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Abstract: In today’s world, the use of biosensors occupies a special place in a variety of fields such as
agriculture and industry. New biosensor technologies can identify biological compounds accurately
and quickly. One of these technologies is the phenomenon of surface plasmon resonance (SPR) in
the development of biosensors based on their optical properties, which allow for very sensitive and
specific measurements of biomolecules without time delay. Therefore, various nanomaterials have
been introduced for the development of SPR biosensors to achieve a high degree of selectivity and
sensitivity. The diagnosis of deadly diseases such as cancer depends on the use of nanotechnology.
Smart MXene quantum dots (SMQDs), a new class of nanomaterials that are developing at a rapid
pace, are perfect for the development of SPR biosensors due to their many advantageous properties.
Moreover, SMQDs are two-dimensional (2D) inorganic segments with a limited number of atomic
layers that exhibit excellent properties such as high conductivity, plasmonic, and optical properties.
Therefore, SMQDs, with their unique properties, are promising contenders for biomedicine, including
cancer diagnosis/treatment, biological sensing/imaging, antigen detection, etc. In this review, SPR
biosensors based on SMQDs applied in biomedical applications are discussed. To achieve this goal, an
introduction to SPR, SPR biosensors, and SMQDs (including their structure, surface functional groups,
synthesis, and properties) is given first; then, the fabrication of hybrid nanoparticles (NPs) based on
SMQDs and the biomedical applications of SMQDs are discussed. In the next step, SPR biosensors
based on SMQDs and advanced 2D SMQDs-based nanobiosensors as ultrasensitive detection tools
are presented. This review proposes the use of SMQDs for the improvement of SPR biosensors with
high selectivity and sensitivity for biomedical applications.

Keywords: surface plasmon resonance; biosensor; smart MXene quantum dots; biomedical

1. Introduction

The rapid improvement of technology, in line with the growing needs of modern
societies in today’s world, has paved the way for the development of the factors involved
and lifestyles. Sensors are devices that help researchers in various fields such as industry,
agriculture, etc. to achieve certain goals by measuring predetermined parameters. Biosen-
sors are a special category of sensors used to study and detect chemical and biological
parameters. The diagnosis of diseases, the discovery of new drugs, and the identification
of contamination by biological factors such as DNA, proteins, antibodies, enzymes, and
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viruses are performed by systems called biosensors. Based on their operation, these sensors
are classified into mechanical, chemical, electrical, and optical groups. Apart from these,
optical biosensors are divided into labeled and label-free sensors [1–3]. Optical biosensors
have several advantages, including high sensitivity and insensitivity to electromagnetic
interference. Optical biosensors have also covered a wide range of substrates, including
SPR, localized surface plasmon resonance (LSPR), interferometers, ring amplifiers, etc. [4].
There are certain types of biosensors that use light sources and light guidance based on
different methods to achieve detection and detection objectives. One of the most common
types of these sensors are biosensors that use plasmonic sensing in the design of their struc-
ture and are referred to as surface plasmon resonance biosensors. SPR biosensors stimulate
the phenomenon of the oscillation of electrons in the metal-dielectric junction when their
rate of motion matches the rate of motion of the incident light. This category of sensors
is of interest to many researchers and scientists in this field due to their small size and
optimal sensitivity [5,6]. Therefore, the development of SPR biosensors can be an important
area of research to find chemical and biological substances that cause diseases or have
negative consequences [7–9]. One of the most important aspects in the development of SPR
biosensors may be the accurate detection of ‘target molecules’ to prevent the occurrence
of disease and facilitate early medical therapy. Ultimately, this will accelerate therapeutic
efficacy [9–11]. To this end, high selectivity and sensitivity are the most important prop-
erties to be considered in the development of SPR biosensors. Numerous nanomaterials,
including metal NP and transition metal dichalcogenide (TMD) NP, are being investigated
for the development of SPR biosensors [12–15]. Although metal NPs have been more
commonly used in the past [16–19], after the discovery of carbon nanomaterials, such as
graphene, these nanomaterials showed a more efficient performance than current metal
NPs [20–23], and their biocompatibility can render them suitable for monitoring cell-size
conditions [24–26]. However, the development of new nanomaterials for SPR biosensors
is possible because the demand for nanomaterials with exceptional properties and effi-
cient performance is constantly increasing. 2D nanomaterials, such as smart MXene, are
becoming increasingly popular due to their special properties, such as physical, electrical,
and chemical properties [27,28]. The term ‘smart MXene’ has been used by a number of
researchers for MXene-based hybrid materials, indicating their unique application-related
properties. Such unique compounds make MXene a potential candidate for the fabrication
of transparent conductors. MXenes offer transmittance up to 95% in the visible and UV
regions with very low sheet resistance (up to 0.01 kO per square). Due to their excellent
mechanical properties and tunable optical properties, MXenes can be used as transparent
conductive electrodes for touchscreen applications, various sensors, light-emitting diodes,
and flexible displays [29–31]. Among the nanomaterials for SPR biosensors, SMQDs attract
much attention due to their great potential and exclusive properties in developing SPR
biosensors [32–34]. SMQDs are 2D inorganic compounds composed of transition metal
carbides and possess a significant atomic layer thickness. Their exceptional properties
include high conductivity and plasmonic and optical qualities [35–38]. SMQDs can be used
in biomedical applications due to their biocompatibility. [39–42]. This new nanomaterial
is now the best option for the development of SPR biosensors in biomedical applications,
based on the present research to improve SPR biosensors. The main objective of this review
is an ultra-sensitive plasmon resonance nano biosensor on a surface based on SMQDs for
biomedical applications. This article is divided into three topics: an introduction to SPR
and SPR biosensors; explanation and characteristics of SMQDs; and SPR biosensors based
on SMQDs. Accordingly, this review clearly presents the characteristics of SMQDs for
the development of SPR biosensors and their biomedical applications. In summary, the
team believes that this article can highlight current research directions as well as ways to
utilize SMQDs for the efficient improvement of SPR biosensors with a high selectivity and
sensitivity in biomedical applications.
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2. SPR

SPR refers to the collective oscillations of electrons on the surface of metal nanostruc-
tures that occur in response to an external stimulus such as light or a charge. When the
particle size reaches the order of nanometers, the electron can spontaneously accelerate
on the surface of the particle and absorb electromagnetic waves of a certain wavelength; a
schematic of this phenomenon is shown in Figure 1a [43–45]. The solutions of nanoparticles
of rare metals such as silver and gold (which have a high conductivity) often show a strong
absorption band in the visible spectrum. When the solution of these nanoparticles with the
same size range is exposed to electromagnetic radiation, part of the radiation is scattered,
and part of it is accelerated by the free electrons of the nanoparticles; therefore, in this
phenomenon, certain frequencies are absorbed, resulting in an enhancement of the electron
resonance and appearing as a strong peak in the visible region. The shape and frequency of
the resonance spectrum depend on the size, shape, and distance between the nanoparticles
and their dielectric properties but, most importantly, on the dielectric properties of the
environment in which the nanoparticles are located [46–48]. Figure 1b shows the steps of a
typical SPR method. Each sensor-level measurement begins with the selection of a suitable
buffer solution, which is the most basic task before starting the association process. At this
stage, the sensor surface contains active ligands ready to accept the target analytes. By
injecting the solution containing the analytes, the association cycle begins. If the correct
ligands are not selected, special bonds can form between the ligands and the analytes
after the solution has passed, leading to the instability and detachment of the ligands from
the surface. In this step, the kinetic energy resulting from the interaction of analytes and
ligands is measured in real time. In the next step, a solution is brought into contact with the
sensor surface to regenerate the initial state. As shown in Figure 1b, this step destroys the
non-specific binding elements so that the mass accumulated on the surface can be recovered
from the sensor reaction. At this stage, analyte dissociation also begins, and the kinetic
energy of the dissociation process can be studied. Finally, the regeneration solution is
injected, breaking the link between ligands and analytes. If the ligands are properly placed
on the surface, they will remain on the surface after passing the regeneration solution as
the analytes are gradually removed [49,50].
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in a typical SPR method. (Reprinted with permission [49] Copyright © 2020 by the authors. Licensee
MDPI, Basel, Switzerland).
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Biosensor Using SPR

The light beam propagates in a medium with a larger refractive index n1 and reaches
the common section of a material that has a lower index with a refractive form than the first
medium, i.e., n2 (n1 > n2). At an incidence angle greater than the limit angle (θ), the light is
completely reflected and returns to the environment with a higher refractive index [52–55].
Additionally, no energy is lost during the reflection of the beam, and the light beam causes
the penetration of an electric field intensity into the material with a low refractive index,
which is introduced as an evanescent wave. The ‘P-polarized’ component of the evanescent
subject can penetrate the metal layer and excite electromagnetic surface plasmon waves
that are propagated inside the conductive surface associated with a material with a low
refractive index if the total internal reflection interface is covered with a layer of appropriate
conductive materials, such as metal with an acceptable thickness. This ‘surface plasmon
wave’ has P polarization for a non-magnetic metal, namely, ‘gold’, and because of its
electromagnetic properties and diffusion surface, it generates an amplified evanescent wave
in comparison to incident electromagnetic waves. If the size and directions of the ‘photon
wave’ vector kx and the plasmon wave vector ksp are equal for waves of the same frequency,
an amplified evanescent field is produced. When this condition occurs at the landing angle
θ, the ‘intensity of reflection’ at the angle θ can be zero due to the conversion of the energy
into a ‘surface’ electric field. With increasing penetration into the thinner material n2, the
loss in this evanescent field wave’s amplitude is approximately half the wavelength of
its resonance away from the surface. To put it another way, the field loss for visible light
is of the order of several hundred nanometers. As a result, just the quenching zone is
used to investigate analyte molecules. The SPR biosensor is a group of optical biosensors
that have advantages such as real-time detection, a short response time, the simultaneous
detection of several types of analytes, and non-labeled sensors [56–59]. Exciting surface
plasmon waves and their characteristics depend on the electromagnetic properties of the
dielectric metal interface. Resonance coupling causes a valley in the reflection spectrum
at the SPR resonance angle. SPR biosensing can be obtained by the absorption of ‘target
analytes’ on the metal surface and dependent changes in the wavelength and intensity in
reflected light. These optical changes can rely on alterations in the refractive index due
to the phenomenon of surface absorption. Figure 2 shows the basis of SPR biosensors.
The high sensitivity to alterations in the features of the dielectric is caused by the transfer
of incident light energy to the ‘surface plasmon wave’ and the resulting high density of
the electromagnetic field in the dielectric near the metal layer. The gold metal layer’s
penetration depth of 200–300 nanometers offers the chance to detect minute variations
in the thickness or ‘refractive index’ of layers on the surface of the metal [60–62]. The
resolution limit of SPR biosensors provides the possibility of detecting surfaces with an
approximate coverage of 1 picogram/mm [63,64]. Currently, SPR-based biosensors are
the most commercialized type of optical biosensors; they usually have large dimensions
and high prices and are suitable for laboratory use [65–67]. The technology of surface
plasmon resonance sensing as a detector or diagnostic has developed rapidly and has now
become an effective tool for direct monitoring and, especially, the analysis of biomolecular
interactions. It is also widely used for interactions of biological molecules such as protein–
protein supplements, drugs–protein, nucleic acid–protein, nuclear acceptor–DNA, and
DNA–DNA. Its fields of application include immunodiagnosis, signal transduction, drug
screening, antibody conjugation, and protein conformational changes (Table 1) [56,68].
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Figure 2. The functionality of SPR biosensors. When the analytes interact with the ligands fixed on
the ‘surface’, the dielectric index on the gold ‘surface’ changes, and the reflection maximum is seen at
a different angle. This angular shift is the result of the interactions between the analyte and the ligand.
(Reprinted with permission [69]. Copyright © 2020, Authors. Exclusive licensee: Bio-protoco1 LLC.)

Table 1. Applying surface plasmon resonance biosensors in medical diagnosis.

Field Detection Species Ref.

Medical diagnostics

Virus marker Ebola, Hepatitis B virus [70,71]

Cardiac marker Myoglobin [72]

Drug Warfarin, Morphine [73,74]

Cancer marker Interleukin 8,
Prostate-specific antigen [75,76]

3. SMQDs Structure

The aging of the ‘MAX -phase’ ‘A’ layers leads to a layered structure of SMQDs, a
new class of 2D materials. These MAX phases consist of a large family of nitrides as well
as carbonitrides with the chemical formula nAX Mn+1, where ‘M’ stands for the primary
transition metal (such as Sc, Zr, HF, V, Nb, Mo, Ta, Cr) in layer n + 1, ‘A’ stands for an
element from the periodic table (usually group 13 or even 14), and ‘X’ stands for carbon
as well as ‘nitrogen’ in layers X. [77–80]. In Figure 3, all constituent elements of the phase
MAX are marked with different colors.
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(Reprinted with permission [81]. Copyright © 2021, The Author(s).)

Here, ‘n’ can take the numbers 1, 2, and 3. By changing n from ‘1’ to ‘3’, SMQDs
contain layers between three and seven layers of atoms for ‘M2×’, ‘M3 × 2’, and ‘M4 × 3’,
respectively [82,83]. As shown in Figure 4, during the etching process, the group A element
from the MAX phase is replaced by surface groups such as oxygen (−O), hydroxyl (−OH),
and fluorine without destroying the MX layers by suitable chemicals [84,85]. In several
studies, Ti3C2Tx with a surface termination group of -Cl has also been observed, and the
general formula is Mn+1XnTx, where T is the symbol for the surface groups [86–88]. MAX
has ‘layered’ structures in which the bonds between the layers are weaker than the bonds
in the layer [89,90]. In other words, the bonds between M and X are a mixture of ionic
and covalent bonds, which can be much stronger than the bonds between M and A [91,92].
As a result, the bond between M and A is decomposed at high temperatures, and the 2D
structure Mn + 1Xn is formed. Upon deformation, they become laminated and exhibit a
combination of unusual and sometimes unique properties that are intermediate between
those of ceramics and metals. For example, like metals, they are capable of conducting
electricity and heat, and they can be hard, brittle, and heat-resistant [93,94]. In addition, they
are resistant to chemical agents and thermal shocks. However, these ceramics are fabricated
as 3D materials, and one of the first experiences with their 2D fabrication is due to ‘2D
Ti3C2’ nanoplatelets. Researchers attempted to remove aluminum from titanium aluminum
carbide (Ti3AlC2) powder by placing it in hydrofluoric acid. Through a chemical process
called exfoliation, 2D Ti3C2 nanoplatelets were thus obtained [95,96]. The interesting thing
about SMQDs is the naming of this substance. This material is produced from a bulk crystal
called Max with the suffix ‘ene’ added to the end, similar to graphene [97,98].
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3.1. Functional Group on the Surface of SMQDs

Surface end groups that are −OH or −O replace the A layers by the chemical etching
of the MAX phase to produce SMQDs. In these materials, two to four M layers are
interspersed with layers of C (carbon) or N (nitrogen) in the clever MXene QD structure.
Unlike graphene, the surfaces of these materials have functional groups, −O or −OH,
that make them hydrophilic. These surface groups are strongly dependent on the etching
technique [100,101]. For example, Ti3C2Tx etched with HF has four times more ‘F-functional
groups’ than the material etched with a LiF mixture [102,103]. These functional groups also
have a great impact on the detection of the electronic functions of SMQDs. For example, it
has been shown that both −F and −OH functional groups on the surface of Ti3C2 lead to
a semiconductor behavior with a band gap of 0.05 to 0.1 ev, while Ti3C2 without surface
termination exhibits a metallic behavior [104,105]. Moreover, surface functional groups
can influence the energy storage application of SMQDs. For example, density functional
theory studies confirm that Ti3C2 without functional groups stores more lithium ions than
its counterpart with a fluorine functional group (Ti3C2F) because the surface functional
groups block lithium adsorption [106,107].

3.2. SMQDs Synthesis

The synthesis of SMQDs by precursors is called the top-down method. Depending
on the type of precursor, i.e., either MAX or not MAX, this method is divided into two
subgroups [100,102]. The most common SMQD precursor is a part of 3D layered carbides
as well as nitrides, called the SMQD phase [108,109]. In the precursor materials of the
MAX phase, such as Mn+1AlXn or Mn+1SiXn, various etching methods are used to break
the bonds within the layers and replace the individual elements Al and Si with surface
groups [110,111]. Layered materials, where the ‘layer-to-layer’ bonding is not significantly
stronger than the bonding between layers, are divided into one or more atomic layers
to produce 2D materials. Ghidiu and co-workers [107] argued in 2014 that MAX can be
etched with a solution of lithium fluoride and hydrochloric acid or with various amounts of
hydrofluoric acid. Table 2 lists various approaches for the synthesis of SMQDs. In general,
experimental factors such as the etching time, the particle size of the MAX phase, and the
acid concentration used affect the better performance in the preparation of higher-quality
SMQDs [33]. Recently, some non-Mex phase precursors have been used to fabricate MXs.
For example, Zr3Al3C5 has been used as a precursor, although its constituents are similar
to those of Al-bonded MAX phase precursors; however, in this precursor, an ‘Al-C’ layer
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is etched instead of a pure ‘Al’ layer to produce MXene Zr3C2 [112,113]. Considering that
both the constituents of the composition and the surface end groups can be changed, the
properties and characteristics of SMQDs can also be easily modified [114,115].

Table 2. A summary of the different SMQDs synthesis methods.

SMQDs Functionalization(s) Synthesis Method of SMQDs Ref.

Ta4C3
Manganese oxide (MnOx), ‘soy bean’

phospholipid (SP) HF etching [116]

Ti3C2 Poly ‘lactic-co- glycolic acid’ (PLGA), SP, IONPs HF etching, TPAOH intercalation [117]

TiO2–Ti3C2 Hemoglobin (Hb), Nafion Hydrothermal synthesis [118,119]

Ti3C2 Cobalt nanowires (CoNWs), Dox LiF + HCl etching [120]

Ti3C2 QDs – Hydrothermal synthesis [121]

Ti2N QDs SP KF + HCl etching, sonication in NMP [122]

Nb2C QDs – HF etching, TPAOH sonication
(ultrasoundassisted) [123]

3.3. Characteristics and Features of SMQDs

The SMQD material has very interesting properties; for example, although it falls into
the category of ceramics, unlike many others, it has good electrical conductivity, which makes
it suitable for biomedical applications. The electronic properties of SMQDs are of particular
importance because they can be tailored by changing the ‘elemental’ composition of the
SMQDs or the surface functional groups. Other factors such as the band gap can also affect
the electronic properties of SMQDs. Unlike graphene, SMQD is hydrophilic, which can be
very advantageous in many applications. It is also flexible, pliable, and soft. Because of these
properties, it can be formed into complex shapes (its use in the form of a tube or a sheet for
materials with a conductivity as high as that of metals is very undesirable) [124,125].

3.4. Preparing Hybrid NPs Using SMQDs

A SMQDs composite with tiny magnetic Fe3O4 NPs with a size of about ~4.9 nm
(Ti3C2Tx/Fe3O4/TiO2) was prepared in an ‘aqueous’ solution of vitamin C and Fe3+ salt
for 5 h at 150 ◦C in a stainless steel autoclave with Teflon coating by the hydrothermal
method. It is also possible to selectively enrich different biomolecules/antigens based on
affinity interactions through these hybrid magnetic NPs. Another interesting alternative for
nanocomposites is the combination of SMQDs sheets and metal NPs, which are modified
by crosslinkers to detect target molecules due to their strong affinity for SMQDs or other
biomolecules [126–128]. SMQDs/metal nanoparticle-based nanocomposites can be pre-
pared using an external reducing agent such as NaBH4 or the reduction of noble metal salts.
To form particles showing surface-enhanced Raman spectroscopy (SERS), the spontaneous
reduction of metal salts such as silver, gold, and palladium is applied to Ti3C2Tx SMQDs
sheets [129] to form NPs. In addition, it is possible to increase the detection sensitivity of on-
comarkers such as microRNA using an AuNP/SMQDs composite [130]. The composite has
also been used to detect important small bioactive compounds [131] and electrochemical
catalysis [132]. The formation of a composite with SMQDs is also possible using graphite
oxide as another 2D material, and such a composite for sensor-based applications leads to
the maintenance of the biological activity of hemoglobin even after inkjet printing, as well
as the stable and efficient electrochemical detection of H2O2 [133].

4. SPR Biosensors Based on SMQDs

Along with other 2D materials, SMQDs are a potential biosensor application material.
In biosensing, the unique benefits of SMQDs include their biocompatibility and minimal
cytotoxicity. In addition, MXenes provide a wide adsorption range for optical detection and
enhanced DNA interaction [134,135]. MXenes are also related with metallic conductivity,
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intrinsic surface functionalization, and hydrophilic characteristics, all of which may increase
the efficacy of SPR biosensors based on MXenes. The features of MXene that make it necessary
for biosensors are summarized in Figure 5a. Ti3C2, among other compounds, has been
extensively documented. Few studies have been conducted on additional MXenes and their
composites with metallic nanoparticles, particularly in immunosensing. Ti3C2, a member
of the MXenes and titanium families, is used in a variety of applications, including SPR
biosensors. Numerous publications on the diverse uses of Ti3C2 MXenes in electrochemical
and optical smart biosensors have been published [136–140]. Although MXenes have been
widely investigated, the biosensor applications of Ti2C-MXenes, particularly their composites
with nanoparticles, have received less attention (e.g., Au, Ag, etc.). Wang et al. described
the production and optical characteristics of Ti2C@Au core-shell nanosheets for photonic
applications [141]. Zhu et al. built a bifunctional smart nanosensor platform based on
Au-Ag nanoshuttles (NSs), utilizing Ti2C for the electrochemical and SERS measurement of
ultratrace carbendazim (CBZ) residues in tea and rice for environmental monitoring [142].
The mechanisms behind SPR biosensors based on SMQDs usually utilize the exclusive
‘electrocatalytic’ properties of the MXene sheet with respect to the relationship of the ‘target
signal’ (Figure 5b) [143]. The electronic properties and current signal change when biological
targets are attached to SMQDs films. The 2D layered nanostructure provides a large surface
area to accommodate biological materials. The electrocatalytic properties change and lead
to a linear response when biological components can be immobilized by functional groups
on SMQDs nanocomposites. SPR biosensors built on smart MXene QDs have impeccable
repeatability, stability, and reproducibility. The use of functional groups enriched on the
surface of SMQDs material could be a potential solution, since non-covalent interactions and
physical adsorption are not sustainable for some biomedical applications. This would allow
for surface bonding in new and controllable ways to alter surface properties [144–148].
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5. Advanced 2D SMQDs-Based SPR Nanobiosensors as Ultra-Sensitive Detection Gadgets

The use of biosensing platforms that use nanomaterials or nanostructures with excep-
tional optical, magnetic, electrical, mechanical, and electrocatalytic capabilities promotes the
link between advancing detection and routine testing. Incorporating new multifunctional
nanoscale structures, morphologies, and controlled structures and a large surface-to-volume
ratio enables immobilization in bioreceptors while maintaining biostability, biocompati-
bility, and biodistribution [151]. Therefore, the SPR sensing strategy using nanomaterials
can not only be used as an effective tool for the detection of difficult-to-detect molecules in
the concentration range between pmol and amol, but it also facilitates the improvement of
sensing properties [152]. It is expected that the design of SPR biosensors is promising for
the ultrasensitive and selective detection of cancer. 2D layered materials such as SMQDs
have anisotropic electron transport behavior and a large surface area, which makes them
potential transducer materials for biosensing applications [153–155]. The results of Wu et al.
show an increase in the sensitivity of an SPR biosensor by about 25% with ten graphene
layers [156]. Gupta et al. also investigated an SPR biosensor with graphene and silicon to in-
crease the sensitivity [157], and their results showed a maximum sensitivity of ~134.6◦/RIU.
Ouyang et al. investigated an SPR biosensor with MoS2 and silicon to increase the sensitiv-
ity [158], and the highest sensitivity was ~125.44◦/RIU. Wu et al. investigated a novel SPR
biosensor with Ti3C2Tx-MXene multilayers to increase the sensitivity. According to their
results, the sensitivity can reach 224.5◦/RIU [159]. SMQDs nanomaterials exhibit a unique
combination of excellent mechanical properties, an ease of functionalization, an excellent
electrical conductivity, an extremely thin 2D sheet-like morphology, etc. compared to other
2D materials such as graphite carbon nitride, MoS2, and graphene [160,161]. Among the
properties that significantly affect the strength, sensitivity, and selectivity of a biosensor are
the inherent properties of the bioreceptor, including its tendency to be structurally stable
during the operation of the biosensor, the analyte, and the method used to stabilize the
bioreceptor on the surface of the transducer. The bioreceptor component is often attached
to a surface, placing it in close proximity to the transducer. Additional requirements that
must be met for improved biosensor performance include the interfacial density of the
bioreceptor and the distance between the bioreceptor and the transducer (surface). Ap-
tamers, antibodies, enzymes, and protein molecules can be used to influence the design of
biosensors based on 2D SMQDs nanomaterials to improve biocompatibility and increase
the transporter surface area of the biosensor in conjunction with the increased activity
of the catalyst [162–164]. In addition, the implementation of SMQDs as next-generation
diagnostic devices requires a significant improvement in the stability of SMQDs against
oxidation. Biosensors are small, portable analytical instruments that convert a biochemical
process into a quantitative, analytical signal. Because of their high ‘specificity’, small size,
and ease of use, biosensors are the preferred instruments for biological components and
chemical detection. Biosensors consist of two parts: a bio-detection component that uses a
biological element (enzymes, antibodies, nucleic acids, etc.) that interacts with an analyte
in a specific biochemical manner, and transducers in which the interaction is converted into
quantifiable signals. The integration of the bio-receptor into a suitable matrix for the inter-
action between analytes and such receptors are the two main obstacles to the improvement
of biosensors [165]. Chen et al. designed a new SPR biosensor using thiol-functionalized
niobium carbide MXene QDs (referred to as Nb2C- SH QDs) as a bio-platform for the N58
aptamer targeting the N gene. As shown in Figure 6, this biosensor was investigated for
the sensitive detection of the N gene in various complex environments (e.g., human serum).
By the solvothermal method, Nb2C-QDs were obtained from Nb2C-MXene nanosheets and
then modified with thiol groups (Figure 6a). The Nb2C- SH QDs were homogeneously
distributed on the surface of the chip due to the self-assembly effect between Nb2C- SH
QD and the SPR gold chip, and the N58 aptamer was stabilized by hydrogen bonding, π-π*
stacking, and electrostatic adsorption. In the presence of SARS-CoV-2, it is also possible
to form a G-quadruplex between the N58 aptamer and the N gene of SARS-CoV-2. Thus,
upon binding to the N gene, the structure of the aptamer strands is altered, resulting in
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an increase in the contact area or the distance between the probe molecule and the chip.
These changes were then translated into changes in the SPR signal for the detection of the
SARS-CoV-2 N gene (Figure 6b) [166].
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5.1. MXene-Based Electro-Chemical SPR Nanobiosensors

Electro-chemical biosensors can be promising selective tools for detecting cancer dis-
eases in the early stages [167]. SWV (square wave voltammetry), CV (cyclic voltammetry),
DPV (differential-pulse-voltammetry), and EIS (electro-chemical impedance spectroscopy)
are among the electro-chemical methods [168–170]. ‘Lab-on-chip’ biosensors have been
miniaturized instruments used in the biomarker research of tumors, leading to potential
clinical properties. The small volume of analytes, the direct miniaturization, and the opti-
cally absorbing and fluorescent compounds are among the attractive features of biosensors
that use surface nano-architectures with this type of detection. Kumar et al. investigated the
covalent binding of bioreceptors to f-Ti3C2 SMQDs for the electro-chemical detection of car-
cinoembryonic antigen (CEA) as a cancer detector. Single-layer SMQDs (Ti3C2) nano-sheets
were used with 3-aminopropyl tri-ethoxy-silane. The enhancement of antibodies anchoring
and faster access to analytes are possible by ultra-thin 2D nano-sheets of single/multilayer
Ti3C2 SMQDs. According to the findings, the synthesized biofunctional Ti3C2 SMQDs
have a linear detection range of 0.0001–2000 n.gm L−1, with a sensitivity to approximately
37.9 Ang−1 mL cm−2 per 10 years [160]. A conductive support for the immobilization of
aptamer probes is also employed in 2D SMQDs because of their outstanding electrical
conductivity and sizable particular surface areas by a variety of possible binding sites.
Lorenkova et al. investigated the electrochemical performance of Ti3C2Tx-MXenes as
sensors [162]. The results obtained showed that the detection limit of 0.7 nm is comparable
to the best result obtained so far, which is 0.3 nm [171]. However, there are few reports
on SPR sensors integrated with MXene. A recent theoretical study of an MXene-based
SPR sensor showed that the coating layers on the gold film can increase the sensitivity
of the gold-based SPR sensor. An RI sensitivity of 160 was achieved with four layers of
coated gold film at an excitation wavelength of 633 nm, while it was 137 for the devoid
setup [159,172].
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5.2. SMQDs-Based Optical SPR Nanobiosensors

An important technique for the in situ detection of the affinity of various biomolecules
that do not require enzymatic labeling is SPR. SPR optical sensing technology is also useful
for biomolecule detection. To make the SPR optical biosensor specific for the analytes of
interest, they need to be functionalized by bio-recognition molecules (such as proteins,
RNA, DNA, cells, etc.). The adhesion of biomolecules to the optical surface is generally
achieved by chemical bonds such as (3-aminopropyl) triethox-ysilane and N-succinimidyl-4-
maleimidobutyrate [173–175]. In recent years, 2D transition metal dichalcogenides (TMDs),
especially MoS2, have attracted the attention of researchers in various scientific fields
due to their high optical absorption efficiency, high electron conductivity, and tunable
band gap [176,177]. The distinctive features of MoS2 that make it a potential material
for the development of biosensor interfaces include the presence of free sulfur atoms, its
hydrophobic nature, and its large surface area [178,179]. In addition, MoS2 layers are also
used to inhibit the oxidation of metal layers such as aluminum in SPR biosensors [180].
Additionally, improved operating parameters using nanomaterials have the potential to
develop SPR biosensors [181]. The SPR detection platform offers useful advantages such
as the ease of miniaturization, ‘label-free’ and ‘real-time’ detections, and rapid detection
for bioassays. Ti3C2Tx SMQDs multilayers improve the applicability of SPR biosensors
due to their absorption [159]. The ‘gold layer’ SMQDs/WS2 ‘phosphorus’-based platform,
using a monolayer of each nanomaterial, was shown to be a new SPR ‘sensing material’
with an increased sensitivity of 15.6% compared to bare ‘metal films’ [182]. SMQDs-based
composites such as g-C3N4/SMQDs AgNPs containing g-C3N4 as a photocatalyst, SMQDs,
and AgNPs as electron mediators enhance the photocatalytic activity. In the interface
modified with the nanocomposite, the decrease in the band gap energy and the increase
in the optical absorption can be observed thanks to the SPR effect of the ‘deposited silver
NP’ [183]. The label-free detection of the bovine serum albumin (BSA) protein using an
alternative method of fiber optic SPR probe activation with antibodies was evaluated by
Kaushik et al. In this new method, gold-coated fibers were first modified with molybdenum
disulfide (MoS2) nanosheets. The developed technique enables the direct and chemical-free
binding of representative antibodies through hydrophobic interactions and also allows
for the amplification of SPR signals by the synergistic effects of MoS2 and the gold metal
thin film. The results showed that the sensitivity of the modified MoS2 sensing probe was
improved with a detection limit of 0.29 µg/mL compared to the optical fiber SPR biosensor
without MoS2 coating [184].

According to Wu et al., employing composites constructed of SMQDs, such as g-
C3N4/SMQDs AgNPs, which include g-C3N4 as a photocatalyst, SMQDs, and AgNPs as
an electron mediator, increases the photocatalytic activity. The band gap energy is decreased
and the optical absorbance is raised at the nanocomposite modified interface as a result
of the deposited silver NPs SPR influence. As a signal amplifier, amino-functionalized
N-Ti3C2-MXene-hollow gold NPs (HGNPs)—staphylococcal protein A—were employed
for the detection of CEA with a L.O.D of 0.15 fM (linear range of 0.001 to1000 p.M) in SPR
(Figure 7) [185].
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6. Biomedical Applications of SPR Biosensors Based on SMQDs

SPR biosensors provide a label-free, sensitive, specific, and rapid detection method
that is preferred for chemical analysis and medical diagnostics [186]. Over the last three
decades, since their beginnings in 1982 as gas sensors [187], SPR biosensors based on 2D
nanomaterials such as SMQDs have emerged as suitable sensing platforms for a wide
range of applications, e.g., in medicine. Various SPR-based configurations have also
been investigated for medical and environmental applications, including SPR biosensors
based on SMQDs and fiber-optic SPR sensors [188–190]. Thus, VDW (Weak van der
Waals) forces combined with strong ‘hydrogen bonding interactions’ between ‘surface
functional groups’ cause SMQDs to assemble into stacked 2D layers [191]. Chemical
reactivity and functionalization ability are among the properties of surface functional
groups. In biomedical studies, the level of SMQDs is adapted to various materials suitable
for cancer treatment and diagnosis, biosensing, antigen detection, drug delivery, and
antimicrobial activity (Figure 8) [81]. The medical applications of SMQDs are shown in
Table 3.
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Table 3. The medical applications of SMQDs.

SMQDs Applications Ref.

Ti3C2 Detection of curcumin and hypochlorite (ClO−) [193]

Ti3C2 Glutathione detection and photoelectrochemical biosensing [194]

V2C Quantum dots (Bio)imaging, photothermal therapy, and tumor detection [195]

Ti3C2 Bioimaging, macrophage labeling, and Cu2+ detection [196]

2D Nb2C-MXenes Photothermal therapy [197]

Ti3C2Tx-SP Drug delivery [198]

6.1. Detection of Cancer Biomarkers

SMQDs as new 2D nano-materials have the potential to affect aspects of biosensing
such as SPR biosensors in medical applications. Therefore, to detect cancer biomarkers
in ‘blood’, SPR biosensors based on SMQDs offer sufficient sensitivity up to ng·m−1 or
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better. In order to simultaneously immobilize biomolecules while resisting non-specific
protein binding, much effort should be devoted to finding suitable decoration strategies
for SMQDs. These criteria state that, due to their distinct physical and chemical features,
SMQDs-based SPR biosensors may be employed to assess complicated substances such as
plasma or blood serum (Table 4) [142]. Additionally, the Ti3C2 MXene-based SPR biosensor
in human serum samples exhibits an ultrasensitive cancer biomarker response with a high
recovery, good reproducibility, and good selectivity [161]. Additionally, SMQDs with a
high density of functional groups have an ultrathin 2D nano-sheet morphology that can
optimize biomolecule loading and speed up access to the analyte. In addition to enabling a
larger density of bound biomarkers, which improves biosensor performance, the covalent
immobilization of bioreceptors including enzymes, DNA, and proteins can also enhance
homogeneity and dispersion [199]. Sundaram et al. studied the engineering of MXenes
nitrides and 2D transition metal carbides for the therapy and diagnostics of cancer. The
findings show that electro-chemical devices based on MXene have the ability to detect
cancer biomarkers and have an extraordinarily high sensitivity in identifying the target
analyte [200]. To determine the osteosarcoma cancer biomarker by a microgap dielectrode
sensor, the MXene surface on multiple connection triangles was investigated. The detection
limit and sensitivity were found to be one fM by having good regression co-efficient values
(y = 1.0036

Biosensors 2022, 12, x FOR PEER REVIEW 15 of 25 
 

high recovery, good reproducibility, and good selectivity [161]. Additionally, SMQDs 
with a high density of functional groups have an ultrathin 2D nano-sheet morphology 
that can optimize biomolecule loading and speed up access to the analyte. In addition to 
enabling a larger density of bound biomarkers, which improves biosensor performance, 
the covalent immobilization of bioreceptors including enzymes, DNA, and proteins can 
also enhance homogeneity and dispersion [199]. Sundaram et al. studied the engineering 
of MXenes nitrides and 2D transition metal carbides for the therapy and diagnostics of 
cancer. The findings show that electro-chemical devices based on MXene have the ability 
to detect cancer biomarkers and have an extraordinarily high sensitivity in identifying the 
target analyte [200]. To determine the osteosarcoma cancer biomarker by a microgap die-
lectrode sensor, the MXene surface on multiple connection triangles was investigated. The 
detection limit and sensitivity were found to be one fM by having good regression co-
efficient values (y = 1.0036⨰ +0.525; R2 = 0.978), and a current increase was found when 
raising the target DNA concentration. Based on the results of detecting the levels of oper-
ating system complications and the quantification of the survivin gene at a lower level, it 
can be said that the microgap device with the dielectric surface of multiple connection 
triangles modified with MXene is useful [201]. 

Table 4. SPR nanobiosensor-based SMQDs to detect cancer biomarkers. 

MXene-Based Biosensors Target 
Biomarker LOD Diagnosis Method Ref. 

ssRNA, MoS2, AuNPs, Ti3C2, GCE, and BSA miRNA-182 0.43 fM Electrochemical/DPV [202] 
PMo12/PPy@Ti3C2Tx/Apt/AE OPN 0.98 fg m.L−1 Electrochemical/EIS [203] 

CD63 aptamer that has been tagged with Cy3 and 
Ti3C2 MXenes 

Exosomes 1.4 × 103 particles m.L−1 
Ratiometric fluorescence 

resonance 
[204] 

M B, DNA, H T, HP 1, AuNPs, Ti3C2, BiVO4, and GCE VEGF165 3.3 f.M Photoelectro-chemical [205] 
MXene/IDE HRP-Au-Ab2-PSA-Ab1 PSA 0.031 ng m.L−1 Electrochemical/EIS,CV [35] 

N-Ti3C2Tx-MXene CEA 1.7 pg m.L−1 SPR [206] 

6.2. Detecting an Exosome as a Supply of Biomarkers of Cancer by Applying 2.D SMQDs 
Exosome signals transmit in intercellular communications. Additionally, exosomes 

have the ability to deliver cargo that affects nearby cells and can form pre-metastatic cav-
ities. Exosomes are responsible for the initiation, development, and progression of local 
malignancies, as well as the formation of metastatic lesions. Exosomes themselves are a 
popular choice for cancer diagnosis since tumor cells produce more exosomes than nor-
mal/healthy cells due to their significantly increased cellular activity [168]. Due to its quick 
response time, minimal background signal, and high sensitivity, electrochemilumines-
cence (ECL) has been extensively employed for biomarker research [169]. Because 2D 
Ti3C2 MXenes nanosheets have a great conductivity, a large surface area, and catalytic 
characteristics, Zhang et al. studied the possibility of using them as ECL nanoprobes to 
create a sensitive ECL biosensor to detect exosomes. The results showed that the limit is 
about 124 μL−1 particles, which is more than 100-fold lower than that of the current en-
zyme-linked immunosorbent assay (ELISA) method (Figure 9) [207]. 

+0.525; R2 = 0.978), and a current increase was found when raising the target
DNA concentration. Based on the results of detecting the levels of operating system
complications and the quantification of the survivin gene at a lower level, it can be said that
the microgap device with the dielectric surface of multiple connection triangles modified
with MXene is useful [201].

Table 4. SPR nanobiosensor-based SMQDs to detect cancer biomarkers.

MXene-Based Biosensors Target Biomarker LOD Diagnosis Method Ref.

ssRNA, MoS2, AuNPs, Ti3C2, GCE,
and BSA miRNA-182 0.43 fM Electrochemical/DPV [202]

PMo12/PPy@Ti3C2Tx/Apt/AE OPN 0.98 fg m·L−1 Electrochemical/EIS [203]

CD63 aptamer that has been tagged
with Cy3 and Ti3C2 MXenes Exosomes 1.4 × 103 particles m·L−1 Ratiometric fluorescence resonance [204]

M B, DNA, H T, HP 1, AuNPs, Ti3C2,
BiVO4, and GCE VEGF165 3.3 f.M Photoelectro-chemical [205]

MXene/IDE HRP-Au-Ab2-PSA-Ab1 PSA 0.031 ng m·L−1 Electrochemical/EIS,CV [35]

N-Ti3C2Tx-MXene CEA 1.7 pg m·L−1 SPR [206]

6.2. Detecting an Exosome as a Supply of Biomarkers of Cancer by Applying 2D SMQDs

Exosome signals transmit in intercellular communications. Additionally, exosomes
have the ability to deliver cargo that affects nearby cells and can form pre-metastatic
cavities. Exosomes are responsible for the initiation, development, and progression of
local malignancies, as well as the formation of metastatic lesions. Exosomes themselves
are a popular choice for cancer diagnosis since tumor cells produce more exosomes than
normal/healthy cells due to their significantly increased cellular activity [168]. Due to
its quick response time, minimal background signal, and high sensitivity, electrochemilu-
minescence (ECL) has been extensively employed for biomarker research [169]. Because
2D Ti3C2 MXenes nanosheets have a great conductivity, a large surface area, and catalytic
characteristics, Zhang et al. studied the possibility of using them as ECL nanoprobes to
create a sensitive ECL biosensor to detect exosomes. The results showed that the limit
is about 124 µL−1 particles, which is more than 100-fold lower than that of the current
enzyme-linked immunosorbent assay (ELISA) method (Figure 9) [207].
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6.3. Detection of Carcinoembryonic Antigen

Carcino-embryonic antigen (CEA) can be one of the cancer markers considered for
cancer diagnosis [161]. Ti3C2 SMQDs that are monolayer- or multilayer-coated with an
acceptor amino group for covalently immobilizing the carcinoembryonic monoclonal
antibody for cancer biomarker detection are the first SMQDs-based CEA detectors. SPR
technology, which enables chemical molecules as well as refractive index measurements,
has been introduced as a technology to increase the sensitivity of the CEA biosensor [185].
However, due to a lack of quick and accurate diagnostic techniques, it is difficult to identify
CEA-related tumors at an early stage, which is essential for effective treatment. SPR
biosensor technologies can thus be crucial in reaching this objective [171,172]. While ELISA
is traditionally used in scientific settings, SPR biosensors based on SMQDs provide a
label-free and real-time detection approach. [208]. SPR biosensors according to SMQDs
using genetics [209,210] present in tissue have been used for other ailments that take place
at high incidence levels [211]. Liu et al. evaluated the detecting growth differentiation
factor-11(GDF11) anti-body using an SPR fiber biosensor based on Ti3C2 MXenes. They
found that the detection of GDF11 after activation with the GDF11 antibody is performed
by the fiber SPR sensor, and the sensitivity of the fiber SPR sensor increases to 4804.64
nm/RIU. Likewise, the limit of detection in comparison with the single-molecule ELISA
procedure could reach 0.577 pg/L, which is 100-fold lower in comparison with that of the
single-molecule ELISA procedure [212]. Altintas et al. studied carcinoembryonic antigen
cancer biomarker detection. The results showed that a detection limit of 3 ng/mL CEA
was achieved with sustainable detections with a correlation co-efficiency of 1 as well as
0.99 for rabbit anti-mouse (RAM) recording assays [213]. Wu et al. used an SPR biosensor
based on 2D transition metal carbide MXene for ultrasensitive CEA detection. They also
found that Ti3C2 MXene, as a novel class of 2D transition metal carbides, provides a large
compatible hydrophilic surface that is ideal for SPR biosensing. Based on the results, the
dynamic range and detection limit for determining CEA is from 2 × 10−16 to 2 × 10−8 M
and 0.07 fM, respectively. Additionally, the results showed that this biosensor approach
shows good reproducibility and high specificity for CEA in real serum samples, which
provides a promising procedure for evaluating CEA in human serum for the early detection
and monitoring of cancer [161].

7. Conclusions and Futures Outlooks

In the development of SPR biosensors to achieve high sensitivity and selectivity, nu-
merous nanomaterials have been synthesized and used due to their inherent properties
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such as extreme conductivity and plasmonic nature. SMQDs attract a lot of attention in
developing SPR biosensors due to their exceptional properties. Accordingly, their potential
for biosensor development has been widely investigated since the first reports on SMQDs.
Moreover, recent research on the improvement of SPR biosensors based on SMQDs has
confirmed that, among various nanomaterials, SMQDs may be the best candidates for the
development of various types of biosensors, including fluorescent, optical, and electro-
chemical biosensors. Moreover, there is still much room for progress in the development of
SPR biosensor systems and other next-generation biosensors. These views are supported
by recent research on the properties of SMQDs and SPR biosensors based on them. SMQDs
improve the performance of SPR biosensors and help in the development of SPR biosensors,
as explained in this article. The practical application of these SPR biosensors based on
SMQDs faces several challenges, such as the reproducibility of these SPR biosensors and
their potential for mass production. However, the commercialization of various SMQDs
and the development of SPR biosensors based on SMQDs will depend on ongoing research
to develop new synthesis techniques or new SMQD architectures. In addition, it is ex-
pected that this ongoing research will lead to a more efficient method of combining SMQDs
with other nanomaterials to improve the intrinsic properties of new SMQDs that will be
developed in the near future.
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