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Abstract: Porous nanomaterials have attracted much attention in the field of electrochemilumines-
cence (ECL) analysis research because of their large specific surface area, high porosity, possession of
multiple functional groups, and ease of modification. Porous nanomaterials can not only serve as
good carriers for loading ECL luminophores to prepare nanomaterials with excellent luminescence
properties, but they also have a good electrical conductivity to facilitate charge transfer and substance
exchange between electrode surfaces and solutions. In particular, some porous nanomaterials with
special functional groups or centered on metals even possess excellent catalytic properties that can
enhance the ECL response of the system. ECL composites prepared based on porous nanomaterials
have a wide range of applications in the field of ECL biosensors due to their extraordinary ECL
response. In this paper, we reviewed recent research advances in various porous nanomaterials
commonly used to fabricate ECL biosensors, such as ordered mesoporous silica (OMS), metal–organic
frameworks (MOFs), covalent organic frameworks (COFs) and metal–polydopamine frameworks
(MPFs). Their applications in the detection of heavy metal ions, small molecules, proteins and nucleic
acids are also summarized. The challenges and prospects of constructing ECL biosensors based on
porous nanomaterials are further discussed. We hope that this review will provide the reader with a
comprehensive understanding of the development of porous nanomaterial-based ECL systems in
analytical biosensors and materials science.

Keywords: porous nanomaterials; electrochemiluminescence; metal-organic frameworks; covalent
organic frameworks; metal-polydopamine frameworks; biosensors

1. Introduction

Among various electroanalysis techniques, the electrochemiluminescence (ECL) method
has attracted widespread attention due to its merits of high sensitivity and excellent ana-
lytical performance [1–3]. In the mid-1960s, Hercules, Santhanam, and Bard reported the
first study on ECL [4,5]. Since then, the ECL technology has received wide attention from
the scientific community. The ECL is a kind of new assay that combines two analytical
methods: chemiluminescence (CL) and electrochemical techniques. Different from the
traditional CL assay, ECL does not require an external excitation light source, so it has the
advantages of a wider linear detection range, a better repeatability and anti-interference,
a small background value, a good accuracy, and a high sensitivity [6,7]. The equipment
and instruments for fabricating an ECL platform are usually small, and the preparation
process is relatively simple and controllable [8,9]. Furthermore, ECL analysis can achieve
continuous measurement, which is very popular and appropriate in the field of biochemical
analysis, immunoassay, and pharmaceutical analysis. Attributing to these unique advan-
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tages, it has become one of the most highly interesting research areas for researchers in the
field of analytical chemistry and been regarded as a very promising analytical assay [10–12].

With the inherent merits of a large specific surface area, a high porosity, an adjustable
pore size and structure, and easy modification, porous nanomaterials have great potential
in the fields of multiphase catalysis, gas adsorption and separation, drug transport, and
biosensing [13–16]. In the field of ECL research, it is interesting that porous nanomaterials
can not only be used as carriers for loaded luminophores, catalysts for accelerating the
decomposition of catalytic co-reactants, and nanoreactors for accommodating ECL systems,
but also accelerate the process of substance transport and charge transfer, all of which
make ECL systems based on porous nanomaterials have a strong ECL response and a high
sensitivity [17–21].

Sensitivity, stability, and reproducibility are important indicators for ECL biosensors.
In order to improve the performance of ECL biosensors, it is particularly important to find
and develop luminophores with strong ECL signals and a high stability. Conventional lu-
minophores, such as g-C3N4, have an excellent ECL response, but their sheet-like structure
makes their specific surface area relatively small, which reduces the probability of contact
between the luminophore and the co-reactant and seriously affects their ECL luminescence
efficiency. Luminol, tris-2-2′-bipyridyl ruthenium (i.e., Ru(bpy)3

2+), and their derivatives
possess good water solubility, making it difficult to apply them alone as luminophores in
aqueous solutions. Therefore, finding nanomaterials with a large specific surface area and a
high porosity as carriers of ECL luminophores or preparing ECL materials with a large spe-
cific surface area and a high porosity is of extraordinary significance for the preparation of
high-performance ECL biosensors. In recent years, porous nanomaterials, such as ordered
mesoporous silica (OMS) [22], metal–organic frameworks (MOFs) [23], covalent organic
frameworks (COFs) [24], and metal–polydopamine frameworks (MPFs) [25] have received
extensive attention in the study of ECL biosensors because of their large specific surface
area, high porosity, tunable pore size and structure, and easy modification. It has also
demonstrated excellent performance in the detection of heavy metal ions, small molecules,
proteins, and nucleic acids.

In this review, we present a detailed description of porous nanomaterial-based ECL
biosensors, combining the basic construction process and the applied reaction mechanism
to show the innovative applications of porous nanomaterials in ECL biosensors, as shown
in Figure 1. We further discuss the challenges and the prospects of ECL systems based on
porous nanomaterials. This review will enable readers to understand the relevant contents
comprehensively and find more innovative applications.
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2. Synthesis of Porous Nanomaterials with ECL Properties

Numerous experimental results have shown that ECL biosensors based on porous
nanomaterials can effectively enhance the ECL performance and enhance the accuracy
of analysis [26,27]. Therefore, we firstly summarize and discuss the preparation of those
porous nanomaterials with ECL properties, such as OMS, MOFs, COFs, and MPFs.

2.1. Ordered Mesoporous Silica (OMS) with ECL Properties

OMS has a wide range of applications in ECL biosensors, because of its excellent mor-
phological characteristics, excellent stability, and simple preparation method. It is usually
used as a carrier to load ECL substances by means of doping or coating techniques [28,29].
To make the discussion clearly, Table 1 summarizes several kinds of OMS-based nanocom-
posites being applied in the field of ECL biosensors and the corresponding synthesis
strategies in recent years.

Table 1. Different synthetic strategies for OMS-based nanocomposites with ECL properties.

Nanocomposites Methods Luminous Body Duration Ref.

mSiO2@CdTe@SiO2 NSs In situ synthesis CdTe QDs Microemulsion method [30]

g-C3N4@ms-SiO2 Post-synthesis modification g-C3N4 Agitating [31]

Ru-QDs@SiO2 In situ synthesis CN QDs, Ru(bpy)3
2+ Microemulsion method [32]

Ru@SiO2 In situ synthesis Ru(bpy)3
2+ Self-assembly [33]

CdTe@SiO2 In situ synthesis CdTe QDs Microemulsion method [34]

NH2–Ru@SiO2-NGQDs Post-synthesis modification CNQDs, Ru(bpy)3
2+ Agitating [35]

Ru@SiO2 NPs In situ synthesis Ru(bpy)3
2+ Microemulsion method [36]

SiO2@Ir In situ synthesis Ir(ppy)3
2+ Microemulsion method [37]

SiO2@CQDs/AuNPs/MPBA Post-synthesis modification C QDs Agitating [38]

Ru@SiO2 Post-synthesis modification Ru(bpy)3
2+ Agitating [39]

SiO2@Ru-NGQDs In situ synthesis Ru(bpy)3
2+ Microemulsion method [40]

As shown in Table 1, the methods for the synthesis of OMS with ECL properties are
broadly divided into two categories. One is to synthesize silica nanoparticles (SiO2 NPs)
and obtain OMS-based nanocomposites through sodium hydroxide (NaOH) etching on this
basis. The other is to encapsulate small organic particles in SiO2 NPs by the microemulsion
method and then obtain OMS-based nanocomposites by the high temperature calcination
method [41]. The difficulty in controlling the process of etching SiO2 NPs by NaOH makes
it hard to get OMS with uniform pore channels by this etching method. Recently, the OMS
prepared through the microemulsion method can effectively solve such problems [30,31].
For example, Lin et al. prepared OMS using this method, in which the luminescent g-C3N4
was combined with the previously prepared OMS by post-modification method as an
efficient ECL probe. Based on this, the prepared sensor showed excellent correlation in the
range of 0.1 nm–10 µm with an extremely low limit of detection (LOD) of 33 pM.

In another work, You et al. directly employed a microemulsion method to encapsulate
Ru(bpy)3

2+ and CN QDs in SiO2 NPs. The electrons were transferred from CN QDs to
Ru(bpy)3

2+ through an intramolecular pathway, which shortened the distance between the
electron transfer and thus improved the luminescence efficiency, yielding a self-enhanced
ECL signal probe [32]. In a creative study, Jin et al. prepared a homogeneous Ru@SiO2
NP colloidal solution and then applied it to develop Ru@SiO2 NP nanomembranes on the
surface of indium tin oxide glass (ITO) by a liquid–liquid interface self-assembly method.
The obtained Ru@SiO2 NP nanomembrane can be used as both an enhanced substrate
and a luminol enricher. A self-enhanced ECL biosensor was constructed based on the
intense luminescence of the Ru@SiO2 NP nanomembrane and the enrichment of Ru(bpy)3

2+
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molecules on the surface of the Ru@SiO2 NP nanomembrane [33]. In order to study the
effect of the preparation process of nanocomposites on the properties of ECL, Shen et al. pre-
pared CdTe@SiO2 and SiO2@CdTe NPs via microemulsion and post-modification methods,
respectively. Interestingly, CdTe@SiO2 with ordered mesopores is more efficient and less
bio toxic for the preparation of ECL biosensors. The ECL immunosensor for the detection
of methemoglobin was prepared using CdTe@SiO2 as the signal probe with a good linearity
in the range of 1.0 pg/mL to 100 ng/mL and the LOD was 0.22 pg/mL [34].

2.2. Metal–Organic Frameworks (MOFs) with ECL Properties

MOFs are a new type of porous material formed by organic ligands and metal ions
or metal clusters linked by coordination bonds. Due to it inherit merits, such as a large
surface area, a high porosity, abundant active sites, and a strong mass transfer capability,
it has excellent performance in the field of novel materials and has a wider application
in the fields of multiphase catalysis, gas adsorption and separation, drug transport, and
biosensing [42–45]. Table 2 summarizes recent reported MOFs used in the field of ECL
biosensors and the synthesis strategies of their composite, especially illustrating post-
synthetic modifications, in situ synthesis and self-luminescent MOFs.

Table 2. Summary of different synthetic strategies for MOF composites with ECL properties.

MOF Composites Ligands Metal Source Ref.

In situ synthesis
MIL-101(Al)–NH2 NH2-BDC AlCl3 [46]

IRMOF-3 NH2-BDC Zn(NO3)2 [47]
Ru(bpy)3

2+/NH2-UiO-66 NH2-BDC ZrCl4 [48]
Fe(III)-MIL-88B-NH2 NH2-BDC FeCl3 [49]

UiO-67 BPDC ZrCl4 [50]
GSH-Au NCS@ZIF-8 2-MI Zn(NO3)2 [51]
Zinc Oxalate MOFs Oxalic acid Zn(NO3)2 [52]

Post-synthesis modifications
Ru-MOF-5 NFs PTA Zn(NO3)2 [53]
Cu/Co-MOF 2-MI Co(NO3)2, Cu(NO3)2 [54]

HH-Ru-UiO66-NH2 NH2-BDC ZrCl4 [55]
Co-Ni/MOF 2-MI Co(NO3)2, Ni (NO3)2 [56]

AgNPs@Ru-MOF NH2-BDC ZrCl4 [57]
g-C3N4@NH2-MIL-101 NH2-BDC FeCl3·6H2O [58]

Zn-Bp-MOFs H3BTC,4,4-dipyridyl Zn(NO3)2 [59]
Ru-PCN-777 H3TATB ZrOCl2 [60]

Self-luminous MOFs
Eu-MOFs 5-bop EuCl3 [61]

RuMOF NS [Ru(H2dcbpy)3]Cl2 Zn(NO3)2 [62]
Eu-MOF [Ru(H2dcbpy)3]Cl2 Eu(NO3)3 [63]

Zr-TCBPE-MOF H4TCBPE ZrCl4 [64]
Hf-TCBPE H4TCBPE HfCl4 [65]
Zr12-adb H2adb ZrCl4 [66]

Tb-Cu-PA MOF IPA TbCl3, Cu(NO3)2 [67]
Zn-PTC PTC Zn(CH3COO)2 [68]

Ru@Zr12-BPDC BPDC, H2dcbpy ZrCl4 [69]
Cu:Tb-MOF IPA TbCl3, Cu(NO3)2 [70]

UMV-Ce-MOF H3BTC Ce(NO3)3 [71]
PTP/Eu MOF H3BTC Eu(NO3)3 [72]

Ce-TCPP-LMOF TCPP Ce(NO3)3 [73]
Zn-MOF Hcptpy ZnSO4 [74]

2.2.1. In Situ Synthesis

Although MOFs have a high porosity and a tunable pore size, the pore size could be
fixed along with the successful preparation of MOFs. Most classical MOFs contain only
micropores, which leads to the inability of guest luminophores to easily enter the MOF
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interior through the pores, making the luminophore loading capacity of MOF materials
greatly be reduced [75]. To solve this problem, Yang et al. wrapped the luminescence
inside the MOF material by an in situ synthesis method during the MOF growth process,
which resulted in a greatly enhanced loading capacity of the guest luminescence, and thus
prepared the nanocomposite with a high-intensity ECL response [47].

As we all know, as an excellent luminescent substance, Ru(bpy)3
2+ is often used in

the process of constructing various ECL biosensors. For instance, Cao et al. encapsulated
Ru(Bpy)3

2+ molecules into NH2-UiO-66 through the ligand effect during the growth of
NH2-UiO-66. The open channels or active cavities of MOFs could not only maintain
the excellent ECL response of Ru(bpy)3

2+, but also enrich the co-reactants, enabling the
ECL biosensor to exhibit a highly selective and efficient ECL response, thus facilitating
the ECL biosensor for ultra-sensitive and accurate analyses of the β-amyloid [48]. As
shown in Figure 2D, Wang et al. applied mesoporous, hollow MIL-101(Al)-NH2 in an ECL
system by the in situ growth process and achieved a large and stable loading of Ru(bpy)3

2+.
Additionally, the authors also made poly(ethylenediamine) as a co-reactant and combined it
with MIL-101(Al)-NH2 through covalent bonding, which not only prevented the leakage of
Ru(bpy)3

2+, but also made the Ru complex produce strong and stable ECL signals through
self-enhancement effect [46].
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In addition to Ru(bpy)3
2+, quantum dots (QDs) are often used in the field of ECL

biosensors as an efficient and stable luminescent [76,77]. In the recent study, Tan et al.
attached a large number of CdS QDs to chain-like polyethylenimine (PEI) via amide
bonding, wrapped the modified PEI on the surface of MIL-53(Al), achieved massive loading
of CdS QDs, and finally prepared MOF-based ECL signaling probes [78]. In another study,
Deng et al. successfully encapsulated ZnSe QDs in Fe (III)-MIL-88B-NH2 through the in situ
growth process. Fe(III)-MIL-88B-NH2 can not only achieve massive loading of ZnSe QDs,
but it also contains amino groups for catalyzing the conversion of the co-reactant S2O8

2−

into sulfate anions (SO4
•−), which shortens the electron transfer distance and reduces

the energy loss, enabling the ECL property of ZnSe QDs [49]. Although all of the above
works demonstrate that the preparation of nanomaterials with ECL properties by the in
situ growth method is an excellent strategy, the leakage of luminescent material is still an
inevitable issue in the practical operations.

2.2.2. Post-Synthesis Modification

Post-synthesis modification is an effective means to prepare MOFs with ECL properties.
The mechanism is mainly to attach luminophores to the surface of MOFs by ligand reaction,
electrostatic force adsorption, or amide bonding, so that the MOFs materials, originally
without ECL properties, become nanocomposites with ECL properties [79,80].

For example, As shown in Figure 2A, Wei et al. indicated that a flower-like nanomate-
rial with ECL properties was successfully prepared by loading Ru(bpy)3

2+ onto the surface
of MOF-5 NFs via electrostatic force adsorption, exhibiting an excellent ECL response [53].

It is worth noting that MOFs with catalytic properties act as carriers, not only to
enrich the co-reactants but also to catalyze the co-reactants so that the ECL response is
enhanced. As shown in Figure 2B, Zhou et al. successfully prepared nanocomposites with
ECL properties by ligand bonding luminol to the MOF. The obtained hollow Cu/Co-MOF
not only acted as a carrier but also could catalyze the generation of more O2− from H2O2,
which greatly enhanced the ECL response by means of this material [54].

As shown in Figure 2C, Yuan et al. connected the luminescent material (Ru(Bpy)2
(Mcpbpy)2+) with the carrier MOF (HH-UiO-66-NH2) through amide bonding. On the
one hand, the hierarchical pore shell and hollow cavity of HH-UiO-66-NH2 exposed more
amino groups, which made the loading of the luminescent greatly increased. On the
other hand, the HH-UiO-66-NH2 surface amino group could catalyze the generation of
SO4

•− from S2O8
2−, which greatly shortened the distance between the co-reactant and

the luminophore, making the charge transfer more efficient and thus enhancing the ECL
signals [55].

2.2.3. Self-Luminous MOFs

Luminous metal-organic frameworks (LMOFs) that consist of organic bridging ligands
and metal-linked nodes are novel porous nanomaterials commonly used in ECL biosensors
in recent years [81]. Since LMOFs have multiple structural units, the ECL response may
come from metal centers and ligands within the MOF, and the optical properties can
be modulated by the interactions between the building components. Based on this, the
problems of low loading of modified luminescent substances and leakage from the in
situ-grown luminescent substances after MOF synthesis might be effectively solved [62,82].

Lanthanide rare-earth metal ions are an important emerging LMOFs precursor because
of their unique [Xe]4fn (n = 0–14) ground-state electronic grouping pattern, which is
prone to 4f–4f transitions and possesses abundant ladder electron energy levels and sharp
emission bands. As shown in Figure 3, Wei et al. prepared self-luminous (Ln) metal-
organic frameworks (Ln-MOFs) by hydrothermal treatment using Eu (III) ions and 5-boryl-
isophthalic acid (5-bop) as precursors. The 5-bop in the triplet excited state can transfer
its own energy to the Eu(III) ion by emitting ultraviolet light. When the Eu(III) ion gains
energy from the ligand, it can jump to a higher energy level and release more light energy
when it falls back to the ground state. The more intense ECL signal is obtained through the
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antenna effect of Eu(III) ions. The prepared sensor showed a good linearity in the range of
0.005 to 100 ng/mL, and the obtained LOD was only 0.126 pg/mL [61].
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Ru(bpy)3
2+ and its derivatives can not only prepare porous nanomaterials with

ECL properties by post-synthesis modification or in situ growth, but also act as lig-
ands for the direct synthesis of self-luminous MOFs involved in the construction of ECL
biosensors [73,83].

In a pioneering work conducted by Yan et al., self-luminous Ru-MOF has been synthe-
sized by using the autoloading Ru(dcbpy)3

2+ and zinc ions as precursors. The obtained
Ru-MOF nanosheets expose more active centers, promote closer contact with the target
molecule, and have shorter diffusion distances for ions, electrons, and co-reactants. The
excellent property makes the self-luminous Ru-MOF show great potential as a new Faraday
cage for developing a biosensing platform [62].

As shown in Figure 4, in another interesting work, Zhao et al. synthesized a new type
of Eu-MOF by a hydrothermal method using Eu (III) ions and Ru(dcbpy)3

2+ as precursors.
The Eu-MOF can undergo redox reactions and energy transfer between its ligand molecules
and achieve annihilation luminescence without any additional co-reactants. At the same
time, the antenna effect of Eu (III) ions in Eu-MOF is generated. In other words, when Eu (III)
ions absorb the energy from the ligand, the luminescence efficiency is greatly increased, and
the secondary near-infrared (NIR-II) luminescence is obtained. The prepared ECL sensor
using Eu2[Ru(Dcbpy)3]3 as the ECL signal probe was extremely resistant to interference and
achieved the rapid and sensitive detection of trenbolone in the range of 5 fg/Ml–100 ng/Ml
with a lower LOD of 4.83 fg/Ml [63].
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Although Ru(bpy)3
2+ and its derivatives have very common applications in the field

of ECL, their high price and the biotoxicity carried by the co-reactants limit the current
application of Ru-containing MOFs.

In particular, aggregation-induced ECL (AI-ECL) was firstly discovered by Luisa De
Cola’s team in 2017 [84]. With the continuous development in recent years, some excellent
AI-ECL materials have emerged. Recently, researchers found that tetraphenylethylene (TPE)
and its derivatives have the characteristics of a high ECL efficiency via easy modification.
Compared with its aggregates and monomers, MOFs prepared based on TPE showed a
stronger ECL response. For instance, Yuan et al. successfully prepared a novel 2D ultrathin
MOF material based on the aggregation-induced emission (AIE) ligand H4ETTC and used
it to construct a novel ECL biosensor for the ultrasensitive detection of CEA. The newly
synthesized AIE luminogen (AIEgen)-based MOF (Hf-ETTC-MOF) yielded a higher ECL
intensity and efficiency than H4ETTC monomers, H4ETTC aggregates and 3D bulk Hf-
ETTC-MOF did [85]. As shown in Figure 5, Wei et al. synthesized a dumbbell-shaped metal–
organic backbone with high luminescence efficiency by combining the aggregation-induced
luminescent material H4TCBPE with Zr(IV) ions. The obtained Zr-TCBPE-MOF possesses a
more excellent ECL performance compared to the monomer and aggregates of H4TCBPE. In
addition, the authors combined Zr-TCBPE-MOF with polyethyleneimine (PEI) to prepare a
unique self-reinforced Zr-TCBPE-PEI electroluminescent complex, which could effectively
avoid the bio-toxicity of the co-reactant and exhibit a more dramatic ECL response. The
prepared ECL sensor showed good correlation in the range of 0.0001–10 ng/mL and the
lower LOD was 52 fg/mL, providing an effective way for the early and sensitive detection
of small cell lung cancer [64].
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2.3. Covalent Organic Frameworks (COFs) with ECL Properties

COFs is a class of organic porous crystalline materials composed of light elements
(C, O, N, B, etc.), which are connected to each other by covalent bonds. Due to their
structural designability, low density, high specific surface area, easy modification, and
functionalization, COFs have been widely investigated and shown excellent prospects for
applications in the fields of gas storage and separation, non-homogeneous catalysis, energy
storage materials, optoelectronics, sensing, and drug delivery [86].

Although COFs materials currently synthesized by solvothermal synthesis and Kno-
evenagel polycondensation reaction are often used for ECL biosensors, there are not so
many articles reported about the application of COFs in the development of ECL biosen-
sors. Recently, Zhuo et al. prepared a nanocomposite with ECL properties by attaching
Ru(bpy)3

2+ to the surface of COF-LZU1. Since COF-LZU1 has a hydrophobic porous struc-
ture and TPrA is lipophilic, a large amount of TPrA in aqueous solution can be enriched
into the hydrophobic inner cavity of COF-LZU1, which will shorten the distance between
the luminescent material and the co-reactant and increase the concentration of co-reactant
around the luminescent, resulting in a greatly enhanced ECL response [87]. However, the
conductivity of COFs materials limits its application in the ECL field, which may be one
of the reasons for limiting applications of COFs in the ECL biosensing study. To solve
this problem, Yuan et al. provided a novel strategy. They prepared a conductive COF
(HHTP-HATPCOF), as shown in Figure 6. In their work, since HHTP-HATP-COF has a
large amount of ECL-emitting material and its conductive porous backbone accelerates
the charge transfer in the whole backbone, the ECL response of this composite is greatly
enhanced [88].
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2.4. Metal–Polydopamine Frameworks (MPFs) with ECL Properties

MPFs are a new hybrid material that perfectly combine the advantages of both MOFs
and polydopamine (PDA) [89]. The large specific surface area and high porosity can be used
to obtain a strong ECL signal by increasing the loading of luminophores. The PDA structure
contains active double bonds that can chemically react with multiple groups to connect
luminophores. The PDA structural fragment is a conjugated system that can generate π–π
stacking with luminophores containing π bonds and thus adsorb luminophores [90,91].

As shown in Figure 6, Ma et al. prepared the MOF (ZIF-8) as the basic framework by
the self-assembly method at first. After that, the hollow and porous metal–polydopamine
frameworks (MPFs) were gradually formed by reacting with dopamine in a mixture of
ethanol and Tris-HCl buffer, in which the polydopamine continuously replaced the original
ligands through coordination reactions. Finally, the nanocomposites with ECL properties
were formed by adsorption of Ru(bpy)3

2+ through π–π stacking [25]. Although MPFs have
many advantages, there are still less related studies on applying MPFs in preparing ECL
biosensors. So, it is hoped that MPFs can achieve greater breakthroughs in the field of ECL
biosensors through the continuous efforts of researchers.

3. Application of ECL Biosensors Based on Porous Nanomaterials

Due to their excellent stability and selectivity, porous nanomaterials have a wide range
of applications in the field of ECL biosensors [92,93]. Here, we focus on introducing the
applications of ECL biosensors based on porous nanomaterials in the detection of heavy
metal ions, small molecules, proteins, and nucleic acids in recent years.

3.1. Biosensors for Detecting Heavy Metal Ions

It is well known that heavy metal ions have a great impact on human health and the
natural environment, especially the intake of large amounts of heavy metal ions can cause
irreversible damage to the human body, so the reliable and accurate detection of heavy metal
ions is of great importance [94]. For example, You et al. prepared a label-free ECL biosensor
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for the detection of Hg2+ based on the different affinity of Ru-QDs@SiO2 nanocomposites
for loading single-stranded DNA (SsDNA) and Hg2+-initiated double-stranded DNA
(DsDNA). When no ions of Hg2+ are present, single-stranded DNA is attached to the
Ru-QDs@SiO2 surface by hydrogen bonding, i.e., electrostatic force adsorption, which
leads to the quenching of the ECL signal. When Hg2+ is present, part of the single-stranded
DNA on the surface of Ru-QDs@SiO2 is guided to form a stable dsDNA, allowing part of
Ru-QDs@SiO2 to exist in a free state, reducing the quenching of the ECL signal to single-
stranded DNA [32]. Additionally, You et al. attached one end of the Hg2+ aptamer to
NH2-Ru@SiO2-NGQds through an amide bond and the other end to AuNPs on the surface
of the glassy carbon electrode (GCE) through an Au–S bond. When Hg2+ is absent, the
aptamer is a long chain, and there is a large spatial site resistance between the luminescent
material and the electrode surface, and, thus, the ECL response is not strong. When Hg2+ is
present, the aptamer bends due to the formation of a thymine-Hg2+-thymine (T-Hg2+-T)
specific structure, which draws the distance between the luminescent material and the
electrode surface and reduces the spatial potential resistance, making the ECL response
greatly enhanced [35].

3.2. Biosensors for Detecting Small Molecules

Table 3 summarizes ECL biosensors for detecting the small molecule based on porous
nanocomposites in recent years.

Table 3. Summary of the construction of ECL biosensors based on porous nanocomposites for small
molecule detection.

Analytes Nanocomposites Linear Range LOD Ref.

DES Ru@SiO2 4.8 × 10−4~36.0 nM 0.025 pM [39]
DES UiO-67 0.01 pg/mL~50 ng/mL 3.27 fg/mL [50]

Rutin GSH-Au NCS@ZIF-8 0.05~100 µM 10 nM [51]
Acetamiprid Cu/Co-MOF 0.1 µM~0.1 pM 0.018 pM [54]

CAP Co-Ni/MOF 1.0 × 10−13~1.0 × 10−6 M 2.9 × 10−14 M [56]
ATX-a AgNPs@Ru-MOF 0.001~1 mg/mL 0.00034 mg/mL [57]

Trenbolone Eu-MOF 5 fg/mL~100 ng/mL 4.83 fg/mL [63]
IMI UMV-Ce-MOF 2–120 nM 0.34 nM [71]

Lincomycin PTP/Eu MOF 0.1 mg/mL~0.1 ng/mL 0.026 ng/mL [72]

Chloramphenicol (CAP) is a broad-spectrum antibiotic that can effectively treat a
variety of microbial infections such as typhoid fever, meningitis, and salmonellosis. Since
the middle of last century, it has become a widely used antibiotic because of its low
production cost and good drug stability. However, many studies in recent years have
shown that excessive intake of CAP can inhibit bone marrow hematopoiesis, which in
turn can severely damage the human hematopoietic system. Therefore, it is necessary to
establish a rapid and sensitive detection method to accurately monitor CAP residues in
the aqueous environment. Chen et al. synthesized black phosphorus QDs (BPQDs) into
PTC-NH2 solution to synthesize nanocomposites with ECL properties (BP/PTC-NH2). An
efficient and sensitive ECL sensor was prepared to detect CAP by combining BP/PTC-NH2
with Co-Ni/MOF as an ECL emitter via electrostatic adsorption. The composite material of
co-Ni/MOF has a good catalytic effect and can catalyze the co-reactant K2S2O8 to generate
more SO4

•−, which enhances the ECL response of the system. When CAP is present,
the specific recognition of the aptamer makes the aptamer detach from the surface of the
luminescent material, which reduces the burst of the aptamer for the ECL response and
thus enhances the ECL signal [56].

Anatoxin-a (ATX-a) is a highly toxic alkaloid neurotoxin isolated from Anabaena
flos-aquae (e.g., a semi-lethal dose of 200 µg/mL for rats) with a strong nicotine-like
neuromuscular depolarization blocking effect, and animals poisoned will experience my-
ofascicular twitching, corneal inversions, respiratory muscle spasms, and the animals will
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show symptoms such as muscle bundle convulsion, corkscrew, respiratory muscle spasm,
and salivation after poisoning. Therefore, it is of great interest to find a rapid and sensitive
test for the detection of ATX-a in water. As shown in Figure 7, Wang et al. proposed an
ECL biosensor based on the ECL-RET strategy with a low background signal by means
of double burst and dual stimulus response. The prepared ECL biosensor provides an
accurate signal output for the ultrasensitive detection of ATX-a. Specifically, the authors
wrapped Ru(bpy)3

2+ in UiO-66-NH2 by the in situ growth method to act as an ECL signal
probe, wrapped it with silver nanoparticle (AgNPs) shells as the main bursting agent, and
tightly bound it to DNA-ferrocene (Fc). The AgNPs play an important role in the whole
system, not only to close the permanent pore of UiO-66-NH2 and prevent the leakage of
Ru(bpy)3

2+, but also to act as a quencher to quench the ECL signal of Ru(bpy)3
2+. Not

only that, the AgNPs generated in situ can specifically recognize and break the substrate
chain, generating an “On” signal, which helps to avoid false positive results. Thus, an
ultra-sensitive detection of ATX-a was achieved in the range of 0.001 to 1 mg/mL, and the
LOD was estimated to be 0.00034 mg/mL [57].
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3.3. Biosensors for Detecting Protein

Cancer has now become a global difficult-to-treat disease, and it is well known that the
treatment of early-stage cancer patients saves much more labor, money, and time than that
of late-stage cancer patients, so early diagnosis of cancer is of great significance. The ECL
analysis method provide a potential assay for the sensitive and selective detection of certain
cancer disease-related biomarkers by coupling antigen–antibody specific binding with ECL
technology. As shown in Table 4, we summarize some of the porous nanomaterial-based
ECL sensors used for protein detection in recent years.
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Table 4. Summary of the construction of ECL biosensors based on porous nanocomposites for
protein detection.

Analytes Nanocomposites Linear Range LOD Ref.

HE4 g-C3N4@ms-SiO2 10−5 to 10 ng/mL 3.3 × 10−6 ng/mL [31]
PSA Ru@SiO2 10−15 to 10−6 g/mL 0.169 fg/mL [33]
AFP CdTe@SiO2 1.0 pg/mL to 100 ng/mL 0.22 pg/mL [34]

HAase Ru@SiO2 NPs 2 to 60 U/mL 2 U/mL [36]
BNPT SiO2@Ir 0.1 ng/mL to 200 ng/mL 0.03 ng/mL [37]
AFP SiO2@CQDs/AuNPs/MPBA 0.001 to 1000 ng/m L 0.0004 ng/mL [38]
PCT MIL-101(Al)–NH2 0.0005 ng/mL to 100 ng /mL 0.18 pg/mL [46]
cTnI IRMOF-3 1 fg/mL to 10 ng/mL 0.46 fg/mL [47]

SCCA Fe(III)-MIL-88B-NH2 0.0001 to 100 ng/mL 31 fg/mL [49]
Aβ Zinc Oxalate MOFs 100 fg/mL to 50 ng/mL 13.8 fg/mL [52]

NSE Ru-MOF-5 NFs 0.0001 ng/mL to 200 ng/mL 0.041 pg/mL [53]
Thrombin HH-Ru-UiO66-NH2 100 fM to 100 nM 31.6 fM [55]

PCT NH2-MIL-101 0.014 pg/mL to 40 ng/mL 3.4 fg/mL [58]
MUC1 Zn-Bp-MOFs 1 pg/mL to 10 ng/mL 0.23 pg/mL [59]
MUC1 Ru-PCN-777 100 fg/mL to 100 ng/mL 33.3 fg/mL [60]

CYFRA21-1 Eu-MOFs 0.005 to 100 ng/mL 0.126 pg/mL [61]
cTnI RuMOFNSs 1 fg/mL to 10 ng/mL 0.48 fg/mL [62]
NSE Zr-TCBPE-MOF 0.0001 to 10 ng/mL 52 fg/mL [64]

MUC1 Hf-TCBPE 1 fg/mL to 1 ng/mL 0.49 fg/mL [65]
MUC1 Zr12-adb 1 fg/mL to 100 ng/mL 100 ng/mL [66]

CYFRA21-1 Tb-Cu-PA MOF 0.01 to 100 ng/mL 2.6 pg/mL [67]
MUC1 Ru@Zr12-BPDC 1 fg/mL to 10 ng/mL 0.14 fg/mL [69]

ProGRP Cu:Tb-MOF 1.0 pg/mL to 50 ng/mL 0.68 pg/mL [70]

Mucin-1 (MUC1) is an important transmembrane glycoprotein that is considered an
important biomarker for colon, breast, ovarian, and lung cancers. Recently, Yuan et al.
prepared a novel multivacancy nanocomposite (Hf-TCBPE) with ECL properties based
on the principle of matrix coordination-induced ECL (MCI-ECL) enhancement. The MOF
constructed by Hf ions and TCBPE ligands has its internal spatial structure fixed, which re-
stricts the intramolecular free motion of TCBPE and suppresses the nonradiative relaxation,
and the high porosity of Hf-TCBPE enables both internal and external excitation of TCBPE,
which greatly enhances its ECL response. An ECL biosensor for the detection of mucin 1
(MUC 1) was constructed by combining HF-TCBPE with a phosphate-terminated ferrocene
(FC)-labeled hairpin DNA aptamer (FC-HP3) as a signal probe (HF-TCBPE/FC-HP3) with
the aid of an exonuclease III (Exo III) cyclic amplification strategy [65]. Another novel piece
of research is that Xiao et al. discovered that the ECL of the material could be enhanced
by restricting intramolecular motion, and based on this principle, a two-dimensional ul-
trathin MOF (Zr12-ABD) with AI-ECL properties was prepared. In 2D MOF, the ligand
9,10-anthracene dibenzoate is immobilized, which restricts its intramolecular motion and
suppresses the energy loss due to spin, allowing more energy to be released in the form
of light energy and significantly enhancing the ECL response. Meanwhile, the ultrathin
multivacancy structure of 2D MOF not only allows more co-reactants to enter the interior of
MOF, but also reduces the migration distance between the electrons, ions, and co-reactants
due to the smaller spatial site resistance, which reduces the energy loss and further en-
hances the ECL response of Zr12-ABD. A biosensor for the sensitive detection of mucin 1
was prepared by combining Zr12-ABD nanomaterials with a bipedal walking molecular
machine. The ECL signal decreased with an increasing concentration of MUC1 in the range
of 1 fg/mL to 100 ng/mL, showing a good linearity, and the LOD of the prepared ECL
sensor was only 0.25 fg/mL [66].

CYFRA21-1 is considered to be a tumor marker mainly used for the detection of lung
cancer and is especially valuable for the diagnosis of non-small cell lung cancer (NSCLC).
In a study, Wei et al. creatively prepared a rare earth (Ln) metal–organic backbone (LMOF)
with ECL properties. Ln-MOF was prepared from a precursor containing Eu(III) ions and
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5-boronic acid isophthalic acid (5-bop). The ligand 5-bop produces a triplet state upon
UV excitation, which triggers the red light emission of Eu(III) ions and enhances the ECL
response. The electron-deficient boric acid reduces the energy transfer efficiency from the
triplet state of 5-bop to the Eu(III) ion, resulting in both being efficiently excited under a
single excitation. In addition, the synthesized flower-like Ni/Fe composites (Ni/Fe 1:1)
have more active centers, higher stability, and good electrical conductivity by gradually
adjusting the atomic ratio of Ni/Fe. An ECL immunosensor for the highly sensitive
detection of CYFRA21-1 was prepared using Ln-MOF as the ECL emitter and flower-like
Ni/Fe composite as the substrate, and the prepared Eu-LMOF showed good performance
characteristics in the ECL immunoassay with the LOD of 0.126 pg/mL [61].

Ju et al. synthesized a MOF with ECL properties (Tb-Cu-PA MOF) using luminescent
Tb3+ and catalytic Cu2+ ions as metal linkers and isophthalic acid (PA) as a bridging ligand.
The doping of Cu2+ significantly reduced the size of the MOF and produced a strong
and stable ECL signal. Therefore, the authors prepared a novel ECL immunosensor for
the sensitive detection of CYFRA21-1 by using the synthesized Tb-Cu-PA MOF as an
ECL emitter and Ni–Co layered double hydroxide (LDH) containing ZIF-67 nanocubes
as a substrate. Compared with ZIF-67, ZIF-67@LDH has larger specific surface area and
more active centers. After depositing palladium nanoparticles (Pt NPs) on ZIF-67@LDH
nanocubes, it can improve the charge transport and electrocatalytic performance, catalyze
S2O8

2− to produce more SO4•−, and obtain more intense ECL signals. The linear range
of the successfully prepared ECL immunosensor was 0.01–100 ng/mL with a LOD of
2.6 pg/mL [67].

Except for the biomarkers, biological enzymes also play an irreplaceable role in human
life activities. The abnormal activity of certain enzymes can lead to disorders in human
functions. Therefore, to develop a rapid and highly sensitive measurement of some enzymes
is important for clinical diagnosis and basic biochemical research. The sensitive detection
of thrombin (TB), an important biomarker that plays an important role in hemostasis
and thrombosis, has attracted great interest. In a study, Yuan et al. prepared a hollow
graded MOF (HH-UiO-66-NH2) with graded pore shells by a simple hydrothermal etching
method and used it as a carrier to load Ru(bpy)2(Mcpbpy)2+, and successfully prepared
a nanocomposite (HH-Ru-UiO66-NH2) with an excellent ECL signal. The multilayer
structure and cavity of HH-UIO-66-NH2 allowed the macromolecule Ru(bpy)2(Mcpbpy)2+

to be immobilized not only on the surface of MOF but also on the interior of MOF, which led
to a significant increase in the loading of MOF on the luminescent group. On the other hand,
the multilayer structure of HH-UIO-66-NH2 allowed the rapid diffusion of reactants, ions,
and electrons, thus promoting the excitation of more luminophores. In addition, the etched
HH-UIO-66-NH2 exposes more amino groups, which can catalyze the co-reactant K2S2O8
to generate SO4

•− radicals, and thus greatly improve the ECL luminophore utilization
rate. Ultimately, the authors used HH-RU-UIO-66-NH2 as a high-performance ECL probe
combined with a catalytic hairpin assembly (CHA) enzyme-free amplification technology to
construct an ECL biosensor for the ultrasensitive detection of TB. The successfully prepared
ECL immunosensor exhibited a good linearity in the range of 100 fM–100 nM, and the LOD
of the prepared ECL sensor was only 31.6 fM [55].

Hyaluronidase (Haase) is another general term for enzymes that oligomerize hyaluronic
acid (HA). It can decrease the activity of hyaluronic acid in the body, thereby increasing
the ability of fluid permeation in tissues. In recent years, Haase has been considered as
a potential tumor marker. In a recent work, Lin et al. designed a slow-release system
based on a hydrogel constructed of HA with polyethyleneimine (PEI) and a large amount
of Ru(bpy)3

2+-doped silica nanoparticles (Ru@SiO2NPs) stably dispersed in the hydro-
gel as an ECL signaling probe. When Haase is present, the hydrogel is decomposed by
Haase, allowing Ru@SiO2NPs to escape from the hydrogel into the supernatant, and the
concentration of Haase can be quantified by the ECL signal generated from the supernatant.
Compared with previous work, this biosensor does not require large amounts of HA to
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immobilize the signal probe or tedious centrifugation methods to reduce background
interference, and thus has an excellent sensitivity and selectivity [36].

3.4. Biosensors for Detecting Nucleic Acids

MicroRNAs are small single-stranded non-coding RNAs of about 19–23 nucleotides.
Although the first microRNAs were discovered as early as 1993, only in recent years has the
diversity and breadth of this class of genes been revealed. It is hypothesized that vertebrate
genomes have up to 1000 different miRNAs, regulating at least 30% of gene expression.
Moreover, microRNAs are also considered to be reliable biomarkers for various cancers
and genetic diseases. With the continuous development of biotechnology, scientists have
combined DNA amplification strategies, such as target cyclic amplification (TRC), catalytic
hairpin assembly (CHA), and strand displacement amplification (SDA). With the ECL
technique to prepare a number of efficient and sensitive ECL biosensors for the detection of
nucleic acids [95,96]. As shown in Table 5, an increasing number of ECL biosensors based
on porous nanocomposites have been successfully developed and applied for the sensitive
detection of nucleic acids in recent years.

Table 5. Summary of the construction of ECL biosensors based on porous nanocomposites for nucleic
acids detection.

Analytes Nanocomposites Linear Range LOD Ref.

miRNA-182 mSiO2@CdTe@SiO2 NSs 0.1 to 100 pM 33 fM [30]
microRNA-21 Zn-PTC 100 aM to 100 pM 29.5 aM [68]
miRNA-133a Zn-MOF 50 aM to 50 fM 35.8 aM [74]
microRNA-21 Py-sp2c-COF 100 aM to 1 nM 46 aM [97]
microRNA-21 Co-MOF-ABEI/Ti3C2Tx 0.00001 to 10 nM 3.7 fM [98]
miRNA-155 RuMOFs 0.8 fM to 1.0 nM 0.3 fM [99]

Recently, Yuan et al. found that when polycyclic aromatic hydrocarbons (PAHs) were
used as ligands for the synthesis of MOFs, the aggregation-induced burst (ACQ) effect of
PAHs could be effectively eliminated by coordination immobilization of the ligands as a
way to improve the strength and efficiency of ECL. Based on this principle, a MOF (Zn-
PTC) with AI-ECL properties was prepared. The molecular spacing of PTC was effectively
increased by ligand immobilization in the MOF, thus eliminating the ACQ effect and
resulting in a greatly enhanced ECL response of Zn-PTC. In addition, the PTCs in Zn-PTC
stacked in an edge-to-edge manner to form J-type aggregates, which also promoted the
enhanced ECL response. Based on the good ECL performance, an ECL biosensor for the
sensitive detection of microRNA-21 was constructed by using Zn-PTC as an ECL signaling
probe in combination with a dual amplification strategy of a nucleic acid exonuclease
III-stimulated targeting cycle and DNAzyme-assisted cycling. The ECL sensor was able to
detect microRNA-21 in the range of 100 aM to 100 pM with an efficient and sensitive LOD
of 29.5 aM [68].

Additionally, Yuan’s team prepared a Py-sp2 carbon-conjugated nanosheet (Py-sp2c-CON)
with ECL properties based on the condensation reaction of tetrakis(4-formylphenyl)pyrene
(TFPPy) and 2,2′-(1,4-phenylene)diacetonitrile. The porous ultra-thin structure of Py-sp2c-
CON can effectively shorten the material transport distance and energy transfer process
of electrons, ions, and co-reactants (S2O8

2−), which greatly enhances the ECL response of
luminescent substances. Based on these advantages, an ECL biosensor for microRNA-21
detection was prepared using the Py-sp2c-CON/S2O8

2−/Bu4NPF6 system, which has a
wide linear response (100 am~1 nM) and a lower LOD (46 am) [97].

In another study, a highly efficient and sensitive ECL biosensor for the detection
of miRNA-21 was constructed using a Co-MOF-ABE/Ti3C2Tx composite as an ECL lu-
minescent substance combined with a DSN-assisted target recovery signal amplification
strategy. Co-MOF has a large specific surface area and thus can be loaded with abundant
luminophores. Not only that, Co-MOF also exhibits excellent catalytic properties, and
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the ECL response of the composite is greatly improved by these factors. The successfully
prepared ECL immunosensor achieved sensitive detection of miRNA-21 in the range of
0.00001 and 10 nM with a LOD of only 3.7 fM [98].

4. Conclusions and Outlooks

In one word, we give a comprehensive overview of the recent progress in the construc-
tion of ECL biosensors based on porous nanomaterials. Due to their large specific surface
area, high porosity, large number of active sites, adjustable structure, easy modification,
and good biocompatibility, porous nanomaterials, such as OMS, MOFs, COFs, and MPFs,
have a large number of applications in the field of ECL biosensors. The preparation of
different types of porous nanomaterials with ECL properties were summarized and their
applications in the detection of heavy metal ions, small molecules, proteins, and nucleic
acids. In conjunction with the representative articles, we summarize the advantages of
porous nanomaterials in the field of ECL biosensors.

Firstly, porous nanomaterials with a large specific surface area and a variety of different
functional groups can provide a good modification basis for loading ECL luminescent
substances, which is beneficial for the construction of high-performance ECL biosensors.

Secondly, the high porosity and adjustable pore size can provide the basis for the
preparation of composites by means of various synthesis methods, such as in situ growth
and encapsulation, and it can additionally provide good channels for energy transfer and
substance transport such as ions, electrons, and co-reactants.

Thirdly, the loading of co-reactants and luminescent substances in an all-in-one struc-
ture or the loading of two luminescent substances with different wavelengths in the same
structure based on the RET effect can shorten the substance and charge transfer paths
between the luminescent substances and basis, and thus can realize the self-enhancement
of the ECL response, which reflects the superiority of the synergistic effect.

Although greater progress has been made in ECL biosensors based on porous nanoma-
terials, there are still some problems to be paid attention to that may limit the application of
porous nanomaterials in this field. One of the main issues is that most porous nanomaterials
with ECL properties in the field of macromolecular sensing still suffer from a high excitation
voltage and a low luminescence efficiency because of their high impedance. Therefore, the
development of luminescent substances with a high conductivity, a low voltage excitation,
and a high ECL efficiency are also discussed in detail. Although porous nanomaterials
have been widely used in the field of ECL biosensors, the limitations of synthesis methods
and synthetic materials prevent the application of organic composite materials with a poor
electrical conductivity (e.g., COFs materials) from being widely used. It is worth noting
that the application of MPFs and AI-ECL materials are still in the initial stage, and so is
the design of COFs materials with a high electrical conductivity. Based on this stage, the
design of COFs with a high conductivity and the construction of ECL biosensors based on
MPFs open new directions in the field of ECL.

1. AI-ECL materials or techniques are still a new research direction in the field of sensors.
The types of ligands currently used are relatively single, and the AI-ECL mechanism of
most materials is almost the same. Therefore, the search for new organic ligands, the
study of a new AI-ECL material reaction mechanism, and the design of synthesizing
innovative structures of AI-ECL materials will be hot directions.

2. Most of the current porous nanomaterials with functional groups have poor electrical
conductivities, and the functional group types are relatively single. How to prepare
porous nanomaterials with a high conductivity and multiple functional groups and
how to combine them with luminescent substances with different functional groups
to achieve the synergistic effect between each group are still needed to pay more
attention to.

3. At present, most of the ECL biosensors based on porous nanomaterials are still in
the laboratory stage. The instrumentation and experimental conditions required for
testing experiments are relatively strict. Consequently, combining ECL sensors with
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microfluidics and smartphone detection to build portable devices and instruments for
environmental detection remains a great challenge.
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