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Neuronal On- and Off-type 
heterogeneities improve 
population coding of envelope 
signals in the presence of stimulus-
induced noise
Volker Hofmann & Maurice J. Chacron✉

Understanding the mechanisms by which neuronal population activity gives rise to perception and 
behavior remains a central question in systems neuroscience. Such understanding is complicated by 
the fact that natural stimuli often have complex structure. Here we investigated how heterogeneities 
within a sensory neuron population influence the coding of a noisy stimulus waveform (i.e., the noise) 
and its behaviorally relevant envelope signal (i.e., the signal). We found that On- and Off-type neurons 
displayed more heterogeneities in their responses to the noise than in their responses to the signal. 
These differences in heterogeneities had important consequences when quantifying response similarity 
between pairs of neurons. Indeed, the larger response heterogeneity displayed by On- and Off-type 
neurons made their pairwise responses to the noise on average more independent than when instead 
considering pairs of On-type or Off-type neurons. Such relative independence allowed for better 
averaging out of the noise response when pooling neural activities in a mixed-type (i.e., On- and Off-
type) than for same-type (i.e., only On-type or only Off-type), thereby leading to greater information 
transmission about the signal. Our results thus reveal a function for the combined activities of On- and 
Off-type neurons towards improving information transmission of envelope stimuli at the population 
level. Our results will likely generalize because natural stimuli across modalities are characterized by a 
stimulus waveform whose envelope varies independently as well as because On- and Off-type neurons 
are observed across systems and species.

Understanding the set of transformations by which sensory input leads to behavioral responses remains a cen-
tral problem in neuroscience. It has been widely observed that neurons display heterogeneities, even within 
the same class1–6. Although much effort has focused on understanding how heterogeneities affect population 
coding7–12, considerably less effort has focused on uncovering their role in determining neural responses to the 
often-complex features of behaviorally relevant stimuli. Here we used the electrosensory system of the weakly 
electric fish Apteronotus leptorhynchus (Fig. 1A) to demonstrate how neural heterogeneities can improve signal 
transmission at the population level of a behaviorally relevant signal that is embedded in stimulus-induced noise.

Weakly electric fish rely on perturbations of an electric field self-generated around their body through the 
quasi-sinusoidal electric organ discharge (EOD) in order to sense their surroundings and communicate with 
conspecifics. Interactions between the EODs of two or more moving conspecifics creates complex electrosen-
sory stimuli consisting of a relatively fast time-varying amplitude modulation of the EOD whose amplitude (i.e., 
the envelope) varies more slowly13,14. The time-varying envelope carries behaviorally relevant information about 
the distance between conspecifics13 and behavioral studies have shown that information about the detailed time 
course of the envelope is retained within the brain15. EOD perturbations are detected by electroreceptors scattered 
on the animal’s skin surface whose afferents synapse onto pyramidal neurons within the electrosensory lateral line 
lobe (ELL). There are two main types of ELL pyramidal neurons: On-type cells that respond with increased firing 
activity to increases in the stimulus as they receive direct excitatory input; and Off-type cells that instead respond 
with increased firing activity to decreases in the stimulus as they receive indirect inhibitory input from afferents 
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via local interneurons (Fig. 1B)16–18. The responses of single ELL pyramidal neurons to the stimulus waveform19–22 
and the envelope23–32 have been extensively characterized. In particular, single neurons will respond to both the 
stimulus waveform and its envelope14,23,30. However, how ELL pyramidal neurons encode envelopes at the pop-
ulation level, which is most likely required to elicit the observed behavioral responses, has not been investigated 
to date.

Here we investigated how ELL pyramidal neural populations encode envelope signals. To do so, we focused 
on the fact that envelopes are independent of the underlying stimulus waveform13,33. As such, we considered the 
envelope to be the signal while the stimulus waveform was considered to be noise and will henceforth refer to the 
envelope as the signal and the stimulus waveform as the noise. Our results show that heterogeneities in the ELL 
pyramidal neuron population help make their responses to the noise more independent, which allows for better 
averaging out when pooling neural activities and thus greater information transmission about the signal, as com-
pared to that obtained for more homogeneous neural populations.

Results
We recorded the activities of n = 41 ELL pyramidal neurons from awake behaving animals. Specifically, our stim-
uli impinged on most of the sensory epithelium in a uniform fashion (Fig. 1A). ELL recordings were categorized 
into On- and Off-type using an AM stimulus (i.e., 0–120 Hz noise) that was independent of that used throughout 
the remainder of our study (see methods). Consistent with previous results, On-type cells typically responded 
during the AM stimulus upstrokes (Supplementary Fig. S1A, green) while Off-type cells typically responded dur-
ing the AM stimulus downstrokes (Supplementary Fig. S1A, magenta). The spike triggered averages (i.e., the aver-
age AM stimulus waveform preceding the action potential) from On-type cells displayed positive slopes before 
the action potential (Supplementary Fig. S1B) while those of Off-type cells instead displayed negative slopes 
(Supplementary Fig. S1C). We thus computed the average slope of the spike triggered average during a time 
window preceding the action potential (see Methods) and found a clear bimodal distribution (Supplementary 
Fig. S1D). Based on this classification, our dataset consisted of n = 21 On-type and n = 20 Off-type neurons.

Figure 1.  Experimental setup and behavioral responses to electrosensory stimulation. (A) Recordings were 
made during stimulation with spatially uniform (‘global’) stimuli mimicking those encountered during 
interactions with a conspecific. Inset: Stimuli consisted of modulations of the self-generated EOD (not shown). 
Specifically, stimuli were constructed as non-repetitive low-pass filtered (15 Hz cutoff) Gaussian white noise 
(i.e., the “noise”; gray) whose amplitude, varied sinusoidally with frequency 1 Hz, (i.e., the “signal”; orange). The 
gray shading shows each cycle of the signal. (B) Electrosensory stimuli are sensed by electroreceptor afferents 
(EAs, left) on the skin that project to pyramidal neurons in the hindbrain electrosensory lateral line lobe (ELL, 
center) that are either of the On- or Off-type variety: On-type neurons (green) receive direct excitatory EA input 
while Off-type neurons (magenta) receive EA input indirectly via inhibitory granular interneurons (GR). Both 
project to higher order brain areas such as the midbrain torus semicircularis. (C) The signal (orange) elicited 
behavioral responses (black) that consisted of the animal tracking the stimulus waveform through changes in 
EOD frequency. (D,E) Quantification of behavioral responses to envelopes using linear systems identification 
techniques from N = 7 fish used in the study. Shown are the gain (D; 0.040 ± 0.017 Hz · mV−1 · cm−1) and phase 
(E; −31 ± 23°).

https://doi.org/10.1038/s41598-020-67258-1


3Scientific Reports |        (2020) 10:10194  | https://doi.org/10.1038/s41598-020-67258-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

Our study focused on how On- and Off-type ELL pyramidal neurons responded to a noisy stimulus wave-
form (0–15 Hz, the “noise”) whose amplitude (the envelope or “signal”) varied sinusoidally at 1 Hz (Fig. 1A,B). 
The sinusoidal signal could be extracted directly from the noise stimulus waveform via standard nonlinear 
transformations (Supplementary Fig. S2A, brown). By construction, signal and noise were independent of one 
another (Supplementary Fig. S2B). It is important to note that the signal was behaviorally relevant as it elicited 
robust behavioral responses during which the animal’s EOD frequency faithfully followed the signal (Fig. 1C–E). 
Further, behavioral responses were significantly more correlated with the original sinusoidal signal than with the 
extracted signal (Supplementary Fig. S2C). We note that it is likely that variability in the behavioral responses 
are due to internal noise within the brain as well as within the electric organ generating the behavior, and that 
such variability cannot be inferred from the stimulus waveform itself. This result demonstrates that information 
about the detailed time course of the sinusoidal signal is transmitted by ELL pyramidal neuron populations and 
retained within higher order brain areas. We thus considered the sinusoidal signal throughout this study and 
investigated how neural responses to the noise stimulus waveform (i.e., the noise) influence coding of the signal 
by ELL pyramidal neural populations.

On- and Off-type pyramidal neuron responses are out of phase with respect to the noise, but in 
phase with respect to the signal.  Our results show that On- and Off-type pyramidal neurons responded 
preferentially during either the upstrokes or downstrokes of the noise, respectively (Fig. 2A, inset). As such, 
the responses of On- and Off-type neurons were approximately out of phase with one another (Fig. 2B). This 
is expected based on their classification (Supplementary Figs. 1B–D) and previous results17,18,34,35. In contrast, 
On- and Off-type neurons responded with similar increases in firing rate (Fig. 2A, black lines) to increases in 
the signal. These responses were largely in phase with one another (Fig. 2C), confirming previous results26,27. 
Mutual information rate (MI) values between the single neuron spiking activities and the signal were on aver-
age comparable for On- and Off-type pyramidal neurons (Fig. 2D). We note that, while useful to illustrate the 
phase relationship between responses of ELL pyramidal neurons, low-pass filtering the spiking activities to obtain 
time-dependent firing rates such as those shown in Fig. 2A will attenuate responses to the noise, which has higher 
frequency content than the signal by construction. These firing rates are thus shown for illustrative purposes only 
and are not considered for further analysis.

Effects of neural heterogeneities on signal and noise response similarity.  We next investigated 
how heterogeneities in responses to the noise and signal affect coding by pyramidal neuron populations. To do 
so, spike trains were converted into spike counts using non-overlapping time windows (see Fig. 3A & meth-
ods) whose length were smaller than the duration of the envelope cycle (Fig. 3A, gray shading). The similarity 
between the spike counts sequences from pairs of non-simultaneously recorded spike trains was then quanti-
fied using the correlation coefficient (see Methods). Signal response similarity was quantified using the correla-
tion between spike count series that were randomly shuffled according to the signal cycle, thus eliminating the 
response to the noise which is not repeated across signal cycles (Fig. 3A, gray shading). Noise response similarity 
was instead quantified using the correlation coefficient between the residual spike counts (Fig. 3B, see methods). 
Residual spike counts were obtained by subtracting the signal-cycle average (Fig. 3A, black) from each spike 
count sequence (Fig. 3A, green and magenta), thereby revealing responses to the noise. There are three possible 
types of pairs: same-type pairs consisting of either two On- (On-On) or two Off-type (Off-Off) neurons, and 
opposite-type pairs consisting of one On-type and one Off-type neuron (On-Off). Figure 3C,D show the residual 
spike counts plotted for example same-type (Fig. 3C) and opposite-type (Fig. 3D) pairs. Noise response similarity 
was positive and large in magnitude for the same-type pair (Fig. 3C) and much closer to zero for the opposite-type 
pair (Fig. 3D). We note that this is expected based on the fact that the responses of On- and Off-type cells to the 
noise were maximal at different times during the cycle, which leads to differences in the residuals that attenuate 
their similarity (Fig. 3A,B).

We looked at all possible pairings for neurons in our dataset and calculated both signal response similarity 
(i.e., similarity between the responses to the signal) and noise response similarity (i.e., similarity between the 
responses to the noise). Figure 4 (main panel) shows the relationship between signal and noise response simi-
larity for On-On pairs (green triangles), Off-Off pairs (magenta triangles), and On-Off pairs (blue circles). We 
found that signal response similarity values were positive on average for all types of pairs (Fig. 4, y-axis; On-Off: 
0.047 ± 0.05; On-On: 0.051 ± 0.054; Off-Off: 0.043 ± 0.043) and significantly different than zero (On-Off: p = 6.83 
· 10–60; On-On: p = 8.44 · 10−31; Off-Off: p = 2.40 · 10−30, t-test). Furthermore, the signal response similarity dis-
tributions strongly overlapped and did not differ significantly from one another for all pair types (Fig. 4, right 
panels, Kruskal-Wallis, p = 0.219). It is important to note that signal response similarity values were small on 
average but significantly different from zero (at p = 0.05; see Methods) for the vast majority of pairs on our dataset 
(On-Off: 412 out of 420 pairs; On-On: 208 out of 210 pairs; Off-Off: 185 out of 190 pairs;; see Methods).

We found that noise response similarity values were larger than signal response similarity values in magni-
tude (On-On: p = 1.0 · 10−29; Off-Off: p = 6.6 · 10−23) and positive for same-type pairs (Fig. 4, x-axis; On-On: 
0.125 ± 0.110; Off-Off: 0.096 ± 0.082), while they were closer to zero for opposite-type pairs (Fig. 2, On-Off: 
0.019 ± 0.07). Noise response similarity values were significantly different from zero (at p = 0.05; see Methods) 
for the vast majority of pairs (On-Off: 385 out of 420 pairs; On-On: 203 out of 210 pairs; Off-Off: 182 out of 190 
pairs). As such, population-averaged noise response similarity values were positive and significantly different 
from zero (On-Off: p = 1.3 · 10−7; On-On: p = 1.0 · 10−40; Off-Off: p = 1.7 · 10−37, t-test). We found that the dis-
tribution obtained for opposite-type pairs (blue) was shifted to the left relative to those obtained for same-type 
pairs (green & magenta). As such, noise response similarity values were on average smaller in magnitude for 
opposite-type pairs than for same-type pairs (Fig. 4, bottom panels; Kruskal-Wallis; p = 2.1 · 10−45). We hypothe-
sized that this decrease in noise response similarity is due to the fact that the responses of On- and Off-type cells 
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to the noise tended to be out of phase and were thus more heterogeneous than those of either On- or Off-type 
cells. To test this prediction, we computed the similarity between the spike-triggered averages (i.e., the tuning 
similarity) of individual neurons. Overall, there was a strong positive correlation between tuning similarity and 
the noise response similarity (Supplementary Fig. S3), confirming our prediction. We further note that the rela-
tionships between signal response similarity and noise response similarity was comparable in pairs that were 
recorded simultaneously and non-simultaneously (Fig. 5).

The results obtained above were robust to changes in the time window length used to compute signal and 
noise response similarity within the interval 1-500 ms (Fig. 6A & E). Specifically, while signal response similar-
ity values were positive on average and did not significantly differ from one another between all types of pairs 

Figure 2.  On- and Off-type pyramidal neuron responses to the noise are more heterogeneous than those to 
the signal. (A) Stimulus waveform (top) consisting of a noisy carrier (“noise”; gray) with sinusoidally varying 
signal (“signal”; orange) and extracellular recorded spiking responses of example On- (middle, green) and 
Off-type (bottom, magenta) ELL pyramidal neurons. For both neurons, the time-varying firing rates (black 
traces) obtained by low-pass filtering the spike train with a cutoff of 3 Hz are also shown (see Methods). Spiking 
responses were out of phase with respect to the noise (see dashed arrows in the inset) but instead in phase 
with respect to the signal (see main panel, black traces). The gray shading indicates the cycle of the signal. (B) 
Response phase distributions to the noise differed significantly (Kruskal Wallis, p = 2.148 · 10−5) between On- 
(39.0° ± 86.9°; green, n = 21) and Off-type (160.9° ± 45.5°; magenta, n = 20; data is shown as a cumulative 
histogram such that no datapoints are hidden and each neuron is counted once). We note that the stimulus used 
to classify cells as either On- or Off-type (0–120 Hz noise; see Supplementary Fig. S1 & methods) was different 
than that shown in A (0–15 Hz amplitude modulated noise). (C) Response phase distributions to the signal 
were not significantly different from one another (Kruskal-Wallis, p = 0.32) for On- (30.5° ± 42.1°; green) and 
Off-type (39.9° ± 35.8°; magenta) neurons (data is shown as a cumulative histogram such that no datapoints are 
hidden and each neuron is counted once). (D) Population-averaged mutual information rate (MI) with respect 
to the signal for On- (0.150 ± 0.150 bits/s; green) and Off-type (0.120 ± 0.145 bits/s; magenta) neurons were not 
significantly different from one another (Kruskal Wallis, p = 0.51).
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(Fig. 6B–D), noise response similarity values obtained for opposite-type (On-Off) pairs were closer to zero on 
average and significantly lower than those obtained for same-type pairs (On-On & Off-Off) (Fig. 6F–H). It is 
important to note that signal response similarity values increased with increasing time window length (Fig. 6A). 
This is expected because there is greater variation in the signal over longer time periods.

Thus, our results have shown that all pair types displayed comparable signal response similarity values. This 
is expected because the response profiles to the signal of single On- and Off-type cells were comparable overall 
(Fig. 2C). In other words, there was comparable heterogeneity across responses to the signal for the different pair 
types. In contrast, noise response similarity values were near zero for opposite-type pairs, whereas they were 
positive for same-type pairs. Again, this is expected because the response profiles to the noise of single On- and 
Off-type cells were quite different from one another (Fig. 2B). In other words, there was more heterogeneity 
across responses to the noise when considering both On- and Off-type cells then when considering either only 
On- or Off-type cells. Specifically, although both On- and Off-type cells encode the slow signal similarly, they 
encode the faster noise differentially, which leads to lower noise response similarity.

Heterogeneities increase signal information transmission by neural populations.  What are 
the consequences of the results obtained above on information transmission by neural populations? To answer 
this question, we considered physiologically realistic decoders that take into account the fact that both On- and 
Off-type ELL pyramidal neurons make direct excitatory connections with neurons within the midbrain torus 
semicircularis (TS; Fig. 1B)36. Indeed, previous studies have shown that the relative contribution between On- and 
Off-type ELL input varies considerably across the TS neural population23. Specifically, while some TS neurons 
likely receive primarily input from either On- or Off-type ELL neurons, others likely receive equal amounts of 
input from both sources. As such, we considered populations that were either mixed-type (i.e., 50% On-type and 
50% Off-type; Fig. 7A) or same-type (i.e., all On-type or all Off-type; Fig. 7B). We expect that, for mixed-type 
populations, the decreased noise response similarity observed for opposite-type pairs as compared to same-type 
pairs leads to greater independence between the noise responses overall, which then allows for better averaging 
away the noise responses and therefore increase signal information transmission37. The fact that, with increasing 
population size, the number of possible opposite-type pairs increases at a faster rate than the number of possible 
same-type pairs (see Material & Methods) also implies that the relative difference between the information trans-
mitted by mixed-type and same-type populations should increase as a function of increasing population size.

Our results confirmed these predictions. Indeed, the mutual information (MI) for mixed-type populations 
was significantly greater than that obtained for same-type populations with the same size (Fig. 7C, compare dark 
blue and black curve). As an example, for a population size of n = 18 neurons (Fig. 7D), the resulting mutual 
information was more than 30% higher for a mixed-type population (i.e., 9 On-type and 9 Off-type cells, dark 

Figure 3.  Computing signal and noise response similarity for ELL pyramidal neuron pairs. (A) Noise waveform 
(gray) and signal (orange) with the spike count sequences of two example On-type cells (green) and one Off-
type cell (magenta). Cells were recombined from our dataset and not recorded simultaneously. For each cell, 
average spike count sequence over the envelope cycle (gray shading) is shown (black, plotted as concatenated 
repetitions). (B) Noise waveform (gray) and signal (orange) with the residual spike count sequences (i.e., the 
spike count minus the average spike count in response to the signal) corresponding to the example neurons 
shown in A. (C) Residual spike counts of On-type cell 2 as a function of that of On-type cell 1 together with 
levels curves and best-fit straight line (red). The similarity between the residual spike counts (i.e., the noise 
response similarity) was quantified by the correlation coefficient. For this pair, we obtained a value of 0.48, 
which was at the higher end of the range observed experimentally. (D) Same as C, but for Off-type cell 1 as a 
function of On-type cell 2. Note the much weaker noise response similarity of 0.02, which was at the median of 
the range observed experimentally.
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blue) than for same-type populations (i.e., 18 On-type or 18 Off-type cells, black). Further, the relative difference 
in information between mixed-type and same-type populations indeed increased with increasing population 
size (Fig. 7E). It is important to note that this result is primarily if not solely attributable to differences in noise 
response similarity between same-type and opposite-type pairs. This is because making the noise responses of 
neurons independent from one another (i.e., setting noise response similarity to zero for all pairs) by shuffling the 
spike count series with respect to the signal cycle (see Methods; Fig. 7C inset, solid vs. light colors), the mutual 
information was not significantly different between balanced and unbalanced populations (Fig. 7C main panel & 
Fig. 7D, light blue vs. gray). Moreover, information from opposite-type and same-type pairs were not significantly 
different from one another when noise response similarity values were comparable (Fig. 8A,B). Finally, making 
the noise responses of neurons independent from one another (i.e., setting noise response similarity to zero) 
through shuffling (see Methods) increased information in neuron pairs when noise response similarity values 
were positive and decreased information when noise response similarity values were negative (Fig. 8C). Thus, our 
results show that the reduced magnitude of noise response similarity in On-Off pairs has a significant effect on 
information transmission when combining them, as occurs in the Torus semicircularis.

Discussion
We have provided experimental evidence showing that heterogeneities in the responses of a sensory neuron 
population affect population coding of a slowly time varying signal in the presence of stimulus-induced noise. 
Specifically, we considered how On- and Off-type ELL pyramidal neurons within the electrosensory system of 
weakly electric fish responded to a noisy stimulus and its time-varying envelope signal. While single On- and 
Off-type cells displayed equal levels of heterogeneity in their responses to the signal, they displayed much larger 
heterogeneities in their responses to the noise. Specifically, single On- and Off-type cell responses were largely 
in phase with respect to the signal but out of phase with respect to the noise. These differences have important 

Figure 4.  The relationship between signal and noise response similarity depends on cell type. Signal response 
similarity as a function of noise response similarity for all possible pairs (n = 820 pairs) in our dataset (see 
Methods). Signal and noise response similarities were computed using a time window length of 100 ms from 
spike counts and spike count residuals, respectively. Shown are data from same- (On-On: green triangles, n 
= 210; Off-Off: magenta triangles, n = 190) and opposite-type pairs (On-Off: blue circles, n = 420). The large 
dots indicate the mean values of signal and noise response similarity for each pair type. The ellipses show 
the centroid fitted to the 95% confidence level of the two-dimensional distributions. Right: Signal response 
similarity distributions strongly overlapped for all types of pairs and were thus not significantly different from 
one another (On-Off, blue: 0.047 ± 0.050; On-On, green: 0.051 ± 0.054; Off-Off, magenta: 0.043 ± 0.043; 
Kruskal Wallis, p = 0.219). Bottom: Noise response similarity distributions strongly overlapped for On-On and 
Off-Off pairs (On-On, green: 0.125 ± 0.110; Off-Off, magenta: 0.096 ± 0.082). However, the distribution for On-
Off pairs (On-Off, blue: 0.019 ± 0.070) was significantly different from the other two (Kruskal Wallis; p = 2.1 · 
10–45). Asterisk indicates significant difference between groups.
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consequences when considering how On- and Off-type cells encode the signal as a population. Indeed, we 
showed that, while signal response similarity was similar for all pair types (i.e., On-On, Off-Off, and On-Off), 
there were important differences in noise response similarity. Specifically, On-Off pairs displayed on average less 
noise response similarity (i.e., greater heterogeneities in their responses) as compared with On-On and Off-Off 

Figure 5.  The relationship between signal and noise response similarity did not differ when computed from 
neuron pairs whose activities were recorded either simultaneously or non-simultaneously. (A) Signal response 
similarity as a function of noise response similarity for same type On-On pairs (simultaneous recordings: 
green, n = 13; non-simultaneous recordings: gray, n = 210). Distributions of signal response similarity (right, 
boxplots) and noise response similarity (bottom) were not significantly different from one another (signal 
response similarity: Kruskal Wallis, p = 0.48; noise response similarity: p = 0.12). (B) Same as A. but for same 
type Off-Off pairs (simultaneous: magenta, n = 11; non-simultaneous: gray, n = 190). Distributions were not 
different from one another (signal response similarity: Kruskal Wallis, p = 0.82; noise response similarity: p = 
0.12). (C) Same as A. but for opposite type On-Off pairs (simultaneous: blue, n = 21; non-simultaneous: gray, n 
= 420). Distributions were not different from one another (signal response similarity: Kruskal Wallis, p = 0.96; 
noise response similarity: p = 0.17).
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pairs. As such, when pooling the activities of On- and Off-type cells (i.e., mixed-type population), the lesser noise 
response similarity displayed by On-Off pairs relative to same-type (i.e., On-On and Off-Off) pairs implies that 
their noise responses are more independent of one another, which allows for better averaging of these responses 
and thereby increase signal information transmission.

Impact of neural heterogeneities on population coding of behaviorally relevant electrosensory 
stimuli.  We note that the effect of increased heterogeneity in the responses of On- and Off-type neurons to 
the stimulus-induced noise is best seen when pooling the activities of On- and Off-type neurons in a mixed-type 
population as compared to a same-type population of the same size (Fig. 7C). This is because mixed-type ELL 
populations display more heterogeneities (i.e., less similarity or more independence) in their responses to the 
stimulus-induced noise, which is beneficial as it allows for better averaging out the noise when pooling neural 
activities. Moreover, since On- and Off-type cells displayed on average similar responses to the signal, the benefit 
of increased heterogeneities in responses to the stimulus-induced noise is not mitigated by increased heteroge-
neities in responses to the signal, thereby allowing for increased information transmission. We note that such a 

Figure 6.  The relationship between signal and noise response similarity was robust to changes in the time 
window length. (A) Signal response similarity values increase as a function of increasing time window length 
for On-Off (blue), Off-Off (magenta) and On-On pairs (green). White lines depict the mean, colored bands 
show 1 SEM, gray bands show 1 STD. Vertical dashed lines indicate the time window length for which the signal 
response similarity values shown in B – D were computed. (B) Signal response similarity values obtained for 
a time window length of 50 ms (mean ± std: On-On, green: 0.030 ± 0.031; Off-Off, magenta: 0.026 ± 0.027; 
On-Off, blue: 0.026 ± 0.029; Kruskal Wallis, p = 0.137). (C) Same as B. but for a time window length of 100 ms 
(mean ± std: On-On, green: 0.051 ± 0.054; Off-Off, magenta: 0.043 ± 0.043; On-Off, blue: 0.047 ± 0.050; 
Kruskal Wallis, p = 0.219). (D) Same as B. but for a time window length of 250 ms (mean ± std: On-On, green: 
0.097 ± 0.098; Off-Off, magenta: 0.079 ± 0.070; On-Off, blue: 0.087 ± 0.088; Kruskal Wallis, p = 0.0776). (E) 
Noise response similarity values increase as a function of increasing time window length for Off-Off (magenta) 
and On-On pairs (green) but were largely constant and negligible for On-Off pairs (blue). Vertical dashed lines 
indicate the time window lengths at which the noise response similarity values shown in F – H were taken. 
(F) Noise response similarity values obtained for a time window length of 50 ms (mean ± std: On-On, green: 
0.003 ± 0.110; Off-Off, magenta: 0.088 ± 0.085), opposite-type pairs displayed significantly lower noise response 
similarity values (On-Off, blue: −0.001 ± 0.070; Kruskal Wallis, p = 1.9 · 10−64). (G) Same as F. but for a time 
window length of 100 ms (mean ± std: On-On, green: 0.125 ± 0.110; Off-Off, magenta: 0.096 ± 0.082; On-Off, 
blue: 0.019 ± 0.070 Kruskal Wallis; p = 2.1 · 10−45). (H) Same as F. but for a time window length of 250 ms 
(mean ± std: On-On, green: 0.120 ± 0.118; Off-Off, magenta: 0.110 ± 0.104; On-Off, blue: −1.5 · 10−4 ± 0.098; 
Kruskal Wallis, p = 1.1 · 10−44). Asterisk indicates significant differences between groups at the p = 0.05 level.
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Figure 7.  Population coding by ELL pyramidal neuron populations. (A,B). We considered decoders integrating 
spiking activity from ELL pyramidal neuron populations that were either (A) mixed-type (i.e., 50% On- and 
50% Off-type), or (B) same-type (top: On-type only; bottom: Off-type only) (C) Mutual information rate 
(MI) as a function of population size for mixed-type (dark blue) and same-type (black) populations. The error 
bars show 1 SEM. Lines are best-fit log functions to the data and were used to extrapolate to larger population 
sizes for same-type populations (dashed). Light colors indicate MI for mixed-type (light blue) and same-type 
(gray) populations when shuffling the spike trains with respect to the signal (see below) prior to calculation 
of MI, which renders the responses to the noise independent of one another. Inset: Noise response similarity 
for mixed-type (dark blue) and same-type (black) pairs before shuffling. Noise response similarity for 
mixed-type (light blue) and same-type (gray) pairs after shuffling. Noise response similarity before shuffling 
was significantly higher for same-type pairs than for mixed-type pairs (p = 1.7 · 10−5; Kruskal-Wallis with 
Bonferroni correction for multiple comparisons; see also Fig. 4). Moreover, while shuffling significantly reduced 
noise response similarity for both opposite-type and same-type pairs (opposite-type: p = 2.8 · 10−50; same-type: 
p = 1.1 · 10−86, Kruskal-Wallis with Bonferroni correction), there was no significant difference between noise 
response similarity after shuffling obtained for opposite-type and same-type pairs (p = 1.0, Kruskal-Wallis with 
Bonferroni correction). (D) MI values for populations of 18 neurons that are mixed-type (blue: 0.37 ± 0.14 
bits · s−1) or same-type (black: 0.29 ± 0.06 bits · s−1) before shuffling. Also shown are MI values for populations 
of 18 neurons that are mixed-type (light blue: 0.50 ± 0.20 bits · s−1) or same-type (gray: 0.51 ± 0.14 bits · s−1) 
after shuffling corresponding to the gray shading in the main plot of panel C. Before shuffling, MI values were 
significantly higher for the mixed-type population than for the same-type population (p = 1.1 · 10−6, Kruskal-
Wallis with Bonferroni correction). After shuffling, MI values were not significantly higher between the mixed-
type and the same-type population (p = 1; Kruskal-Wallis with Bonferroni correction). (E) Relative difference 
in MI between mixed-type and same-type population before shuffling as a function of population size (solid) 
computed from the fits to the data shown in C. The dashed curve is extrapolated from the fitted data.

https://doi.org/10.1038/s41598-020-67258-1


1 0Scientific Reports |        (2020) 10:10194  | https://doi.org/10.1038/s41598-020-67258-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

decoding scheme is physiologically realistic in the electrosensory system given that previous studies have shown 
that TS neurons receive excitatory input from both On- and Off-type ELL pyramidal neurons23,36. Specifically, 
some “On-Off ” TS neurons receive inputs that are matched in strength from On- and Off-type neurons, while 
other TS neurons receive input predominantly from either On- or Off-type neurons23,24,38,39. We hypothesize that 
these “On-Off ” neurons will best respond to the signals considered in the present study and thus mediate the 
animal’s behavioral responses. Further studies are needed to verify this prediction.

We also note that the decoding scheme considered here is linear since we summed the neural activities. 
Previous studies have shown that TS neurons integrate input from ELL in a nonlinear fashion, which likely con-
tributes to increased response selectivity40,41. As such, the information estimates reported here constitute a lower 
bound on the information available to downstream areas42,43. Future studies should thus investigate how encoding 
by TS neurons are influenced by nonlinear integration of afferent ELL input from On- and Off-type pyramidal 
neurons. In particular, the location of receptors within the dendritic tree as well as the presence of subthreshold 
membrane conductances such as T-type calcium channels41 should be investigated. This is because these nonlin-
earities could further decrease the similarity (or, equivalently, make them even more independent) between the 
inputs from ELL pyramidal neurons in response to the stimulus-induced noise, as seen in other systems44–46. It 
is important to note here that it is not expected that electrosensory neural circuits will explicitly compute simi-
larities between neural responses to the signal or the stimulus-induced noise. Rather, our results suggest that, by 
combining inputs that are matched in strength from On- and Off-type ELL pyramidal neurons, electrosensory 
circuits can significantly reduce the deleterious effects of similarities in responses to the stimulus-induced noise, 
which is detrimental to averaging when pooling neural activities. It is important to note that On- and Off-type 
ELL pyramidal neurons also respond to other stimuli, such as those caused by objects whose conductivity is 
greater or lesser than that of the surrounding water. Specifically, On- and Off-type cells are excited by objects 
whose conductivity is greater and lesser than that of the surrounding water, respectively47,48.

What causes differences in the level of heterogeneities within the responses of On- and Off-type cells to the 
signal and the stimulus-induced noise considered here? Response heterogeneities within the pyramidal neuron 
population arise in part due to strong descending input from higher brain regions. Previous studies have shown 
that descending input can strongly affect single ELL pyramidal neuron responses not only to the signal but also 
to the stimulus-induced noise29,30,49,50. Further studies are needed to determine how descending input mediate 
coding by the ELL pyramidal neuron population.

Finally, it is important to point out that the current study did not take into account correlations between 
neural activities that arise from shared synaptic input46. Indeed, these so-called “noise correlations” can impact 

Figure 8.  Effects of noise response similarity on information transmission. (A) Mutual information for 
opposite-type (i.e., On-Off, blue) and same-type (i.e., On-On and Off-Off, black) pairs as a function of noise 
response similarity. The dots show the raw data while the vertical lines show the errorbars (±1 STD) obtained 
when binning the data using a binwidth of 0.02. In no case there was significant difference between the MI for 
opposite-type (blue) and same-type (black) pairs (One-way ANOVA, p ≥ 0.14 in all cases). (B) Distribution of 
data shown in A for opposite-type (top, blue) and same-type (bottom, black) pairs. (C) Normalized change in 
mutual information for opposite-type (blue) and same-type (black) neuron pairs before and after shuffling with 
respect to the signal cycles. In all cases, a significant negative correlation was observed (same-type: r = −0.26, 
p = 4.3 · 10−7; opposite-type: r =−0.33, p = 1.1 · 10−11; all data: r = −0.37, p = 1.3 · 10−25). The large dots show 
the mean values and the ellipses show the 64% probability curve for the data (i.e., 64% of the data lies within the 
ellipse).
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population coding by introducing either synergy or redundancy51–61. Noise correlations can only be assessed by 
recording neural activities simultaneously62. Previous studies have shown that ELL pyramidal neurons display 
noise correlations that most likely originate from shared afferent input63,64. However, these noise correlations 
are “local” in that their magnitude decreases with decreased receptive field overlap. The fact that similar levels of 
signal and noise response similarity were observed between simultaneously and non-simultaneously recorded 
pairs of neurons in our dataset suggests that noise correlations might not strongly impact population coding in 
the context considered here. We hypothesize that this is because the signal and stimulus-induced noise consid-
ered here are “global” because they recruit most if not all of the pyramidal neuron population. Previous studies 
have shown that noise correlation magnitude is reduced when “global” stimuli are presented63,65, which supports 
our hypothesis. It is nevertheless important to point out that noise correlations are likely to have a much stronger 
impact on the coding of other behaviorally relevant stimuli, such as those caused by prey. Further studies are 
however needed to verify this prediction.

Implications for other systems.  Our results are likely applicable to population coding in other sensory 
systems. This is because behaviorally relevant slowly varying envelope signals such as the one considered here are 
also found across various modalities (visual21,66, vestibular67, auditory68; mechanosensory69). Importantly, these 
slowly varying envelope signals are independent of other stimulus features, which can thus be considered noise 
(auditory70,71; visual72; vestibular67,73). On- and Off-type neurons are also found across multiple sensory modali-
ties (visual74–77:, chemosensation78, thermosensation79, audition80, vestibular81) and multiple functional roles have 
been proposed for having both cell types such as metabolically efficient signaling of opposite changes in the stim-
ulus82,83 and improving the representation of natural signals74. We predict that On- and Off-type neurons in other 
systems will also demonstrate better encoding of a slow varying signal in the presence of stimulus-induced noise 
because their response heterogeneities to the noise are greater than those to the signal, as demonstrated here for 
the electrosensory system.

Future studies should therefore take into account noise response similarity and examine their effects on 
population coding. This can be achieved by using stimulation paradigms in which the envelope signal and 
the stimulus-induced noise are independent of one another (i.e., the signal is repeated across trials but not the 
stimulus-induced noise), as in the current study. This stimulation paradigm differs from those typically used 
for which instead both the envelope signal and the stimulus-induced noise would be repeated from trial to trial. 
We argue that the former stimulation paradigm is more realistic than the latter because it better mimics the 
known structure of natural stimuli and the fact that higher order neurons can respond to the envelope signal 
independently of the stimulus-induced noise. Such neurons are found not only in the electrosensory system23 but 
also in the visual84 as well as auditory85 systems. As such, we predict that population coding will most likely be 
influenced by the stimulus-induced noise as studied here.

Material & Methods
Animals.  Specimens of Apteronotus leptorhynchus were obtained from tropical fish suppliers and housed in 
groups of up to 15 (water temperature 29 ± 2 °C; water conductivity of 100–300 µS · cm−1) as per published guide-
lines86. All housing and experimental procedures were approved by McGill University’s animal care committee 
according to the guidelines of the Canadian Council on Animal Care. All procedures were carried out under 
animal use protocol number 5285.

Experimental Design and recording.  Electrophysiological recordings were made from the hindbrain 
electrosensory lateral line lobe (ELL) of N = 12 fish (13 ± 2 cm). Animals were immobilized with an intramus-
cular injection of tubocurarine chloride hydrate (Sigma-Aldrich; 200 µl injection; 2 mg · ml−1) and respirated 
with a constant flow of water over their gills (≈ 10 ml · min−1). After topical application of local anaesthesia (2% 
lidocaine, Western Medical Supply, Arcadia, CA, USA), a small craniotomy (≈ 5 mm2) was made in the dorsal 
skull to access the hindbrain. Recordings were performed with two metal-filled recording micropipettes (0.5–1 
MΩ) inserted into the lateral segment (LS) of the ELL. Electrode signals were amplified and filtered (x1000, 
300–5 kHz; AM differential amplifier 1700; AM Systems, Sequim, WA USA), digitized at 20 kHz (CED Power 
1401, Cambridge Electronic Design, Cambridge, UK), and stored for further analysis (Spike II, v7.16 ×86, CED). 
Recordings were either performed simultaneously (i.e. one isolated unit on each of the two recording electrodes 
simultaneously; n = 68 neuron pairs) or non-simultaneously (i.e. one isolated unit on only one of the recording 
electrodes; n = 50). We chose to record from pyramidal neurons within LS because these display the largest recep-
tive fields87,88 and the greatest sensitivity to both the stimulus waveform89 and its envelope signal26. As such, we 
expect that neural responses to the stimulus waveform will have the greatest impact when considering population 
coding of the envelope signal in this segment.

Under immobilization, Apteronotus leptorhynchus specimens continue to emit the EOD signal due to the 
neurogenic nature of their electric organ. As such, they remain capable of displaying electrosensory behaviors 
consisting of changes in the EOD frequency (Fig. 1C,D). Stimuli consisted of amplitude modulations of the 
animal’s self-generated electric organ discharge, applied by multiplying (MT3 analog multiplier, Tucker-Davis 
Technologies, Alachua, FL USA) the desired waveform (described below) with a train of single-cycle sinusoidal 
waveforms that were phase-locked to the animal’s EOD90. For this, the EOD zero-crossings were detected (121 
Window discriminator, World Precision Instruments WPI, Sarasota, FL USA) to trigger a waveform generator 
(33220 A LXI arbitrary waveform generator, Agilent, Santa Clara, CA USA) that generated one cycle of a sinewave 
per EOD cycle. The output of the multiplier was isolated from ground (A395 linear stimulus isolation unit, WPI) 
and delivered to the animal via two steel wire electrodes located about 15 cm from each side of the animal. Our 
stimuli consisted of zero-mean low-pass filtered (15 Hz cut-off frequency, 8th order Butterworth) Gaussian white 
noise (i.e., the noise) with a duration of 90 s, whose amplitude (i.e., envelope) was modulated sinusoidally at 1 Hz 
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(the signal). The noise was independent of the envelope by construction (see Supplementary Fig. S2). While the 
sinusoidal envelope stimulus used in this study is not naturalistic, we note that it has been previously shown that 
responses of ELL pyramidal neurons to sinusoidal envelopes can be used to predict their responses to natural 
envelope waveforms27. Stimulus contrast was adjusted to 15–20%. For data analysis (described below), each enve-
lope cycle was considered one repetition (Fig. 1A) and the low-pass filtered white noise was not repeated from 
cycle to cycle. The same stimulus waveform was presented to all neurons.

Data Analysis.  For behavior, the recorded times at which the EOD crosses zero from below were converted 
into a series of events with 30 kHz sampling rate. For visualization purposes, this series of events was low pass 
filtered (2nd order Butterworth filter, 3 Hz cutoff) and detrended. We used linear systems identification techniques 
to assess behavioral gain and phase as done previously15,25,27,28,91. Specifically, gain was calculated as:

gain A
A (1)

behavior

envelope
=

where Abehavior is the amplitude of the EOD frequency modulation as determined by fitting a sinusoid to the aver-
age time-varying EOD frequency during one envelope cycle and Aenvelope is the amplitude of the electrosensory 
envelope as extracted from a local dipole electrode (1 mm tip spacing) that was placed close to the skin of the 
animal. We further determined the phase shift between the behavioral responses and the envelope stimulus as:

θ π=
−T T

T
2

(2)
E EOD

E

max( ) max( )

max( )

where Tmax denotes the times at which either the envelope (E) or the EOD frequency (EOD) reach their maximum 
values during the envelope cycle.

For neuronal data, spike times were detected from the recorded traces using a threshold and assigned to dif-
ferent neurons based on waveform, interspike intervals, and PCA with subsequent k-means or normal-mixtures 
clustering (Spike II, CED). Further analyses were carried out using Matlab (MATLAB R2015b v8.6.0, MathWorks 
Inc., Natick, MA, US). Specifically, for each neuron, spike times were converted into a binary sequence with a 
bin width of 0.5 ms. The binwidth was chosen to be smaller than the absolute refractory period of ELL pyramidal 
neurons (~ 2 ms) such that at most one spike can occur within any given bin. Time-dependent firing rates were 
obtained by low-pass filtering the binary sequence (3 Hz cut-off frequency, 2nd order Butterworth) and multiply-
ing by the sampling frequency of 2000 Hz. Negative values of the firing rate were set to zero.

In order to test that a neuron responded significantly to the envelope signal, we computed the vector strength92 
as done previously26. Only neurons with a vector strength higher than 0.085 were used for further analysis (sin-
gle neurons: n = 41; neuron pairs: n = 46). Vector strength values for neurons included in the analysis ranged 
between 0.0859 and 0.4503.

We categorized recorded cells into either On- or Off-type by using their responses to an AM stimulus wave-
form as done previously28. Importantly, for this we used a stimulus (Gaussian white noise, 120 Hz cutoff fre-
quency, 8th order Butterworth low-pass filter) that is independent from the one used to investigate population 
coding. Specifically, we computed the spike triggered average (STA) stimulus waveform and determined the 
time-averaged STA slope within an evaluation window (8 ms wide) centered 8 ms before the trigger point (t0) to 
account for the average action potential transmission delay from the skin surface to the hindbrain ELL. Neurons 
for which the STA slope was on average positive during the evaluation window were classified as On-type whereas 
those for which the STA slope was negative were classified as Off-type (Fig. 2). We furthermore quantified tuning 
similarity by computing the correlation coefficient between the STA waveforms for each neuron pair.

The average phase difference between the binary sequence and the 0–15 Hz noise was computed as a function 
of frequency f using23:

φ =










f arctan imag P f
real P f

( ) [ ( )]
[ ( )] (3)

rs

rs

where arctan denotes the arctangent, while imag and real denote the imaginary and real parts, respectively. Prs(f) 
is the cross-spectrum between the noise and the binary sequence computed using the function “cpsd” in Matlab. 
The phase difference was then averaged over the frequency range 0–15 Hz.

The average phase difference between the neural response and the signal was calculated by fitting a sinusoidal 
function to the phase histogram obtained over 90 consecutive cycles of the envelope cycle (i.e., each spike time 
was converted to a phase based on where it occurred during the cycle of the sinusoid as done above for the EOD 
zero crossings). Response phase was determined as the phase for which the fitted function was maximum as done 
previously26.

We quantified the similarity between responses by the correlation coefficient between pairs of spike count 
sequences. Spike count sequences were obtained from each spike train by counting the number of spikes occur-
ring during successive and non-overlapping time windows that were always aligned with respect to the sinusoidal 
signal and whose length ranged between 1 and 250 ms. Spike count sequences were tested for stationarity using 
an augmented Dickey-Fuller test (function “Adftest” in MATLAB). For all data, the null hypothesis of nonstation-
arity could be rejected (p < 10–3 in all cases). We then computed the correlation coefficient between the two spike 
count sequences using Pearson’s correlation coefficient:
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To compute signal response similarity, we considered the segments of the spike count sequence obtained 
during each signal cycle and randomly permuted their order to obtain shuffled spike counts. It is important to 
note that this shuffling procedure does not affect the envelope signal itself. The signal response similarity was 
quantified as the correlation coefficient between the shuffled spike counts for each neuron pair as per Eq. (4) 
averaged over 20 independent realizations of the shuffling procedure. It is important to note that signal correla-
tions will trivially be null when the duration of the time window is equal to the signal period (1 s), this is because 
the signal does not vary over that time window length by definition. We thus considered time windows whose 
length was up to a quarter of the envelope cycle. We did not use the filtered firing rates (Fig. 4) during analysis 
because low-pass filtering with a cutoff frequency of 3 Hz greatly attenuates the stimulus-induced noise whose 
impact on information transmission we are studying. We note that using a time window length of 100 ms would 
roughly correspond to a cutoff frequency of 10 Hz. For each pair, significance was assessed by computing signal 
response similarity for surrogate datasets in which the binary sequences for that pair were randomized in order 
to eliminate any correlation between then (i.e., signal response similarity should be zero in theory). An experi-
mentally obtained value of signal response similarity without shuffling was deemed to be significant if that value 
was greater in magnitude than the 95% confidence interval of the signal response similarity value distribution 
obtained from 100 surrogate datasets.

Finally, noise response similarity was quantified as the correlation coefficient between the spike count residual 
sequences. The spike count sequences were first averaged over signal cycles (Fig. 3A) and the mean spike count 
sequence was then subtracted from the spike counts for each cycle to obtain the residual spike counts sequences 
(Fig. 3B). Significance for noise response similarity was assessed in a manner analogous to that described above 
for signal response similarity.

To investigate the effects of neural correlations on information transmission, we computed the mutual infor-
mation rate (MI) between the signal and the summed binary sequences for a given neural population using42:

∫= −

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where Prs(f) is the cross-spectrum between the stimulus and the summed response computed using the function 
“cpsd” in Matlab, Prr(f) is the summed response power spectrum computed using the function “pwelch” in Matlab, 
and Pss(f ) is the signal power spectrum computed using the function “pwelch” in Matlab. We considered 
“same-type” populations consisting either of n On-type or Off-type neurons only, or “mixed-type” populations for 
which n/2 neurons were On-type and the remaining n/2 were Off-type. We note that for a mixed-type population 
of n neurons, the number of same-type pairs (On-On + Off-Off) is given by n2/4-n/2, while the number of 
opposite-type pairs (On-Off) is given by n2/4 respectively. As such, with increasing n, the number of opposite-type 
pairs in the population will always be greater than the number of same-type pairs and their difference, which is 
equal to n/2, grows linearly with population size n. For a given population size, results were obtained from ran-
dom re-combinations of neurons from our dataset and were averaged over the highest number of possible itera-
tions up to 200. Plots of mutual information as a function of population size were fitted using either A log(n) or 
A n . Overall, the logarithm function gave better fits to the data as determined from rmse values ranging between 
0.0099–0.0272 (log) vs. 0.0148–0.109 (sqrt). As such, we only show the fit for the log function in the figure. 
Mutual information rates were also computed after randomly shuffling the segments of binary sequences with 
respect to the signal cycles, such as to make the responses to the noise independent of one another across the 
population.

Statistical Analysis.  Statistical significance was assessed using Kruskal-Wallis non-parametric tests, one 
sample or paired sample or Wilcoxon signrank tests or paired t-tests. P-values are given in the text and figure 
legends. In all figures, asterisk indicates statistical significance. Values are reported as mean ± std throughout the 
text unless otherwise stated.

Data availability
The datasets generated during and/or analysed during the current study are available in the figshare repository at 
https://doi.org/10.6084/m9.figshare.10380131.
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