical records to achieve fully automated 
subtype classification and focus on patients who do not 
meet inclusion criteria. In addition, we will leverage 
unsupervised method to further verify TOAST effective-
ness and practicality.
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