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A B S T R A C T

Osteoarthritis (OA) is a degenerative joint disease affecting a large population of people. Although the elevated
expression of PKR (double stranded RNA-dependent protein kinase) and MMP-13 (collagenase-3) have been
indicated to play pivotal roles in the pathogenesis of OA, the exact mechanism underlying the regulation of
MMP-13 by PKR following inflammatory stimulation was relatively unknown. The purpose of this study was to
determine the signaling pathway involved in the PKR-mediated induction of MMP-13 after TNF-α-stimulation. In
this study, cartilages of knee joint were obtained from OA subjects who underwent arthroplastic knee surgery.
Cartilages were used for tissue analysis or for chondrocytes isolation. In results, the upregulated expression of
PKR was observed in damaged OA cartilages as well as in TNF-α-stimulated chondrocytes. Phosphorylation of
PKC (protein kinase C) was found after TNF-α administration or PKR activation using poly(I:C), indicating PKC
was regulated by PKR. The subsequent increased activity of NADPH oxidase led to oxidative stress accumulation
and antioxidant capacity downregulation followed by an exaggerated inflammatory response with elevated le-
vels of COX-2 and IL-8 via ERK/NF-κB pathway. Activated ERK pathway also impeded the inhibition of MMP-13
by PPAR-γ. These findings demonstrated that TNF-α-induced PKR activation triggered oxidative stress-mediated
inflammation and MMP-13 in human chondrocytes. Unraveling these deregulated signaling cascades will deepen
our knowledge of OA pathophysiology and provide aid in the development of novel therapies.

1. Introduction

Osteoarthritis (OA) is one of the critical degenerative orthopedic
diseases that affect a significant proportion of the population. Clinical
symptoms included joint pain, stiffness and decrease of mobility,
leading to physical disability and reduced quality of life [1]. To date, a
number of factors are believed to trigger OA, such as abnormal me-
chanical stress, compressive forces, failure of nutrient intake or genetic
issues [2]. However, current interventions are still restricted to pain
control and total knee arthroplasty is often suggested for late-stage OA
cases [3].

Chondrocytes, the only cell type present in the articular cartilage,
express various genes to maintain homeostasis. And numerous genes
involved in extracellular matrix (ECM) formation and oxidative damage
defense have been found to be altered in late-stage OA cartilage [4]. In
addition, it is well established that pathogenesis of OA is closely related
with pro-inflammatory cytokines produced by chondrocytes, such as

interleukin (IL)-1 and tumor necrosis factor (TNF)-α, which eventually
results in activation of matrix metalloproteinases (MMPs) and dete-
rioration of OA [5]. In particular, MMP-13 has been shown to be up-
regulated [6] and identified as a critical target during the progression of
OA [7]. Also, it has been previously suggested structural cartilage da-
mage in animal OA model is dependent on MMP-13 activity [8]. As
such, elucidation of the detailed mechanism underlying the increased
expression of MMP-13 may be beneficial to prevent the development of
OA.

The double stranded (ds) RNA-dependent protein kinase, PKR, is a
ubiquitously expressed serine/threonine kinase. Once PKR is activated
by dimerization and autophosphorylation, it subsequently phosphor-
ylates the α-subunit of the eukaryotic translation initiation factor 2
(eIF2α) [9]. Various studies have implicated PKR signaling pathways in
the cartilage degradation that occurs in arthritic diseases [10–12]. It
has been proven that PKR inhibitor could antagonize the IL-1α-acti-
vated eIF2α phosphorylation, thereby suppressing proteoglycan
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degradation and cyclooxygenase (COX)−2 accumulation [11]. PKR
also regulates the TNF-α-induced proteoglycan degradation and chon-
drocyte cell death [10]. Moreover, PKR has been indicated to mediate
the TNF-α-induced activation of MMP-2 and −9 [10]. Hence, it is
tempting to speculate that PKR regulates MMP-13 expression in OA
cartilages, which leads to ECM degradation.

The aim of the present study was to decipher the mechanism of PKR-
mediated MMP-13 upregulation in chondrocytes following TNF-α sti-
mulation. To this end, we employed the chondrocytes obtained from
OA patients and examined the associated signaling pathways in order to
understand the role of PKR in the onset of OA. Our data also demon-
strated the relationship between accumulated oxidative stress and in-
creased inflammation and MMP-13.

2. Materials and methods

2.1. Reagents

Trypsin-EDTA and Dulbecco's modified Eagle's medium (DMEM)
were bought from Gibco (Grand Island, NY, USA). PD98059, dihy-
droethidium (DHE), Apocynin, Diphenyleneiodonium (DPI),
Polyinosinic-polycytidylic acid (poly(I:C)), collagenase B, Pyrrolidine
dithiocarbamate (PDTC), penicillin and streptomycin were all pur-
chased from Sigma (St. Louis, MO, USA). Anti-PKR, anti-p-PKR,anti-
PKC, anti-p-PKC, anti-NOX-1, anti-p47, anti-Rac-1, were all obtained
from Abcam (Cambridge, UK). Anti-β-actin, anti-ERK, anti-p-ERK, anti-
COX-2, anti-PPAR-γ were all obtained from Santa Cruz Biotechnology
(Santa Cruz, CA, USA). HRP-conjugated anti-rabbit secondary anti-
bodies were purchased from Transduction Laboratories (CA, USA).
Antioxidant enzymes kits were obtained from EMD Millipore

(Calbiochem, Gibbstown, NJ). IL-8 ELISA kit was purchased from R &D
Systems (Minneapolis, MN, USA).

2.2. Human chondrocytes isolation

The study group included 30 patients diagnosed with knee OA over
5 years. The study protocol was approved by the Ethics Committee of E-
Da Hospital (EMRP-105-077), and each participant provided written
informed consent. Cartilages of knee joint were obtained from OA
subjects who underwent arthroplastic knee surgery. Articular cartilage
tissues were gathered from the resected bone and cartilages. The da-
maged cartilage tissues were gathered for tissue analysis. The non-da-
maged cartilage tissues were gathered for tissue analysis and digested
for in vitro investigations. Cartilage samples were cut into small pieces
and washed with PBS for three times. Cartilage fragments were digested
with collagenase B in DMEM at 37 °C overnight on a shaker. The iso-
lated chondrocytes were centrifuged and washed two times with PBS.
Chondrocytes were cultured in MDEM with 10% FBS, 2 mM L-gluta-
mine, 25 mM HEPES, 100 U/ml penicillin, and 100 mg/ml strepto-
mycin at 37 °C in a humidified atmosphere of 95% air and 5% CO2
[13].

2.3. Western blot analysis

RIPA, which was purchased from Millipore, was used to extract
lysate. The proteins were transferred on to a PVDF membrane after the
proteins were separated by SDS/PAGE. The membranes were blocked
by the buffer for 1 h at 37 °C. Then, the membranes were incubated
with primary antibodies overnight at 4 °C, followed by hybridization
with HRP (horseradish peroxidase)-conjugated secondary antibody for

Fig. 1. Upregulation of PKR following cartilage inflammation. A. Representative image of cartilage from patient with total knee replacement showing non-damaged, mid-damaged
and damaged regions; Protein expression (B) and ratio (C) of p-PKR to total PKR; (D) Kinase activity of p-PKR from three different regions; protein expression (E) and ratio (F) of p-PKR to
total PKR after exogenous administration of TNF-α for 12 h in human chondrocytes. (n = 3; * p< .05 compared to non-damaged cartilage or control group).
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1 h. The intensities were quantified by densitometric analysis.

2.4. PKR activity assay

PKR activity was tested using commercial CycLex® PKR/EIF2AK2
Kinase Assay Kit according to the manufacturer's instructions. In brief,
100 μL of reaction mixtures were added to the non-coated wells. After
1 h, 10 μL of EDTA Solution was added to stop kinase reaction. Next,
100 μL of reaction mixtures were loaded to the antibody-coated well,
followed by hybridization with HRP conjugated anti-GST antibody. PKR
activity was measured by O.D 450 nm.

2.5. NAPDH oxidase activity assay

The lucigenin method was used to determine NAPDH oxidase ac-
tivity in chondrocytes. Total protein concentration was adjusted to
1 mg/ml. An aliquot of 200 μL of protein (100 μg) was incubated in the
presence of 5 μL of lucigenin and 100 μM NADPH. Luminescence was
assessed after 10 min using a plate reader (VICTOR3; PerkinElmer) to
determine the relative changes in NADPH oxidase activity.

2.6. Measurement of ROS production

ROS levels were investigated by DHE. Confluent cells (104 cells/
well) in 96-well plates were preincubated with various concentrations
of TNF-α for 24 hrs. The cells were incubated with 10 μM DHE for 1 h.

Fluorescence intensity was assessed with a fluorescent microplate
reader (Labsystem, California) that had been calibrated at 540 nm ex-
citation and 590 nm emission.

2.7. Transfection with small-interfering RNA

ON-TARGET plus SMART pool small-interfering RNAs (siRNAs) for
si-Controls were obtained from Dharmacon Research (Lafayette,
Colorado). si-PKC and si-PKR were purchased from Santa Cruz.
Transient transfection was performed using INTERFERin siRNA trans-
fection reagent (Polyplus Transfection, Huntingdon, UK) according to
the manufacturer's guide.

2.8. NF-κB activity assay

NF-κB activity was measured by an NF-κB p65 ActiveELISA kit
(Imgenex Corp, San Diego, CA) according to the manufacturer's in-
structions. The absorbance at 405 nm was determined using a micro-
plate reader (spectraMAX 340).

2.9. Assay for IL-8 and MMP-13 secretion

Cells were seeded in 24-well plates at 0.5 × 105 cells. After 2 days,
cells were treated TNF-α for 24 h. Cell supernatants were removed and
assayed for IL-8 and MMP-13 concentrations using an ELISA kit ob-
tained from R &D Systems (Minneapolis, MN).

Fig. 2. Increased expression of PKC after cartilage inflammation is due to PKR upregulation Protein expression (A) and the ratio (B) of p-PKC to total PKC from three different
regions; Protein expression (C) and quantification (D) of PKR as well as PKC activation by addition of TNF-α and poly(I:C), which is known to activate PKR. Protein expression (E) and the
ratio (F) of p-PKC to total PKC after treatment of TNF-α with or without the addition of si-PKR. (G)Western blotting confirming PKR knockdown efficiency. (n = 3; * p< .05 compared to
non-damaged cartilage or no treatment control group; & p< .05 compared to TNF-α-treated group).
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2.10. Isolation of mRNA and quantitative real-time PCR

Total RNA was isolated from chondrocytes using the RNeasy kit
(Qiagen, Valencia, CA, USA). Oligonucleotides for MMP-13 and β-actin
were designed using the computer software package Primer Express 2.0
(Applied Biosystems, Foster City, CA, USA). All of the oligonucleotides
were synthesized by Invitrogen (Breda, The Netherlands).
Oligonucleotide specificity was determined by a homology search
within the human genome (BLAST, National Center for Biotechnology
Information, Bethesda, MD, USA) and confirmed by dissociation curve
analysis. The oligonucleotide sequences were as follows: MMP-13 sense
primer, 5′-TCCCAGGAATTGGTGATAAAGTAGA-3′; anti-sense primer,
5′-CTGGCATGACGCGAACAATA-3′; β-actin sense primer, 5′-
AGGTCATCACTATTGGCAACGA-3′; anti-sense primer, 5′-
CACTTCATGATGGAATTGAATGTAGTT-3′. PCR was performed with
SYBR Green in an ABI 7000 sequence detection system (Applied
Biosystems) according to the manufacturer's guidelines.

2.11. Statistical analyses

The results are expressed as mean± SD. Statistical analyses were
performed using one-way or two-way ANOVA, following by Tukey's test
as appropriate. A p-value<0.05 was considered statistically sig-
nificant.

3. Results

3.1. Activation of PKR following inflammation of cartilage at knee joint

In order to investigate the influence of gradual wear and tear to the
cartilage, we examined the expression of phosphorylated and total PKR
in these three regions of damaged knee joint (Fig. 1A) from a patient

with total knee replacement. Western blotting analysis revealed that
phospho-PKR was up-regulated in the mid-damaged and damaged
cartilages (Fig. 1B and C). In agreement with this finding, the activity of
PKR was elevated in the mid- and damaged regions (Fig. 1D). We ob-
served the similar result of increased expression of phospho-PKR after
adding TNF-α to mimic inflammatory condition in chondrocytes which
were isolated from non-damaged cartilage (Fig. 1E and F). Our results
showed that the expression and activity of phospho-PKR were up-
regulated at the onset of OA and by treatment of TNF-α in chon-
drocytes.

3.2. Increased PKC expression after inflammation is mediated by PKR

Previously, elevated expression of protein kinase C (PKC) was found
in human OA articular cartilages and was required for TNF-α or IL-1-
induced NF-κB activation in chondrocytes [14]. Therefore, we sought to
examine the relationship between PKR and PKC. As shown in Fig. 2A
and B, protein expression of phospho-PKC was up-regulated in the mid-
damaged and damaged cartilages. And the increased expression levels
of phospho-PKC and phospho-PKR were observed after TNF-α treat-
ment in human chondrocytes which were isolated from non-damaged
cartilage (Fig. 2C and D). Next, we assessed the effect of a synthetic
analog of dsRNA polyinosinic-polycytidylic acid, poly(I:C), on the ex-
pression of PKC and PKR in chondrocytes. As expected, poly(I:C) en-
hanced the expression of phospho-PKR (Fig. 2C and D). It was note-
worthy that the expression of phospho-PKC was up-regulated as well,
indicating that activation of PKR possibly led to phosphorylation of
PKC. As such, we utilized si-PKR to hinder the expression of PKR and
found that the TNF-α-induced activation of PKC was abrogated by si-
PKR (Fig. 2E and F). These results demonstrated that increased ex-
pression of PKC after inflammation was via up-regulation of phospho-
PKR.

Fig. 3. Activation of NADPH oxidase (NOX) under the inflammatory condition is mediated by increased level of PKR or PKC. Protein expression (A) and quantification (B) of
NADPH oxidase cytosolic subunits, including p47 and Rac-1, as well as NOX1; (C) Activity of NOX from three different regions; The protein expression levels (D) and quantification of
NOX subunits and isoform (E) in TNF-α-stimulated chondrocytes in the presence of si-PKR or si-PKC. The activity of NOX was tested by NADPH oxidase activity assay (F). (G) Western
blotting confirming PKR and PKC knockdown efficiency. (n = 3; * p< .05 compared to non-damaged cartilage or no treatment control group; & p<.05 compared to TNF-α only group).
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3.3. Upregulation of NADPH oxidase (NOX) activity under the
inflammatory condition is regulated by PKR

Reactive oxygen species (ROS) could be generated by chondrocytes
following activation of nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase [15] and oxidative stress has been shown to induce
the expression of OA markers [16]. Moreover, IL-1β-mediated MMP
secretion in chondrocytes has been proven by up-regulation of NADPH
oxidase (NOX) [17]. In the current study, we examined whether the
effect of inflammatory stimulation on NOX activity was via PKR sig-
naling pathway. First, we demonstrated that the subunits (p47 and Rac-
1) as well as the isoform (NOX-1) of NADPH oxidase were elevated in
the mid-damaged and damaged cartilages (Fig. 3A and B). Likewise, the
activity of NOX was also increased in these damaged cartilages
(Fig. 3C). Next, we showed the TNF-α-induced up-regulation of sub-
units and isoform (Fig. 3D and E) as well as NOX activity (Fig. 3F) in
chondrocytes using si-PKR or si-PKC. Together, these findings suggested
that the up-regulation of NOX following inflammation was mediated by
PKR.

3.4. Reduced antioxidant activity by inflammation in cartilage is repressed
by inhibition of PKR/PKC/NOX pathway

In associated with the previous study [15], the activity of

antioxidant enzymes, superoxide (SOD; Fig. 4A) and catalase (Fig. 4B),
was downregulated in OA cartilages. But ROS induced by TNF-α was
suppressed by administration of si-PKR or si-PKC. NADPH oxidases
have several sub-units, therefore, two different ROS inhibitors were
used in this study. We also confirmed that ROS activated by TNF-α was
inhibited by administration of ROS inhibitors (apocynin and DPI)
(Fig. 4C). Most importantly, we demonstrated that the reduced anti-
oxidant activity in chondrocytes by TNF-α was reversed using si-PKR,
si-PKC or ROS inhibitors. (Fig. 4D). These data indicated that the im-
paired antioxidant capacity in inflammatory chondrocytes may be en-
hanced by modulation of PKR/PKC/NOX pathway.

3.5. Inflammation-induced phosphorylation of ERK is modulated by PKR/
PKC/NOX pathway

MAPK signaling pathways are involved in the regulation of various
biological activities, including inflammation [18]. Previous studies
have demonstrated that ex vivo cartilage compression stimulates the
phosphorylation of ERK1/2 [19] and TNF-α-induced MMP-13 expres-
sion was associated with ERK and NF-κB [20]. Here, we observed up-
regulated phosphorylation of ERK in OA cartilages (Fig. 5A and B) and
TNF-α-stimulated ERK phosphorylation was quenched by si-PKR, si-
PKC or NOX inhibitor apocynin (Fig. 5C and D). Furthermore, we
showed that ERK phosphorylation was increased following enhanced

Fig. 4. Accumulated oxidative stress by inflammation in cartilage is reversed by inhibition of PKR/PKC/NOX pathway Activities of the antioxidant enzymes, (A) SOD and (B)
catalase, in three different regions of cartilage; (C) TNF-α-induced ROS in chondrocytes was interfered by si-PKR or si-PKC; (D) Activities of antioxidant enzymes (SOD and catalase)
following TNF-α exposure with si-PKR, si-PKC or two NOX inhibitors (apocynin and DPI). (n = 3; * p< .05 compared to non-damaged cartilage or no treatment control group; & p<.05
compared to TNF-α only group).
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expression of phospho-PKR using poly(I:C) (Fig. 5E and F). And this
upregulation was inhibited by si-PKR, si-PKC or apocynin (Fig. 5E and
F), indicating phosphorylation of ERK by the inflammatory mediator in
chondrocytes was regulated through PKR/PKC/NOX pathway.

3.6. Mitigation of PPAR-γ is via activation of PKR/PKC/NOX pathway,
leading to MMP-13 upregulation

Peroxisome proliferator-activated receptor-γ (PPAR-γ) is known to
exhibit chondroprotective property. It has been shown that IL-1-in-
duced downregulation of PPAR-γ was via activation of the MAPKs and
NF-κB signaling pathways [21]. Our result was in accordance with the
previous study showing reduced expression of PPAR-γ in OA cartilages
(Fig. 6A and B). We not only demonstrated that the diminished ex-
pression of PPAR-γ after TNF-α treatment was via PKR/PKC/NOX
pathway (Fig. 6C and D), but also revealed ERK was required for this
phenomenon using ERK inhibitor PD98059 since PD98059 has fre-
quently been utilized to conduct in vitro investigations (Fig. 6C and D).
Besides, our data proved that activation of MMP-13 by TNF-α in
chondrocytes was also through PKR/PKC/NOX pathway (Fig. 6E). To
confirm downregulation of PPAR-γ affected MMP-13 production in
human chondrocytes, we added PPAR-γ agonist GW1929 and found
that MMP-13 expression was reduced. However, PDTC treatment (NF-
κB inhibitor) did not mitigate TNF-α-induced MMP-13 secretion, in-
dicating that TNF-α-induced MMP-13 production is NF-κB independent
(Fig. 6E). This finding was further confirmed by real-time PCR (Fig. 6F).

3.7. TNF-α-activated NF-κB expression in chondrocytes is via PKR/PKC/
NOX/ERK signaling, resulting in increased expression level of COX-2 and IL-
8

NF-κB is crucial for the inflammatory response in chondrocytes
[22], hence, we addressed the impact of PKR/PKC/NOX/ERK pathway
following TNF-α treatment. First, we showed that elevated expression
of NF-κB p65 by TNF-α (Fig. 7A) or poly(I:C) (Fig. 7B) was reduced
when adding si-PKR, si-PKC, apocynin (NOX inhibitor) or PD98059
(ERK inhibitor). To further investigate the proinflammatory response
after NF-κB activation, we examined the expression of COX-2 and se-
cretion IL-8 since they both are important mediators in the pathophy-
siology of OA [23,24]. By utilizing si-PKR, si-PKC, apocynin or pyrro-
lidine dithiocarbamate (PDTC; a potent NF-κB inhibitor), we confirmed
that upregulation of COX-2 and IL-8 after TNF-α treatment were
mediated by PKR/PKC/NOX/NF-κB signaling (Fig. 7C-E).

4. Discussion

Over the past decades, the role of PKR in the pathogenesis of OA has
been investigated in numerous studies. It has been shown that PKR is
involved in COX-2 accumulation [11] as well as MMP-9 up-regulation
[12] in IL-1α-activated cartilage. The pro-inflammatory molecule TNF-
α is involved in regulation of osteoblast differentiation [25] and con-
tributes to arthritis by increasing of bone resorption and activation of
pro-inflammatory responses [26]. The TNF-α-increased release of pro-
teoglycan and activation of MMP-2 and -9 in cartilage explants are both
PKR dependent [10]. Moreover, TNF-α-induced chondrocyte cell death
is associated with PKR pathway [10]. TNF-α has also been found in
diseased synovial fluid, hence it was selected to facilitate OA-like

Fig. 5. Inflammation-induced p-ERK is downregulated by modulation of PKR/PKC/NOX pathway. Protein expression (A) and ratio (B) of p-ERK to total ERK in three different
regions; Protein expression (C) and ratio (D) of p-ERK to total ERK after TNF-α treatment with si-PKR, si-PKC or NOX inhibitor apocynin; Protein expression (E) and ratio (F) of p-ERK to
total ERK following poly(I:C) treatment with si-PKR, si-PKC or NOX inhibitor apocynin. (n = 3; * p< .05 compared to non-damaged cartilage or no treatment control group; & p<.05
compared to TNF-α only or poly(I:C) only group).
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changes in vitro [27]. In this present study, TNF-α was used to induce
OA-like degenerative responses in chondrocytes. A previous study has
shown that mitigation of PKR inhibited the TNF-α-caused activation of
NF-κB and MAPK in RAW264.7 cells. This finding also indicated that
PKR is required for TNF-α-induced osteoclast differentiation [28]. In
consistent with these findings, we found that the upregulated expres-
sion of PKR in human chondrocytes by TNF-α stimulation led to in-
crease in COX-2, IL-8 and MMP-13 production (Figs. 6 and 7). Several
studies have indicated IL-8 promote the pathophysiology of OA, in-
cluding the release of MMP-13 [29], neutrophil accumulation [30] and
chondrocyte hypertrophic differentiation [29,31]. And COX-2 con-
tributes to cartilage proteoglycan degradation [32] and is associated
with differentiation status [33] and cell death [34,35] in OA chon-
drocytes.

MMP-13 (collagenase-3) has been suggested to play a role in phy-
siological turnover of cartilage via cleavage of various ECM molecules,
such as type II collagen [36–38]. MMP-13 is constitutively produced
and rapidly endocytosed by chondrocytes under steady condition [39].
During the development of OA, chondrocyte hypertrophy was observed
accompanied by induction of MMP-13 and collagenase activity [40].
Apart from matrix degradation and hypertrophic changes, MMP-13 was
also associated with chondrocyte differentiation [41,42] and dena-
turation of type II collagen [36,43] in OA cartilages. And it has been
proved to be modulated by pro-inflammatory cytokines, IL-1 and TNF-
α, in chondrocytes [38,44]. Recently, it has been revealed that the in-
crease in MMP-13 transcription in human chondrocytes after in-
flammation was regulated by activating transcription factor 3 (ATF3)

[45], NF-κB [20] or via MAPK/c-Fos/AP-1 and JAK/STAT pathways
[46]. In addition, Singh's group has reported that MMP-13 deficiency
plays an important role in mitigating local pro-inflammatory events,
suggesting MMP-13 is critical in the pathogenesis of arthritis [47]. Data
from the current study further demonstrated the signaling pathway in
the regulation of MMP-13 expression following TNF-α stimulation was
via PKR/PKC/NOX/ERK/PPAR-γ pathway in chondrocytes.

Oxidative stress has been defined as the imbalance between the
production of reactive oxygen species (ROS) and antioxidant defenses.
The implication of oxidative stress in the progression of OA has been
extensively examined recently, and numerous studies have concluded
that OA progression is significantly related to oxidative stress accu-
mulation [48,49]. In addition to mitochondria, NOX is the major source
of ROS in cells [50]. ROS serve as integral factors contributing to the
maintenance of cartilage homeostasis as they modulate chondrocyte
apoptosis, inflammatory cytokine production and ECM breakdown and
synthesis [51–53], leading to cartilage degradation and joint in-
flammation. In consistent with these findings, we showed that the ac-
tivity of antioxidant enzymes was reduced in OA cartilages or in re-
sponse to TNF-α treatment concurrent with an increase in ROS (Fig. 4).
And we also found the elevated inflammatory response following the
accumulated oxidative stress in human chondrocytes (Fig. 7), which
may contribute to synovium inflammation in OA patients.

In conclusion, the present study demonstrated substantial evidence
that PKR contributes to OA pathogenesis through regulation of mole-
cular events involved in oxidative stress, inflammation, and matrix
degradation. PKR causes phosphorylation of PKC following exposure to

Fig. 6. Mitigation of PPAR-γ is via activation of PKR/PKC/NOX/ERK pathway, leading to reduction of MMP-13. Protein expression (A) and quantification (B) of PPAR-γ in three
different regions; Protein expression (C) and quantification (D) of PPAR-γ by TNF-α stimulation in chondrocytes along with si-PKR, si-PKC, NOX inhibitor apocynin or ERK inhibitor
PD98059; The up-regulation of MMP-13 secretion (E) and MMP-13 mRNA expression (F) by TNF-α in chondrocytes was hindered by si-PKR, si-PKC, apocynin, PD98059 or PPAR-γ
agonist GW1929. (n = 3; * p< .05 compared to non-damaged cartilage or no treatment control group; & p< .05 compared to TNF-α only group).
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TNF-α in human chondrocytes, leading to the elevated expression of
NOX and the subsequent increased ROS. The accumulated oxidative
stress eventually exaggerates inflammatory response, such as an in-
crease in COX-2 and IL-8, via ERK/NF-κB pathway. The activated ERK
signaling also suppresses the inhibition of PPAR-γ to MMP-13, thereby
resulting in cartilage degradation (Fig. 8). These findings revealed PKR

signaling pathway in human chondrocytes following inflammatory
stimulation and suggested PKR may be able to serve as a pharmacolo-
gical target for OA treatment.

Fig. 7. PKR-mediated elevation of COX-2 and IL-8 expression. N-FκB p65-activity in response to TNF-α (A) or poly(I:C)-induction (B) with si-PKR, si-PKC, apocynin or PD98059;
Protein expression (C) and quantification (D) of COX-2 by TNF-α stimulation in chondrocytes with si-PKR, si-PKC, apocynin or NF-κB inhibitor PDTC; (E) IL-8 secretion after TNF-α
treatment in chondrocytes with si-PKR, si-PKC, apocynin or PDTC. (n = 3; * p<.05 compared with no treatment control group; & p< .05 compared to TNF-α only or poly(I:C) only
group).

Fig. 8. Schematic diagram of PKR signaling
pathways that are activated by inflammatory
stimulation. Phosphorylation of PKC by PKR acti-
vation induces the cytosolic complex (such as p47
and Rac1) to translocate to the membrane and as-
sociate with the integral membrane components,
resulting in activation of NOX1 followed by accu-
mulation of reactive oxidase species (superoxide)
and down-regulation of antioxidant enzymes activity
(SOD and catalase). Subsequently, the up-regulated
oxidative stress triggers the ERK pathway which
leads to enhanced inflammatory responses (in-
creased COX-2 and IL-8) via NF-κB. In addition, the
activated ERK hinder the inhibition of PPAR-γ to
MMP-13, allowing MMP-13-mediated ECM de-
gradation/remodeling.
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