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Paracrinicity: The Story of 30 Years of Cellular Pituitary Crosstalk
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Introduction

Paracrinicity is the process of short-distance communication

between cells by way of substances released, shed or just ‘presented’

by a cell that affect a specific target on other cells in the neighbour-

hood. The substance reaches its target by diffusion in the extracellu-

lar space or by direct contact formation. Nowadays, it is recognised

that paracrine communication is essential for body plan organisation

and cell commitment during embryonic development, differentiation

and proliferation of cells during postnatal growth and many func-

tional activities of cells in the adult life of a multicellular organism.

Paracrinicity is distinct from hormonal communication that occurs

via the bloodstream and from neuronal communication that occurs

in specialised synaptic structures. It is also distinct from communi-

cation between cells via gap junctions in the plasma membrane of

neighbouring cells allowing passage of small messenger molecules

(< 1000 Da) from the cytoplasm of one cell to that of another to

co-ordinate the activity of groups of cells (1).

The present review looks into the history of how these con-

cepts were born, how they were introduced in the field of
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Living organisms represent, in essence, dynamic interactions of high complexity between mem-

brane-separated compartments that cannot exist on their own, but reach behaviour in co-ordi-

nation. In multicellular organisms, there must be communication and co-ordination between

individual cells and cell groups to achieve appropriate behaviour of the system. Depending on

the mode of signal transportation and the target, intercellular communication is neuronal, hor-

monal, paracrine or juxtacrine. Cell signalling can also be self-targeting or autocrine. Although

the notion of paracrine and autocrine signalling was already suggested more than 100 years

ago, it is only during the last 30 years that these mechanisms have been characterised. In the

anterior pituitary, paracrine communication and autocrine loops that operate during fetal and

postnatal development in mammals and lower vertebrates have been shown in all hormonal cell

types and in folliculo-stellate cells. More than 100 compounds have been identified that have,

or may have, paracrine or autocrine actions. They include the neurotransmitters acetylcholine

and c-aminobutyric acid, peptides such as vasoactive intestinal peptide, galanin, endothelins,

calcitonin, neuromedin B and melanocortins, growth factors of the epidermal growth factor,

fibroblast growth factor, nerve growth factor and transforming growth factor-b families, cyto-

kines, tissue factors such as annexin-1 and follistatin, hormones, nitric oxide, purines, retinoids

and fatty acid derivatives. In addition, connective tissue cells, endothelial cells and vascular peri-

cytes may influence paracrinicity by delivering growth factors, cytokines, heparan sulphate pro-

teoglycans and proteases. Basement membranes may influence paracrine signalling through the

binding of signalling molecules to heparan sulphate proteoglycans. Paracrine ⁄ autocrine actions

are highly context-dependent. They are turned on ⁄ off when hormonal outputs need to be

adapted to changing demands of the organism, such as during reproduction, stress, inflamma-

tion, starvation and circadian rhythms. Specificity and selectivity in autocrine ⁄ paracrine

interactions may rely on microanatomical specialisations, functional compartmentalisation in

receptor–ligand distribution and the non-equilibrium dynamics of the receptor–ligand inter-

actions in the loops.
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neuroendocrinology and what the current picture of paracrinicity

is in the context of the integrative functions of the pituitary

gland. From early embryonic development to old age, the micro-

environment surrounding the pituitary cells appears to consist of

an extremely complex and ever growing number of players. We

will focus mainly on the functional aspects of paracrinicity and,

at times, implicate morphological aspects underlying these func-

tions. More specialised aspects of morphogen and growth factor

actions during development will only be reviewed when relevant

for the later functions of the differentiated cells. The reader is

referred to the excellent reviews in this field (2–6).

From Cajal and Starling to Feyrter and beyond: walls
segregating hormones, neurotransmitters and tissue factors
broken down

The hypothesis of local humoral action can already be found in the

classical paper of Bayliss and Starling, unequivocally demonstrating

that gastrointestinal secretion is not only nerve-driven, as stated by

the Pavlov doctrine, but also the result of the action of a hormone

(secretin) produced in the duodenal mucosa and released in the

blood in response to acid, stimulating exocrine secretion of the

pancreas (7). At the end of the paper, a side observation is reported

concerning the presence of a vasodilator substance different from

secretin in the experimental duodenal extracts. In the summary sec-

tion of the article, this reads as follows:

‘Acid extracts of the mucous membrane normally contain a body

which causes a fall of blood-pressure. This body is not secretin, and

the latter may be prepared free from the depressor substance by

acting on desquamated epithelial cells with acid. There is some evi-

dence of a specific localised action of the vasodilator substances

which may be extracted from various tissues’.

Around the same period, Henri Dale had discovered histamine as

a bioactive substance in mould ergot, which caused vasodilatation

(8) and, in 1920, Popielski reported that histamine stimulates exo-

crine secretion from the stomach even after section of the vagal

nerve. He suggested that the active principle with similar activity,

found earlier in tissue extracts, might be histamine (9). The identity

of this tissue factor as histamine was demonstrated in1927 by Best

(10), but whether histamine was a hormone or a locally-acting fac-

tor remained unclear and clarification of its physiological signifi-

cance in gastrointestinal function came only more than half a

century later after James Black discovered histamine-2 receptor

antagonists (11) and after the cell type producing histamine, the

enterochromaffin-like cell, was identified in 1986 (12).

Another early suggestion for local regulation goes back to

Ramon y Cajal at the end of the 19th century, who discovered a

network of interstitial cells located between the myenteric nerve

plexus and the smooth muscle layers and within these layers in the

stomach and intestine (13). Cajal considered these cells as an inter-

face system in the neurotransmission from the myenteric nerve

perikarya to the muscle cells. Their stellate morphology and associa-

tion in a network also indicated co-ordinating functions. For almost

a century, the true nature of these cells as being neurones, Schw-

ann cells, fibroblasts and macrophages has been debated. However,

they are considered as specific cell types, sharing only certain stain-

ing characteristics with neurones. They have been shown to func-

tion as pacemaker cells in slow-wave peristaltic propulsion in the

gastrointestinal tract. To this end, they use various chemical media-

tors and their activity is modulated by the innervating enteric ner-

vous system.

In 1914, Masson (14) launched the idea that the solitary cells

dispersed between the intestinal exocrine mucosa cells that fail to

take up conventional stains are the enterochromaffin cells

described earlier by Ciaccio. He suggested that they form a func-

tional unit of hormone-secreting cells (15). In 1938, Friedrich Feyr-

ter (16), an Austrian pathologist, described similar unstained cells

(called in german ‘helle Zellen’ ) clear cells) dispersed throughout

pancreatic ducts and growing inwardly in clusters. Feyrter proposed

that these cells form a functional unit of endocrine cells, in addi-

tion to the pancreatic islet cells (17). He included in that system

the enterochromaffin cells of the intestine and the enterochromaf-

fin-like cells of the stomach and called them ‘diffuse endocriene

epitheliale Organe’. In 1953, he enriched the concept of the diffuse

endocrine organs by also assigning the cells a paracrine function

in his book, Über die peripheren endokrinen (parakrinen) Drüsen

des Menschen (18). The merit of Feyrter has been that he consid-

ered dispersed endocrine cells as a novel type of organ, clearly dis-

tinguished from the classical concept of the body as being

composed of compact organs (16), and broadened the sense of

humoral communication over long distance by hormones to local

communication by similar humoral factors acting locally. Feyrter

also noticed the anatomical and functional relationship of the

‘helle Zellen’ with the submucosal part of the enteric nervous sys-

tem, hereby uniting endocrine and neuronal regulation. Unfortu-

nately, since the nature of the hormone-like substances that were

postulated to act locally remained unknown, and since the relation-

ship of them with secretory cells releasing true gastrointestinal

hormones had not been illustrated by direct chemical identification,

the notion of paracrinicity remained relatively silent for many

years. A new impetus was given when Erspamer in 1952 identified

serotonin in enterochromaffin cells (19).

In 1968, Pearse incorporated the endocrine ⁄ paracrine cells of the

gut into a broader family of cells, called amine precursor uptake

and decarboxylation (APUD) cells, on the basis of the neuronal

characteristics that they displayed to manufacture monoamines by

decarboxylating the precursor amino acid (20). In addition, they

were found to produce biologically active peptides. The APUD cell

family rapidly enlarged to some 40 members, including adrenal

medulla and gut chromaffin cells, thyroid C cells, endocrine cells of

the anterior pituitary, gut and pancreatic endocrine cells, carotid

body chief cells, Merkel cells, melanocytes, endocrine cells of the

placenta and thymus and sympathetic ganglia cells. However, since

the role of the APUD cell monoamines has not been defined for

each of the APUD cell types and some peptide-producing cells were

found that lacked the typical APUD characteristic, the cell family

was preferentially named the diffuse neuroendocrine system on the

basis of expression of both hormonal and neuronal markers (15).
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A parallel track towards the concept of local humoral control

came from studies on carcinoid tumours in the gastrointestinal

tract. The latter were first defined by Siegfried Oberndorfer (21, 22)

in 1907 and proposed to be endocrine tumours by Gosset and Mas-

son in 1914 (14). The endocrine nature of carcinoid tumours was

suspected from the strong fibrosis that they produce in surrounding

tissue and in remote areas, such as the heart, retroperitoneum and

lungs. Feyrter had already identified a blood pressure increasing

substance in extracts of carcinoid tumours in 1936 (23), whereas,

in 1941, Selberg found blood pressure lowering material (24). In

1953, carcinoid tumours were shown to produce serotonin and, in

1964, Hallén suggested that the fibrosis associated with carcinoids

(25) was probably due to local serotonin (26), although conclusive

evidence still needs to be given today (27).

Growth factors in tumours, salivary glands, serum and
pituitary

Of great impetus in realising the importance of local humoral con-

trol has been the discovery of nerve growth factor (NGF) and epi-

dermal growth factor (EGF) (28). Viktor Hamburger (29) paved the

way to these discoveries by showing that peripheral tissues pro-

mote the growth of sensory and sympathetic neurones (30). In

addition, Bueker demonstrated that implantation of a mouse sar-

coma in the limb field of the chicken embryo results in an invasion

of nerve endings from the embryo into the tumour area (31). These

findings were reinvestigated by Levi-Montalcini who observed that

the tumoural tissue stimulates the growth not only of closely posi-

tioned nerves, but also of many sympathetic and sensory neurones

in the whole embryo. An impressive accidental observation speeded

up the identification of the tumour factor. When treating a tumour

extract with a phosphodiesterase preparation from snake venom to

remove nucleic acids, Cohen and Levi-Montalcini (32) found that

the snake venom preparation itself was contaminated by an impu-

rity with the same biological activity as the tumour factor. Further-

more, the ‘activity’ of the snake venom contained amounts several

thousand times greater than the tumour. This led to the isolation

and purification by Cohen in 1959 (33) of what is now know as

NGF and to the determination of its structure by Angeletti and

Bradshaw in 1971 (34). A similar enrichment of NGF was found in

extracts of mouse salivary glands. Further exploration of NGF-like

material in the latter source unexpectedly led to the discovery of a

substance that induced precocious eyelid opening and tooth erup-

tion in neonatal mice (35). Cohen named the latter activity EGF

and, together with Savage and Inagami, determined its amino acid

sequence in 1972 (36). Cohen also characterised the EGF receptor

and discovered its autophosphorylating tyrosine kinase activity,

hereby opening an enormous new field of research. Interestingly,

shortly thereafter, a factor first identified in 1936, urogastrone,

which inhibits gastric acid secretion, was found to be similar to

EGF (37–39).

A development initially not related to the concepts of local con-

trol, but later on was found to be of enormous importance, was

the demonstration of factors in serum that are required for the

growth, migration or survival of cells in culture. Since purification

of these serum factors proved to be very difficult, some investiga-

tors tried to bypass this problem by testing pituitary hormone prep-

arations for growth-promoting activity. In 1973 Armelin and

Gospodarowicz were the first to identify a fibroblast growth factor

(FGF) in the pituitary (40). This was subsequently purified by Gos-

podarowicz (41) and identified as a 14-kDa basic protein (basic

FGF) (42). A 17-kDa acidic FGF was later isolated from the brain

and shown to be highly angiogenic in the presence of heparin (43).

This growth factor has since been recognised as one member of a

large family of locally-acting factors essential for: (i) positional

determination during embryonic development and (ii) controlling

cell growth, repair, motility and survival during adult life. It also

plays a prominent role in tumour development. Later, the pituitary

also proved to be the source of another very important growth fac-

tor, vascular endothelial growth factor (VEGF) (44).

Somatostatin and the big bang of paracrinicity

With the advent of techniques for high-speed peptide sequencing,

peptide synthesis, immunoassay and immunocytochemistry in the

late 1960s ⁄ early 1070s, knowledge of the chemical identification

and tissue localisation of neuropeptides accelerated rapidly. It was

soon realised that substances originally identified as hormones or

neuromodulators also were putative paracrine factors. One of the

first examples was somatostatin. This peptide was purified and

identified by Guillemin’s and Schally’s group (45) in 1973 as the

somatotrophin release-inhibiting factor released from the medioba-

sal hypothalamus into the portal blood vessels in the median emi-

nence. Soon after, it was also identified by immunostaining in

isolated and clustered cells of the gastrointestinal mucosa and pan-

creatic island D-cells (46). These cells showed peculiar morphological

and topographical arrangements that were suggestive of a local

control function on neighbouring cells. In the pancreatic islets,

D-cells are mainly located between the b-cells, clustered in the

middle of the islet and a-cells clustered in the periphery (47). In

the stomach, mucosal D-cells send long cellular extensions along

the nonluminal side of the mucosa (48).

From the 1980s, the research on local control reached an explo-

sive phase. Several additional modes of local communication were

discovered. In 1980, Sporn and Todaro introduced the concept of

autocrine control, an autocrine factor being a substance released by

the cell and affecting the cell of origin itself. They showed that

cells that had been transformed by an oncogene in culture no

longer required serum supplements because they themselves pro-

duced or overproduced the essential growth factors. The first

growth factors identified on this basis were transforming growth

factor (TGF)-a and TGF-b. This discovery opened an immense field

of investigations on the role of autocrine growth factors in tumo-

urigenesis and tumour progression. Several of these growth factors

have been shown to be effective physiologically in the positional

determination of cell fate, in expanding progenitor cell populations

during embryonic development and in preserving cell diffentiation

and survival in adult life (2–6). Many of these autocrine growth
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factors also influence cellular function and contribute to the patho-

genesis of tumours (49).

Concepts of local control were also born in the field of

Immunology. This year marks the 50th anniversary of the discov-

eries of interferon (IFN) (50). The subsequent finding that the

supernatants of cultured lymphocytes contain soluble factors

which enhance antibody production, led to the discovery of

several factors affecting B cell growth and differentiation, called

now interleukins (IL) (51). The first interleukin being cloned was

IL-2 (52). IL-6, cloned 3 years later (53), was the first interleukin

for which biological effects outside the immune system were

described (51). These pleiotrophic factors were also shown to be

local regulators of tissue cell turnover, the inflammatory response

and tissue repair (54–56). Cytokines were also identified in

specific cells in endocrine glands (57, 58) and neural tissue (59),

as well as in hormone (57) target cells, and shown to modulate

hormone or neurotransmitter action and help maintain tissue

homeostasis and plasticity (60). Through the latter research the

notion of a diffuse neuro-immuno-endocrine network in the

body was born (59).

In parallel with these studies, a vast number of neuropeptides

were discovered within the central and peripheral nervous systems

and in the solitary cells in the diffuse neuroendocrine system (61).

One of the first to be identified was Substance P in 1931 (62, 63).

Substance P was described as a substance present in brain and gut

that stimulated smooth muscle contraction in a way not blockable

by atropine and which also lowered blood pressure. The peptide

was sequenced by Susan Leeman in 1970. An enormous repertoire

of neuropeptides which also act in non-neuronal tissues have since

been discovered (64).

On the other hand, classical neurotransmitters, such as acetyl-

choline and noradrenaline, which were initially thought to be

neurone-specific, were also discovered in discrete cells in several

peripheral tissues (65–71). Serotonin, first identified in entero-

chromaffin cells, was later also found in many other tissues

(72–75). In addition, purines (76), fatty acids and fatty acid

derivatives (77), and nitric oxide (NO) (78) are synthesised and

released locally to affect neighbouring cells. Importantly, the

classical endocrine organs (ductless glands), pituitary, gonads,

ovaries, the adrenal cortex and the thyroid gland, all contain

cells which, in addition to hormones, produce certain of these

messenger molecules which affect diverse functions within the

gland. Today, more than 100 different bioactive substances have

been identified in the anterior pituitary gland (Table 1) and most

have been localised in specific cell types (Table 2). Considerable

evidence suggests that these messengers effectively exert a local

function during particular physiological changes. Thus, treatment

with substances either blocking synthesis or release, or the

action of these factors, results in obliteration of the changed

functional response.

Another mode of local humoral control of cells is by so-called

juxtacrine factors. This mode of control was discovered by Massag-

ué who observed that the TGF-a precursor can be expressed as a

plasma membrane-anchored polypeptide on the surface of cells and

bind to EGF receptors on adjacent cells, in this way inducing both

Table 1. Signalling molecules identified in the adenohypohysis.

Signalling molecules

Neurotransmitters

Acetylcholine

GABA

Purines

ATP, ADP

Arginine derivatives

Nitric oxide

Agmatine

Fatty acid derivatives

Prostanoids

Anandamide

2-arachidonoylglycerol

Retinoic acid

Neuropeptides

Vasoactive intestinal peptide

Galanin

Gastrin-releasing peptide

Neuromedin B

a-melanocyte-stimulating hormone

c-melanocyte-stimulating hormone

b-endorphin

N-pro-opiomelanocortin

Enkephalins

Dynorphin

Nueropeptide Y

Substance P

Neurokinin B

Neuromedin U

Neurotensin

Vasopressin

Oxytocin

Delta-sleep-inducing peptide

Vascular growth factor peptides

Calcitonin

Calcitonin-R-stimulating peptide

Calcitonin gene-related peptide

Intermedin

Adrenomedullin, proadrenomedullin N-terminal 20 peptide

Atrial natriuretic peptide

B-type natriuretic peptide

C-type natriuretic peptide

Angiotensin II

Gastrin

Endothelins

Thyroid-releasing hormone

Gonadotrophin-releasing hormone

Growth hormone-releasing hormone

Somatostatin

Corticotrophin-releasing hormone

Urocortin

Urocortin II

Prolactin-releasing peptide

Ghrelin

Cocaine and amphetamine-regulated transcript

Orexin A
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cell adhesion and cell division (79). Since then, many other exam-

ples of juxtacrine communication have been observed with media-

tors including several members of the EGF family, tumour necrosis

factor (TNF)-a, colony-stimulating factor, platelet-activating factor

and annexin-1. Juxtacrine communication provides a mechanism of

strict spatial control of activation of one cell type by another, in

contrast with paracrine control where the factor acts in the fluid

phase within an action radius determined by its diffusion gradient.

The active domain of a juxtacrine polypeptide can be cleaved from

the cell surface by regulated proteolysis which will, if needed, abol-

ish spatial specificity and which, in turn, will optimise diversity of

communication but, by spreading, the signal could also be the start

of disregulation.

Finally, some regulatory factors do not need first to be released by

the cell and then activate a plasma membrane receptor, but they can

also be active inside the cell of production after moving to another

compartment and binding and activating receptors inside the cell. The

latter mode of local control is called intracrine action (80).

Early suggestions for local control in the anterior
pituitary gland

Until 1970, the anterior pituitary gland did not attract attention

in terms of local control systems. It was considered as a classical

endocrine organ in which each hormone was produced by a spe-

cific cell type (one hormone–one cell type theory) with no obvious

anatomical subdivision according to cell types except, in most

mammalian species, for the intermediate lobe. Histochemical stain-

ing procedures were used to distinguish the different cell types

(81). However, a proportion of the cells were considered hor-

mone-free as they failed to be stained by these histochemical

procedures and were named ‘chromophobes’. A peculiar group of

cells that did not contain secretory granules was discovered by

electron-microscopic examination by Rinehart and Farquhar in

1953 and called follicular cells (subsequently folliculo-stellate cells)

(FS cells) (82). These were the first cells for which a local function

was suspected, although the proposals for such function remained

little defined. As FS cells engage in phagocytosis of hormonal

cells, they were thought to have a local house-keeping role in

removing dying cells and waste products. Moreover, FS cells show

a stellate shape with long cytoplasmic extensions between the

granulated hormonal cells and often associate among each other

to form tiny follicles filled with fluid or colloid material. On these

grounds, the cells were thought to have some role in local trans-

port of material.

The path to experimental evidence for local control of and by

the hormonal cells was found by two other endeavors. One was

morphological, the other functional. The classical one cell type-

one hormone theory stated that each pituitary hormone was

produced by a specific cell type but the theory was based on

histochemical procedures used to discriminate one cell type from

another. Final proof could only be given when the hormone

itself was identified in the cell. In 1970, Nakane (83) was the

first to report that, indeed, growth hormone (GH), prolactin

(PRL), adrenocorticotrophic hormone (ACTH) and thyroid-stimulat-

ing hormone (TSH) were stored in separate cell types but that

many gonadotrophs showed immunoreactivity for both luteinising

hormone (LH) and follicle-stimulating hormone (FSH). Another

important morphological feature observed by Nakane (83) was

that, although at first glance the different pituitary cell types

were intermingled, they did not appear distributed homoge-

neously over different areas of the gland and within a particular

cell cord. Nakane also observed close associations between

somatotrophs and corticotrophs and between gonadotrophs and

lactotrophs. Some of the PRL cells embraced the oval-shaped

gonadotrophs with long cellular processes and were therefore

named ‘cup-shaped’ PRL cells (83). Nakane suggested that the

gonadotroph–lactotroph association might have functional conse-

quences, although he only proposed that the cup exerted some

kind of hindrance for secreted material to diffuse to the blood

vessels.

A second path that led to exploring local control systems

stemmed from efforts made to purify the cell types of the pitui-

tary. The first success of enrichment of somatotrophs and lacto-

Table 1. Continued.

Signalling molecules

Orexin B

Neuropeptide B

Neuropeptide W

Apelin

26Rfa

Hormones and derivatives

Growth hormone

Prolactin

Cleaved prolactin

Glycoprotein hormone a-subunit

Growth factors

Fibroblast growth factor (FGF)-2, FGF-4, FGF-8

Epidermal growth factor, transforming growth factor-a, neuregulins,

Insulin growth factor (IGF)-I, IGFII

Nerve growth factor, glial cell line-derived neurotrophic factor

Transforming growth factor (TGF)-b1, TGF-b3, Activins, Inhibin,

Bone morphogenetic protein (BMP)-2, BMP-4

Pancreatitis-associated protein

Dll1, Dll3, Dlk1

Cytokines

Interleukin (IL)-1, IL-2, IL-6, IL-10, IL-11, IL-12

Leukaemia-inhibitory factor, interferon-c, tumour necrosis factor-a, vascu-

lar endothelial growth factor,

Angiopoietins

Migration inhibitory protein, ciliary neurotropic factor, oncostatin M,

Leptin

Tissue factors

Insluin frowth factor-binding proteins

Follistatin, Noggin,

Interleukin-1 antagonist

Annexin 1

Adiponectin

Adiponutrin

Resistin
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trophs was reported by Wess Hymer and was achieved by sedi-

mentation of dispersed rat pituitary cells at unit gravity through

a serum albumin gradient (84, 85). Large cells sediment faster

than smaller cells and, as not all pituitary cell types are of the

same average size, they enrich according to type. When the dis-

persed cells in the enriched populations were established in

Table 2. Cellular Distribution of Signalling Molecules in the Anterior Pituitary.

Signalling molecule

Cell types (L, lactotrophs; S, somatotrophs; G, gonadotrophs; T, thyrotrophs; C, corti-

cotrophs; FS, folliculo-stellate cells)

L S G T C FS

Acetylcholine n

GABA n

Nitric oxide n n

Vasoactive intestinal peptide n

Pituitary adenylate cyclase-activating peptide n

Galanin n n n n

Gastrin-releasing peptide n n n

Neuromedin B n

Neuromedin U n

Corticotrophin-releasing hormone n

Urocortin n n n

Urocortin II n

Neuropeptide Y n n n n n

Atrial natriuretic peptide n n n

C-type natriuretic peptide n n

Neurotensin n n

Dynorphin n

Enkephalins n n n n

Pro-opiomelanocortin n n n

Angiotensin(ogen) n

Calcitonin n

Calcitonin gene-related peptide n

Adrenomedullin, proadrenomedullin N-terminal 20 peptide n

Intermedin n

Substance P n n

Endothelin-1 n n

Endothelin-3 n n

Vasopressin n

Oxytocin n

Ghrelin n n n

Cocaine and amphetamine-regulated transcript n n n

Orexin A n

Orexin B n

fibroblast growth factor-2 n n

Transforming growth factor-a n n

Transforming growth factor-b1 n n

Transforming growth factor-b3 n

Activin n

Inhibin n

Leukaemia-inhibitory factor n

Migration inhibitory protein n

Interleukin-1 n

Interleukin-6 n

Vascular endothelial growth factor n n n n n n

Angiopoietins n

Leptin n n n n n

Follistatin n n

Annexin-1 n
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monolayer culture and compared with the less enriched ones, it

became evident that their responses were functionally different

(86). In 1976, we succeeded in highly enriching gonadotrophs by

the latter technique (87). The success was owed to the choice of

the animal model: instead of adult, 14-day-old female rat pitui-

taries were used, from the knowledge that female rat pituitary

at that age contains more gonadotrophs and secretes more FSH

than at any other time in life (88–90), and that, due to this

high functional activity, gonadotrophs were expected to be

hypertrophic or at least advanced in development compared to

other cell types and would therefore sediment faster and, in this

way, separate from other cell types. Indeed, the fastest-sediment-

ing cells were large gonadotrophs and they were enriched to a

purity of approximately 75%. Most of these gonadotrophs con-

tained FSH and LH. When we challenged these gonadotrophs

with gonadotrophin-releasing hormone (GnRH) in culture, they

released unexpectedly high amounts of FSH compared to adult

animals (87). Another unexpected observation we made was that

the magnitude of the FSH response to GnRH was different

between these gonadotrophs and smaller gonadotrophs isolated

in other fractions from the sedimentation gradient (91, 92). Also

the FSH : LH ratio showed marked differences among fractions

and these differences also were sex-dependent, males showing

more heterogeneity than females (91, 92). These findings clearly

suggested functional heterogeneity among the gonadotrophs,

which raised the next question: what is the mechanism of func-

tional heterogeneity? Do these differences represent differences

between true gonadotroph subtypes or differences in hormone

synthesis ⁄ secretion caused by alterations of the microenviron-

ment due to sorting out certain cell types. We tested the latter

hypothesis by comparing separated with recombined cell popula-

tions and found that recombination of the purified gonadotroph

population with the gonadotroph-poor population again altered

the FSH : LH ratio in the response to GnRH (93). These data

suggested that signals from nongonadotroph cells contribute

directly or indirectly to the mechanism of differential control of

FSH and LH secretion. This observation was of particular impor-

tance since, up to now, all GnRHs stimulate both LH and FSH

release, implying that a local mechanism in the pituitary must

exist that is capable of controlling FSH independently of LH

secretion. The cell separation and recombination experiments sug-

gested to us that such a local mechanism might rely on inter-

cellular communication with other pituitary cell types. Some

years later, we showed that this gonadotroph-poor population

consists mainly of PRL cells, some GH cell and nonhormonal

cells, most of which are FS cells (94) and, as will be discussed

below, all these cell types appear to be involved in cross-talk

with gonadotrophs. FS cells are an important source of follistatin

and follistatin attenuates the action of activin on FSHb synthesis

and secretion in a paracrine manner (95).

The next natural question was: do gonadotrophs also affect

the function of PRL, GH and FS cells? Indeed, they appear to do

so. When purified gonadotrophs were mixed with the PRL cell

population, we found that GnRH unexpectedly evoked PRL

release.

Gonadotrophs signal to lactotrophs, somatotrophs and
corticotrophs

Gonadotrophs acutely affect PRL and GH secretion in early
postnatal rat pituitary

In the 14-day-old rat model, we examined PRL secretion in the

PRL cell population from which gonadotrophs had been removed

by unit gravity sedimentation. GnRH had no effect on PRL

release, as expected. However, when the 75% pure gonadotroph

population was mixed with the PRL cell population in a 1 : 3

ratio and established in monolayer culture, at high cell density

in order to optimise cell–cell contact, GnRH did evoke PRL

release. These data were not published at that time as we had

started to culture cells as three-dimensional aggregates, which

were felt to be superior in terms of their tissue-like organisation

(96). We were very lucky that this culture system was brought

to our attention by Dr J. J. Cassiman, a colleague in our insti-

tute, who used it for studying cell adhesion mechanisms of

fibroblasts. He and his PhD student, B. Vanderschueren, found

that fibroblasts do not proliferate in an aggregate configuration

and even are auto-digestive (97). Since pituitary cell monolayer

cultures are usually over-grown with nonhormonal cells, which

at that time were considered as fibroblasts, particularly when

plated at low density and when culture medium was supple-

mented with serum, we felt the aggregate system was physio-

logically more reliable than the monolayer cultures. Moreover,

aggregates can easily be used in a perifusion system, allowing

the examination of rapid secretory responses as a function of

time. In perifused aggregates, both the magnitude of secretory

responses and the sensitivity to secretagogues were considerably

greater than those of static incubations of monolayer cultures

(98). With this technology and the background information from

our previous studies on 14-day-old rat gonadotrophs, we clearly

demonstrated the first evidence for communication between

gonadotrophs and lactotrophs (99). When perifused pituitary cell

aggregates from 14-day-old female rats were exposed to a GnRH

pulse, an acute and dose-dependent stimulation of PRL release

was seen from doses as low as 10 pM. The PRL response

occurred in dopamine-free condition and also during coperifusion

with 10 nM dopamine that on its own suppressed basal PRL

secretion to more than 85%. No such response was seen in the

gonadotroph-poor PRL cell-enriched aggregates. However, when a

small percentage of a population consisting of 75% gonado-

trophs was coaggregated with the lactotroph preparation, GnRH

elicited a clear-cut acute stimulation of PRL release, the magni-

tude of which increased with the proportional number of

gonadotrophs added to the lactotrophs. Thus, the GnRH effect

on PRL release appeared to be mediated by gonadotrophs or

required the presence of these cells in the vicinity of the lacto-

trophs. Also, aggregates from 14-day-old male rats showed this

response. In aggregates from adult rats, however, no PRL

response to GnRH could be elicited, at least not at day 4 in cul-

ture. When gonadotrophs from the 14-day-old rat were coaggre-

gated with an enriched PRL cell population of adult males,
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GnRH did elicit PRL release, indicating that the PRL-releasing sig-

nal is produced only by immature gonadotrophs, but that lacto-

trophs remain responsive to it up to adult age. A curious

phenomenon was that, when aggregates from adult rats were

maintained for 3 weeks in culture, they acquired some PRL

responsiveness to GnRH (99). In the coaggregates, thyroid-releas-

ing hormone (TRH) stimulated PRL release, as expected, but did

not affect LH or FSH release, indicating that the gonadotroph-

lactotroph communication is not a random bidirectional commu-

nication. We also obtained evidence that the signal from

gonadotrophs is a secreted molecule. A large number of purified

gonadotrophs was incubated for 3 h in the absence and pres-

ence of GnRH and, subsequently, the spent media was perifused

over the lactotroph population; we found that the spent medium

obtained without GnRH stimulated PRL release, but that the

spent medium, obtained in the presence of GnRH, and perifused

together with an excess GnRH antagonist, induced a considerably

higher PRL release.

We also looked at GH secretion in these 14-day-old rat aggre-

gates and found an impressive GH response to GnRH as well.

However, the secretory response was dual (100). During the

GnRH pulse, GH release was rapidly inhibited, whereas, after

stopping the application, a rapid rebound secretion of GH was

observed that only slowly returned to initial basal release values.

The total amount of GH released after the exposure to GnRH

was considerably higher than that inhibited during GnRH

exposure, suggesting that GnRH had both inhibitory and

stimulatory actions on GH release. The latter conclusion was

confirmed by the finding that pertussis toxin pretreatment turned

the initial GnRH-induced inhibition of GH secretion into a stimu-

lation.

The paracrine cross-talk with lactotrophs and somatotrophs

was also confirmed by coaggregation of a lactotrophs ⁄ somato-

troph population from 14-day-old rats with cells of the gonado-

trophic cell line aT3-1 (101). It was found that GnRH induced a

stimulation of PRL release and a dual effect on GH

release, although the magnitude of the response was smaller

than in normal pituitary. Furthermore, medium conditioned by

aT3-1 cells contained PRL secretory and GH-inhibitory sub-

stance(s) (101).

We found out that, in vivo, the gonadotroph–lactotroph and

gonadotroph–somatotroph secretory cross talk may be a process

typical for the early postnatal period (102). No PRL or GH secre-

tory response to GnRH was seen in freshly isolated intact pitui-

taries from day 1 (P1) rats; some response was seen on P3, rose

in magnitude on P5 and decreased thereafter to be almost absent

at the age of 14 days. As to GH secretion, some stimulation was

seen at P1, followed by a rebound upon withdrawal of GnRH;

both stimulation and rebound augmented in magnitude until P5

and became low again at P14. Apparently, establishing the 14-

day-old rat pituitary cells in culture rejuvenates the cells to an

earlier developmental phenotype. The significance of this observa-

tion remains unknown, but the findings inspired us to also inves-

tigate developmental actions of GnRH on lactotrophs and

somatotrophs.

Gonadotrophs manage lactotroph and somatotroph
development

Independently, Bégeot et al. (103) reported that GnRH stimulates

the development of lactotrophs in rat Rathke’s pouch explants.

Since the latter effect could be mimicked by treatment with the

free glycoprotein hormone a-subunit (aGSU) and blocked by an

LH antiserum cross-reactive with aGSU, the authors proposed

that, during fetal development, GnRH exerts a paracrine

action within the pituitary anlagen. GnRH is present in the rat

embryonic pituitary as soon as embryonic day (E) 14 (104)

and in amniotic fluid as soon as E12 (105) and the GnRH

receptor is present in Rathke’s pouch as early as E12 as well

(104).

We have shown that GnRH mRNA is expressed in Rathke’s

pouch explants (106). Furthermore, treatment of Rathke’s pouch

explants with a GnRH antagonist depressed the development of

lactotrophs, consistent with a paracrine action of GnRH in the

explants. Importantly, the endogenous GnRH appeared only active

(or present) provided some adjacent mesenchym was retained

within the explant (106), suggesting a much broader paracrine

system is operating during lactotroph development. Although

GnRH is not essential for the development of gonadotrophs and

lactotrophs, since these cells still develop in the hypogonadal

mouse (that lacks GnRH) (107), it may have a trophic action at

E11–E12, which is long before the terminal differentiation of

these cells at E17–E18 (108, 109). The mechanism of that early

action, however, remains unknown, but other factors seem to

compensate the absence of GnRH, indicating the robustness of

the lactotroph developmental track.

A gonadotroph-lactotroph axis is also supported by in vivo

experiments in a transgenic mouse model (110, 111). By targeting

the diphtheria toxin A gene selectively to the gonadotrophs with

the bovine aGSU promoter fragment, the great majority of

gonadotrophs is destroyed as examined in newborn mice (P1–3),

at a time that oestrogens are not produced or are not active yet.

The number and size of PRL cells and the size of the clusters

they make, as well as PRL mRNA level, were significantly reduced

in the DTA mouse pituitary compared to the wild-type mice, with

no alterations seen in thyrotrophs and ACTH cells. However, there

was no change seen in the number and size of GH cells or GH

mRNA level. Other studies also revealed no changes in somato-

troph number in adult transgenic mice with targeted ablation of

gonadotrophs, nor did they find a change in late fetal life (112,

113). It is possible that the inhibitory action of gonadotrophs on

GH cell proliferation is compensated by other factors or is not

operational at P1–3 or that inhibition of somatotrophs is down-

stream of the stimulatory effect on lactotrophs. In that case,

there would be barely an effect seen when lactotrophs are

depressed.

A trophic action of GnRH on PRL production has also been

noticed in the sheep fetal pituitary (114). Consistent with the

trophic action of gonadotrophs on lactotrophs is that, in the

hypogonadal gonadectomised mouse, treatment with GnRH slightly

increases PRL synthesis even in adult life (115).
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Gonadotrophs act through mitogenic and recruitment
signals

As far as tested in the 14-day-old rat pituitary aggregate cell

culture system, treatment with GnRH for 40 h was found to

enhance cell cycle entrance of lactotrophs and to lower that of

somatotrophs (116). GnRH also inhibited the mitogenic effect of

GH-releasing hormone (GHRH) on somatotrophs (117). GnRH also

increased the total number of cells containing PRL mRNA within

40 h (118), suggesting that new lactotrophs are recruited by differ-

entiation of a progenitor cell type into PRL-expressing cells, rather

than to a mitogenic action on pre-existing lactotrophs alone.

Conversely, the total number of cells expressing GH mRNA was

significantly reduced by GnRH (117). Also, prolonged treatment of

aggregates with GnRH was found to expand the population of cells

expressing PRL mRNA as well as of cells expressing aGSU mRNA

(119).

By means of cell separation and recombination experiments, we

again showed that the developmental actions of GnRH depend on

the presence of gonadotrophs (116). Mediation by paracrine fac-

tor(s) was indicated by the finding that medium conditioned by a

highly enriched population of gonadotrophs cultured in the pres-

ence of GnRH, mimicked the effects of GnRH (120, 121). Also, med-

ium conditioned by the gonadotroph precursor cell line aT3-1

contained material stimulating development of lactotrophs and

inhibiting development of somatotrophs (101). Four substances with

a selective mitogenic effect on lactotrophs were partially purified

by high-performance liquid chromatography fractionation, whereas

two other substances were isolated with antisomatotroph action

(120, 121). These data clearly indicated that separate factors deter-

mine reciprocal development of lactotrophs and somatotrophs.

Gonadotroph–lactotroph axis in adult life, a context-
dependent system?

It has repeatedly been shown that peripheral injection of GnRH

increases plasma PRL concentrations in adult rats (122–124), mice,

hamsters (125), monkeys (126) and humans (127–133). Endogenous

GnRH seems to exert a similar effect since treatment of castrated

female monkeys with a GnRH antagonist causes PRL plasma con-

centrations to drop (126, 134) and hyperprolactinemia induced by

oestrogen ⁄ progesterone treatment is attenuated by administration

of a GnRH antagonist (135). Also in female rats, blockade of endog-

enous GnRH by injection of anti-GnRH antiserum causes hypoprol-

actinemia (136). The finding of a PRL response to GnRH is,

however, not always consistent and may depend on hormonal sta-

tus, sex, circadian rhythms and other physiological and pathological

conditions. Some investigators found GnRH to increase plasma PRL

concentrations in normal women during the follicular (127) and

luteal phase (133) of the cycle and in postmenopausal women

(131), whereas others found that the response was significantly

greater in the luteal phase and in progesterone-treated menopausal

women compared to women in early follicular phase (132). During

the luteal phase, LH and PRL pulses are synchronous (133). Other

studies only found a PRL response to GnRH in women during the

periovulatory period and not during the late follicular or the mid-

luteal phase (128–130). Pretreatment with testosterone 6 h prior to

GnRH administration allowed such a response to occur in the follic-

ular phase (137). A clear-cut rise in plasma PRL level was also seen

in girls (average age 10 years) with Klinefelter syndrome (primary

gonadal failure) (138). In the latter study, oestrogen treatment was

found to decrease the PRL response to GnRH. Interestingly, the lat-

ter study is probably better comparable to the PRL response we

have observed in immature rat pituitary since we found that addi-

tion of a low physiological dose of oestradiol (30 pM) in the culture

medium facilitated the PRL response to GnRH but that a high dose

attenuated it (Denef et al., unpublished observations). In men, a

PRL response to GnRH was only seen after oestrogen treatment

(139, 140). In untreated men, the PRL response to TRH was larger

after prolonged GnRH pretreatment (141).

PRL responses are not always observed in normal people but can

be seen under certain pathological conditions, such as anorexia

nervosa and bulimia (142, 143), in hypergonadotrophic hypogonadal

women (144, 145) and women with functional hypothalamic amen-

orrhea (145), in polycystic ovary syndrome (146) and in women

treated with benzodiazepines (147). In human pituitary cell cultures,

GnRH stimulated PRL secretion in an oestrogen-free environment

and was inhibited by pretreating the cells with oestradiol (148).

It should be noticed that all these data only show that there is a

PRL response to GnRH in vivo but it cannot be distinguished where

these effects are established by a paracrine mode of action or by

an indirect action at the median eminence or by a direct action at

the level of the lactotrophs. Paracrine and direct actions of GnRH

on lactotrophs are not mutually exclusive. It is known that GnRH is

taken up in gonadotrophs, as expected, but also in lactotrophs,

most likely by receptor-mediated endocytosis (149). Furthermore, it

should be noticed that GnRH has been reported to stimulate PRL

release from a clonal cell line derived from embryonic pituitary cells

(150). Also in teleost fish, GnRH stimulates PRL release in culture

and this must be a direct effect on PRL cells since the rostral pars

distalis is a nearly homogeneous population of PRL cells without

gonadotrophs (151).

Whatever the mechanism, it seems that the effect of GnRH on

PRL release in vivo is complex due to the fact that it may be part

of a communication network of which some components can com-

pensate for each other and the behaviour of that system seems

context-dependent. It may also be difficult to disrupt by interfer-

ence with exogenous GnRH. Moreover, PRL responses to GnRH dur-

ing fetal and immature life could be based on different

mechanisms than that observed in adult life or in certain pathologi-

cal states. Consistent with this line of thinking are the observations

that a PRL response to GnRH is not elicited immediately following

a bolus injection, but does occur after some time during an infu-

sion (140). Injection of a single dose of anti-GnRH antiserum into

female rats is followed immediately by blockade of LH and ovula-

tion but the pre-ovulatory PRL peak is normal, but only after

several days hypoprolactinemia is seen (136). Another important

parameter that might explain some controversies in findings may

be the interaction between the hormonal status and the day–night

cycle, since GnRH failed to elicit a PRL response in women in the
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early follicular phase of their cycle when given in the day, but did

so when given at night and even more so when given during sleep

(152).

Several investigators have shown experimentally that gonado-

trophs are important for a normal activity of lactotrophs during

adult life, and the data confirm that the system may be context-

dependent. Infusion with a high dose of a GnRH agonist is known

to down-regulate gonadotroph secretion. Torres-Aleman et al.

(153) showed that, during the first 30 min of such an infusion,

LH release rises but that plasma levels return to normal level

within the next 2 h and that, during this time, interval PRL

plasma levels also decrease significantly. When pituitary tissue

was tested in vitro at that time point, they also released signifi-

cantly less PRL than the controls. Furthermore, long-term in vivo

treatment with a GnRH agonist was also shown to reduce basal

PRL secretion strongly when examined in vitro, but this was only

observed in female rats and not in males (154). Agonist treatment

also blocked the increase in serum PRL concentration induced by

the dopamine receptor antagonist haloperidol as well as hyperp-

rolactinemia obtained by transplantation of the pituitary under

the kidney capsule (155). In perifused pituitary cells, basal LH and

PRL release is pulsatile and administration of a GnRH agonist at

more than two pulses per hour was reported to cause desensitisa-

tion of the LH response simultaneously with a disappearance of

pulsatile PRL release (156).

Identification of paracrine factors involved in lactotroph
development

aGSU

The first candidate paracrine factor from gonadotrophs proposed

to be involved in the development of lactotrophs was aGSU. In

fetal rat pituitary explants, Bégeot showed that the stimulation of

lactotroph development by GnRH could be mimicked by addition

of aGSU to the explants and blocked by an LH antiserum cross-

reactive with aGSU (103). We found large amounts of aGSU in

conditioned medium from gonadotrophs and a semipurified frac-

tion containing aGSU immunoreactivity stimulated PRL mRNA

expression and lactotrophs mitogenesis, clearly suggesting that

aGSU may be implicated in a paracrine gonadotroph network.

Chronic (8 days) treatment with aGSU also stimulates PRL produc-

tion in ovine fetal pituitary explants taken at gestational day 50

(114), only the acidic variant of the natural (free) aGSU and not

the aGSU dissociated from LH showing this activity (157). These

data are of substantial interest because, until now, a specific

receptor for aGSU has not been identified. A stimulatory action of

aGSU on PRL secretion has also been reported in frogs (158)

where aGSU is coexpressed with PRL in and released from some

lactotrophs (158, 159).

It should be realised, however, that aGSU may also be derived

from other cell types. Recently, we showed that prolonged treat-

ment of aggregates from 14-day-old rat pituitary with GnRH

expands the population of cells expressing PRL mRNA as well as of

cells expressing aGSU mRNA, but that a population of cells devel-

oped (approximately 20%) that expresses both PRL and aGSU

mRNA (119).

N-pro-opiomelanocortin (POMC)

We have identified one of the trophic factors in gonadotroph-con-

ditioned medium mediating lactotroph recruitment and PRL mRNA

expression. This factor was purified from that medium and found

to be the glycosylated N-terminal fragment of POMC, POMC1-74

(N-POMC) (120, 121). We also showed that N-glycosylation is

essential for bioactivity and that certain glycosylated isoforms stim-

ulate PRL mRNA level whereas others have a mitogenic action in

lactotrophs (160). That a subpopulation of gonadotrophs is capable

of synthesising N-POMC was shown at the mRNA level by means

of single cell reverse transcription-polymerase chain reaction (RT-

PCR) (161, 162), and some cells also show immunoreactive N-POMC

and aGSU colocalisation (161). Nonglycosylated N-POMC, prepared

by recombinant synthesis, keeps a specific mitogenic action on lac-

totrophs (and no other cell types) but its efficacy is weaker and,

importantly, the effect is mediated via the c3-melanocyte-stimulat-

ing hormone (MSH) moiety in its C-terminal domain by the mela-

nocortin-3 receptor, whereas glycosylated N-POMC has no action

through the melanocortin-3 receptor (163). Moreover, c3-MSH is

mitogenic for somatotrophs and thyrotrophs, in addition to lacto-

trophs (164). These data suggest that paracrinicity can be tuned to

highly specific targets by differential post-translational modifica-

tions of the paracrine pro-peptide.

We also presented evidence that endogenous N-POMC is toni-

cally involved in lactotroph mitotic activity and PRL gene expres-

sion, as treatment of pituitary aggregates with polyclonal or

monoclonal antibodies raised against N-POMC significantly

decreased the lactotroph mitotic rate (164). Other investigators also

found N-POMC increases PRL and GH mRNA expression and stimu-

lates PRL and GH secretion (after 12 h of treatment) in frog pitui-

tary cell cultures (165). A crucial experiment still lacking is to

determine whether N-POMC is a mediator of the action of GnRH

on lactotrophs by investigating whether the GnRH effect can be

blocked by treatment with an anti-N-POMC antiserum. In this

respect, it should be realised that gonadotrophs may not necessarily

use GnRH as their physiological agonist and that different agonists

may elicit different paracrine contacts with lactotrophs. For exam-

ple, neuropeptide Y (NPY) can mimic the action of GnRH on lacto-

troph mitosis in pituitary cell aggregates (116) but it inhibits the

stimulation of PRL mRNA by GnRH (118).

The paracrine action of N-POMC in the pituitary has not yet

been studied in vivo. However, some indirect data are available

from mice in which the POMC gene was disrupted. These mice

develop a profound phenotype, characterised by obesity, extreme

adrenal hypoplasia (166), a more active hypothalamic-pituitary-thy-

roid (HPT) axis (167) and development of nonfunctional adenomas

in the pituitary intermediate lobe (168). As to the status of the lac-

totrophs axis in these animals, no data are available yet. However,

it has been reported that selective transgenic ablation of cortico-
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trophs and melanotrophs in the pituitary (POMC neurones in the

arcuate nucleus remain intact) does not result in a manifest change

in the proportions of lactotrophs, somatotrophs and thyrotrophs

(169), suggesting that paracrine actions of N-POMC are not essen-

tial and that other factors can compensate for its loss. However,

the absence of a change in pituitary cell type distribution in the

latter transgenic mice may also be explained by the fact that not

all POMC cells are destroyed in these transgenic mice (170), and

that the promoter fragment used to drive specific expression of the

toxigene in classical POMC cells may not be the same as that used

for activation of POMC expression in gonadotrophs, which would

preserve POMC-expressing gonadotrophs from being destroyed.

Link with EGF-like molecules

A peculiar characteristic of the gonadotroph–lactotroph–somato-

troph axis, which further supports the complexity and context-

dependency of that system, is that the mitogenic effect of GnRH,

as well as the mitogenic action of the substances in gonadotroph-

conditioned medium, can be blocked by an inhibitor of the EGF-

receptor (-R) tyrosine kinase (171). Since EGF or TGF-a are

expressed in the pituitary of different species including human

(172–175), more precisely in gonadotrophs (176), somatotrophs and

lactotrophs (173, 174, 176), and since these growth factors are

mitogenic for these cell types (171, 173, 175, 177, 178) and stimu-

late PRL gene expression and production (179, 180), these growth

factors may have a permissive function in the paracrine action of

gonadotrophs. This is supported by other findings. Treatment of

cultures with antisense oligodeoxynucleotide to TGF-a (but not

antisense to EGF) inhibited lactotroph cell proliferation induced by

oestradiol (177). The mechanism may be direct or may rely on

transactivation of an EGF-R present on lactotrophs and somato-

trophs. It is well established that the EGF-R can be transactivated

by agonists of numerous G protein-coupled receptors (GPCRs)

(181). It is therefore plausible that various peptides from gonado-

trophs act on the target PRL and GH cells via transactivation of the

EGF-R expressed on lactotrophs and somatotrophs. Interestingly,

expression of TGF-a is inhibited by TGF-b1 (182), which itself inhib-

its PRL gene expression and lactotroph proliferation, creating in this

way a feedforward amplification of a negative control.

Many other peptides in gonadotrophs may stimulate
lactotroph function, but none have been shown to be
involved yet

An impressive number of peptides have been identified in gonado-

trophs and, as they are secreted (183), they are potential candidates

for a paracrine action on lactotrophs (Fig. 1), namely angiotensin II

(184), neurotensin (185, 186), pituitary adenylate cyclase-activating

peptide (PACAP) (187, 188), calcitonin (189), calcitonin gene-related

peptide (CGRP) (190), atrial natriuretic peptide (ANP) (191), C-type

natriuretic peptide (CNP) (192), proenkephalin A and B-derived

PACAP

11 kDa N-POMC

GnRH

LH

FSH

Mitosis

Oestradiol

Neurotensin

?

ATP

Calcitonin
Endothelin NPY

PRL

Oxytocin
Cl-PRL

PRL
Galanin

PRL mRNA

Mitosis

TGF-β1

TGF-α
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Endothelin-1
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Fig. 1. Schematic representation of the paracrine systems acting between gonadotrophs and lactotrophs. Full lines indicate pathways for which experimental

criteria for paracrine action have been largely met. Interrupted lines are hypothetical interactions proposed on the basis of the presence of the indicated fac-

tors in the cell and their pharmacological effects on the other cell. fi , Stimulatory effect; ^, inhibitory effect; Cl-PRL, cleaved prolactin; aGSU, glycoprotein

hormone a-subunit; FSH, follicle-stimulating hormone; GnRH, gonadotophin-releasing hormone; LH, luteinising hormone; NPY, neuropeptide Y; PACAP, pituitary

adenylate cyclase-activating peptide; POMC, pro-opiomelanocortin; PRL, prolactin; TGF, transforming growth factor.
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peptides (193–195), cocaine and amphetamine-regulated transcript

(CART) (196), NPY (197), endothelins (ET) (198, 199) and leptin (200,

201). TRH has been located in gonadotrophs maintained in culture,

although this observation was not confirmed yet (202). Among

these peptides, angiotensin II (184) and neurotensin (203–206) have

well documented PRL-releasing activity in in vitro pituitary cell

systems from adult rats. However, expression of neurotensin in

gonadotrophs in vivo coincides with the prepubertal rise in plasma

oestradiol throughout the second and third weeks in both sexes

(185, 186) whereas, in the intact pituitary, the PRL response to

GnRH is already decreasing by that time (see above). PACAP effects

on PRL release are controversial and depend on the test system

used (207–211). Whereas PACAP inhibits PRL release in monolayer

cell cultures, it stimulates release in aggregate cell cultures and

in vivo (207, 212). In studies where a stimulation of PRL release by

PACAP was found in monolayer culture, the effect is probably on

PRL gene expression and translation as it was only found after sev-

eral hours of treatment (213). PACAP activates PRL gene expression

(209, 214, 215) and is therefore a candidate peptide to participate

in gonadotroph-mediated increase in PRL mRNA levels. ANP has no

PRL-releasing action in mammals (216, 217) and whether CNP has

such an effect seems unknown for mammals. In fish, ANP was

reported to have PRL-releasing activity, although only after hours

of exposure and not acutely as seen in our experiments (217).

Leptin may be involved as it has been found to strongly stimulate

PRL release (218). NPY is also reported to be stimulatory for basal

PRL release by some investigators but others found it to inhibit

basal and TRH-stimulated PRL release (219). CART has been

reported to stimulate PRL release by some investigators but others

found it to be inhibitory (196, 220). As to angiotensin II, a debate

has going on for many years on whether or not there is an

independent renin–angiotensin system expressed in the pituitary

and in which cell types the different components are located (184).

According to recent studies, there are two different renin-angioten-

sin systems (221): one is fully expressed within the gonadotrophs,

with both renin and angiotensin II detectable in the regulated

secretory pathway, but angiotensinogen appears to sort into the

constitutive secretory pathway, raising a puzzling question how

angiotensin II can then be formed within the regulated pathway.

The second system seems to be extracellular with angiotensinogen

located in perisinusoidal cells and angiotensin produced by circulat-

ing renin in the sinusoid lumen after release of angiotensinogen

(221). Angiotensin II could then affect various other cell types

downstream in the gland. Several investigators have reported

PRL-releasing activity in response to GnRH in pituitary monolayer

cultures, although only upon using a very high dose of GnRH (222).

In reaggregate cell cultures kept in serum-free medium, we found

that physiological doses of GnRH stimulate PRL release and, at

these doses, neither an angiotensin-converting enzyme inhibitor,

nor angiotensin receptor-1 antagonists were capable of inhibiting

the GnRH-stimulated PRL release (222). Only at 100 nM GnRH could

a partial inhibition of the PRL response by angiotensin receptor-1

antagonists be detected (222). Thus, angiotensin II may be involved

in GnRH-stimulation of PRL release, but it seems to play only an

accessory role at high concentration of GnRH. Possibly, the more

physiologically relevant effect of GnRH is not involving the local

renin–angiotensin system at all and gonadotroph-mediated stimula-

tion of PRL release is mediated by another molecule or by a combi-

nation of substances.

A novel candidate may be PRL-releasing peptide (PrRP) (223) that

does stimulate PRL release in aggregate cell cultures (224). In both

intact pituitary and aggregates, we recently found PrRP mRNA and

PrRP-like immunoreactivity, particularly in gonadotrophs associated

with cup-shaped lactotrophs (Swinnen and Denef, unpublished

observations). The peptide was also found in the culture medium by

radioimmunoassay (Swinnen and Denef, unpublished observations).

Gonadotrophs contain peptides that can affect somatotroph
function

Several peptides in gonadotrophs are also candidates for mediating

the gonadotroph-induced effects on somatotrophs, although none

of them have been shown to be implicated yet (Fig. 2). PACAP stim-

ulates GH release and GH gene expression in several species (197,

207–211, 225, 226). CNP stimulates GH secretion in GH3 cells

(227). ANP inhibits basal and GHRH-stimulated GH secretion in rat

(228) but other studies have found it to be ineffective (216). We

found that angiotensin II is a peptide displaying both inhibition and

stimulation of GH release (229). However, angiotensin II antagonists

were inactive in opposing the GH response to GnRH (100). Endoth-

elins have a short-lasting stimulatory effect on GH release followed

by a sustained inhibitory one (230). NPY stimulates basal and inhib-

its GHRH-stimulated GH release in swine pituitary in vitro (231).

Also, TRH has dual effects on GH secretion, with a stimulatory

component more pronounced in neonatal rats (232) and an inhibi-

tory component prevailing at later age (233). TRH appears to have

an inhibitory effect on GH gene expression (234). CGRP stimulates

GH release (235). Another valid candidate is leptin as it has been

shown to stimulate GH secretion and to inhibit GH cell proliferation

(GH3 cells) (236). NPY stimulates basal GH secretion in rat pituitary

cells loaded on a Bio-Gel P-2 column (237), in porcine monolayer

cultures (238) and in gold fish pituitary fragments (239), but inhib-

its GHRH-stimulated GH release in porcine pituitary cultures (238).

Calcitonin-like peptides, ET and NPY as inhibitory paracrine
signals from gonadotrophs

Gonadotrophs have also been shown to interact with PRL cells in a

negative fashion (Fig. 1), a phenomenon that makes sense in view

that most stimulatory systems need an attenuating feedback mech-

anism for equilibrated functionality. Well-studied players here are

calcitonin-like peptides and ETs.

Calcitonin

Calcitonin-like immunoreactive material has been detected, is syn-

thesised and released by rat and chicken pituitary cells (240–242),

is present in rat gonadotrophs (189) and in an aGSU expressing cell

line (243), and the pituitary also expresses the calcitonin receptor
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(244). Treatment of pituitary cell cultures with calcitonin inhibits

basal and TRH-stimulated PRL release (245, 246), lactotroph mitosis

and PRL mRNA expression (247), but not TRH-induced TSH release

or GnRH-induced LH release (245). Conversely, treatment of the

cultures with an anticalcitonin antibody enhances PRL mRNA

expression and PRL release (241), as well as lactotroph mitosis

(247), suggesting that endogenous calcitonin is tonically active in a

paracrine manner. Calcitonin has a similar antimitogenic action

in vivo and passive immunisation with anticalcitonin antibody

increases the mitotic index in lactotrophs (248) as well as serum

PRL levels (249). Targeted overexpression of calcitonin in gonado-

trophs of mice leads to long-term hypoprolactinemia, decreased

PRL gene expression, female subfertility and a selective underdevel-

opment of lactotrophs (250). A calcitonin-like substance is also

expressed in the chicken pituitary, although there it colocalises with

PRL, but, as in the rat, its level fluctuates inversely with PRL mRNA

level (251). In both rat and chicken, oestradiol is a negative regula-

tor of calcitonin mRNA level (251, 252). In the rat, progesterone is

a positive regulator. Most interestingly, calcitonin immunoreactivity

is found mainly in gonadotrophs that are associated with cup-

shaped lactotrophs (253), a clear-cut morphological characteristic

supporting a paracrine role. Rat calcitonin produced in the anterior

pituitary was shown to have the same amino acid sequence as

calcitonin from the thyroid C cells, but, recently, another peptide,

named calcitonin receptor-stimulating peptide, has been discovered

that shows sequence homology with CGRP and has also been

found to be expressed in the pituitary (254).

The paracrine action of calcitonin appears to be indirect, and at

least in part, mediated by endogenous TGF-b1. TGF-b1 is expressed

in lactotrophs (255, 256), its expression is enhanced by calcitonin

and TGF-b1 in turn inhibits lactotrophs mitosis (256), PRL mRNA

expression and secretion (257, 258). TGF-b1 acts as a paracrine and

not as an autocrine factor on lactotrophs. In single cell experiments

where PRL expression was followed in ‘real-time’ by quantification

of photons emitted by the living cells by means of a luciferase

reporter (injected in individual cells) under the control of the PRL

promoter (259), PRL gene expression decreased upon exposure to

TGF-b1 and treatment of the cells with a TGF-b1 antibody

increased PRL gene expression. The latter, however, was only seen

in lactotrophs that were adjacent to another lactotroph, suggesting

that TGF-b1 acts in a paracrine and not in an autocrine manner.

However, these experiments cannot exclude that TGF-b1 is acting

in an autocrine manner and needs the context with other lacto-

trophs (i.e. that an intimate contact between lactotrophs is a prere-

quisite for the response to autocrine TGF-b1). We have found

several examples of secretory responses that needed close associa-

tion between cells, such as the GH response to angiotensin II (229)

and the inhibitory PRL response to acetylcholine (260). Again, these
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Fig. 2. Schematic representation of the putative paracrine systems acting between gonadotrophs and somatotrophs. Full lines indicate pathways for which

experimental criteria for paracrine action have been largely met. Interrupted lines are hypothetical interactions proposed on the basis of the presence of the

indicated factors in the cell and their pharmacological effects on the other cell. fi , Stimulatory effect; ^, inhibitory effect; CGRP, calcitonin gene-related

peptide; FSH, follicle-stimulating hormone; GH, growth hormone; GHRH, growth hormone-releasing hormone; LH, luteinising hormone; NPY, neuropeptide Y;

PACAP, pituitary adenylate cyclase-activating peptide; TGF, transforming growth factor; TRH, thyroid-releasing hormone.
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observations emphasise the importance of context in paracrine and

autocrine regulation.

Endothelins

Another inhibitory paracrine signal from gonadotrophs to lacto-

trophs may be mediated by ETs. ET1 and 3 are present in the mam-

malian anterior pituitary (261–263), more precisely in gonadotrophs

of humans (264) and rats (199), although it as also expressed in

subpopulations of somatotrophs and lactotrophs (199) and in

gonadotrophs of frogs, particularly in female frogs (198). Treatment

with ET1 or ET3 in culture profoundly inhibits basal PRL release

(265–267), but, initially, there is a short-lived stimulatory action as

well (268) or higher doses may be stimulatory (267). It remains to

be shown whether the endogenous peptides exert such an action.

As will be discussed below, ETs make an inhibitory autocrine loop in

lactotrophs, which is well documented.

NPY

NPY has been found in gonadotrophs but whether it acts in an

autocrine or paracrine fashion is not experimentally illustrated yet.

Nevertheless, NPY has been reported to inhibit basal and TRH-stim-

ulated PRL release and to be additive with dopamine in inhibiting

PRL release (219). NPY also blocks the action of GnRH on PRL gene

expression and mitosis and on GHRH-stimulated mitosis of GH cells

in aggregate cell cultures.

Gonadotrophs may positively and negatively interact with
corticotrophs.

Several peptides located in gonadotrophs modulate corticotroph

activity when added exogenously to pituitary cell preparations and

it is striking that most of these peptides are involved in volume

homeostasis in other parts of the body. Among them are the calci-

tonin-like peptides adrenomedullin and CGRP and the natriuretic

peptides (NP) ANP (191) and CNP (192, 269–272) (Fig. 3). The

importance of these peptides is also emphasised by their similar

distribution in gonadotrophs in other species, even nonmammalian

(273) and by the observation that, during a 50% reduction in

maternal adrenomedullin, gene expression in mice lacking one allele

of the gene leads to profound defects in implantation, placentation

and fetal growth (274).

NP

The NPs ANP, brain natriuretic peptide (BNP) and CNP have been

shown to inhibit corticotrophin-releasing hormone (CRH)-stimulated
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Fig. 3. Schematic representation of paracrine systems acting between gonadotrophs and corticotrophs. Full lines indicate pathways for which experimental cri-

teria for paracrine action have been largely met. Interrupted lines are hypothetical interactions proposed on the basis of the presence of the indicated factors in

the cell and their pharmacological effects on the other cell. fi , Stimulatory effect; ^, inhibitory effect; ACTH, adrenocorticotrophic hormone; ANP, atrial natri-
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ACTH release from mouse pituitary fragments (275) and isolated

E21 fetal pituitary (276). Moreover, these peptides also reduced

POMC mRNA levels (276). Receptors for NPs (NPR-A and NPR-B),

both membrane guanylyl cyclases that generate cGMP as second

messenger, have also been identified at the mRNA level in the

anterior pituitary (277). That the effect is of physiological signifi-

cance in vivo has also been shown (278).

Adrenomedullin (AM)

AM, a 52 amino-acid peptide, and proadrenomedullin N-terminal

20 peptide (PAMP), are peptides derived from the same precursor

with important roles in the physiologic regulation of volume and

electrolyte homeostasis (279). The peptides belong to the calcitonin

peptide family together with CGRP, calcitonin, and amylin (280). In

cell culture AM and PAMP inhibit ACTH secretion (269) and blunt

CRH- and oxytocin-stimulated ACTH secretion (281–284). Intrave-

nous administration of AM in sheep also lowered the plasma level

of ACTH (285).

CGRP

A positive paracrine regulator of corticotrophs released from

gonadotrophs may be CGRP as this peptide stimulates basal and

CRH-stimulated ACTH secretion (286). These observations are inter-

esting as intracerebroventricular administration of CGRP activates

the hypothalamic-pituitary-adrenal (HPA) axis as well (287). It

remains to be seen whether all these peptides act similarly as

their pharmacology predicts and under which conditions they are

important.

Gonadotrophs as paracrine targets

There is substantial evidence for paracrine communication in the

direction of the gonadotrophs. Cell separation experiments have

shown a positive influence of nongonadotrophs on gonadotroph

FSHb expression (288) and the secretory FSH : LH ratio (93). The

best characterised signalling systems in rats are from lactotrophs to

gonadotrophs through galanin and from corticotrophs to gonado-

trophs by opioid peptides (Figs 1–3).

Galanin

This oestrogen-dependent peptide is found mainly in lactotrophs

in female rats (289) and exposure of pituitary monolayer cell cul-

tures or pituitary tissue fragments to galanin results in an acute

inhibition of GnRH-stimulated LH and FSH release. Conversely,

treatment with galanin antiserum augments the LH and FSH

response to GnRH (290). Although these data support a paracrine

inhibitory role in the rat, galanin was found to stimulate LH

secretion in the porcine pituitary, whereas the use of antigalanin

antiserum weakened GnRH-stimulated LH release (291). This may

suggest an opposite regulation in porcine pituitary but the data

were obscured by the finding that an anti-NPY antiserum had the

same weakening effect on GnRH- as well as galanin-stimulated

LH release (291).

b-endorphin

It was found that b-endorphin inhibits basal as well as GnRH-stim-

ulated LH release in pituitary cell culture (292, 293). This apparently

also occurs in the tissue in situ, as treatment of cultured pituitary

cells with naltrexone, an opioid receptor antagonist, or with

b-endorphin antibodies, increased basal LH release (292). Moreover,

CRH depresses basal LH release by cultured pituitary cells, and this

was also blocked by naltrexone (292).

Cart

CART is expressed in the pituitary (294) and it is striking to find

the peptide in several cell types that can exert paracrine inhibitory

feedbacks on GnRH-stimulated LH release. It is found in gonado-

trophs (196, 295), lactotrophs (295, 296) and corticotrophs (297).

CART release is increased by GnRH and TRH (295) and production

is up-regulated by CRH (297). CRH is known to be a negative regu-

lator of gonadotrophin secretion. Pituitary CART expression and

secretion is up-regulated during lactation and down-regulated by

dopamine, and fluctuates up and down during the oestrous cycle

(lowest at dioestrous) (295), suggesting a broad role for the peptide

in reproduction (296). Also leptin increases CART release (196).

These regulatory findings are consistent with the localisation of the

peptide in the different cell types. CART inhibits K+- (295) and

GnRH-stimulated (220) but not basal (295) LH release in culture.

CART also inhibits PRL release (196). These findings point towards a

significant paracrine inhibitory action of CART on gonadotrophs,

which can occur during different physiological changes via different

cell types or in an autocrine manner when released from gonado-

trophs. However, the paracrinicity potential remains still to be con-

firmed by immunoneutralisation studies and by examining release

from identified cells.

PRL and cleaved PRL

Lactotrophs may also signal to gonadotrophs through PRL and

certain cleaved forms of PRL. Hyperpolactinemia is well known to

inhibit LH secretion and to depress the hypothalamic GnRH pulse

generator (298). The PRL receptor is already expressed in the rat

anterior pituitary during fetal life (299) and has been found in sub-

populations of different hormonal cell types, including gonado-

trophs in rats (300) and sheep (301) but not in the horse (302).

PRL has been shown not to tonically inhibit GnRH-stimulated LH

release in rat monolayer cell culture (303). However, either intrave-

nous administration of PRL or raising plasma PRL levels by immo-

bilisation stress, reduced the LH response to GnRH pulses and

GnRH-stimulated increase in GnRH-R density, whereas addition of

antiserum against PRL lowered the responsiveness of LH cells to

GnRH, consistent with a paracrine inhibitory tone of PRL on LH

secretion (304). In sheep, PRL on its own was found to inhibit (305)
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or not affect (306) GnRH-induced LH release in culture but, in the

presence of a dopamine agonist, it completely blocked it, at least

when cells are taken in the nonbreeding season (306). Dopamine

agonists were also reported to improve the LH response to GnRH

when no exogenous PRL is present (305), which led the authors to

speculate that this was the consequence of inhibiting endogenous

PRL secretion. Whether immunoneutralisation of PRL also results in

opposite effects needs to be studied.

We have reported that the large disulphide loop of PRL can be

cleaved between Tyr145 and Leu146 with preservation of the disul-

phide bridges (307). The compound was isolated from spent culture

medium of pituitary cell aggregates from 14-day-old rat pituitary

and represented 0.6–1% of total bulk PRL. This cleaved PRL stimu-

lates mitotic activity of LH and TSH cells but of no other cell types

in rat pituitary aggregates (307), whereas treatment with polyclonal

antibodies, raised against the new N- or C-terminals of cleaved PRL

and not recognising native PRL, inhibits mitosis in these cells (308).

Although these experiments show a paracrine tone by cleaved PRL

on gonadotrophs, the physiological significance remains unknown.

The compound is stereoselective as neither PRL, nor another some-

what larger cleaved PRL showed the latter bioactivity. Interestingly,

in a recent study it has been shown that a 16-kDa cleaved PRL

may be responsible for the postpartum cardiomyopathy syndrome

(309), suggesting that cleaved PRL variants can be pathophysiologi-

cal mediators in certain conditions of enhanced PRL output.

Oxytocin

Another peptide synthesised within the anterior pituitary of which

receptors are found in gonadotrophs is oxytocin (310). The cell type

expressing oxytocin appears to be the lactotroph and not any other

cell type (311). Oxytocin has been shown to stimulate basal LH

release in culture as well as to potentiate GnRH-stimulated LH

release (312), an effect only seen when pituitaries were tested at

pro-oestrous (313). The peptide did not have to be present for the

latter potentiation as it also occurred when oxytocin was adminis-

tered to the perifusion for 2 h prior to GnRH (314). Thus, a para-

crine function of oxytocin on LH release seems possible but

remains to be experimentally demonstrated.

Close association between cup-shaped lactotrophs and
gonadotrophs in mammals and frogs and between
gonadotrophs and somatotrophs in fish

Paracrine interactions with gonadotrophs may be rendered selective

by microanatomical associations between cell types. Association

between certain gonadotrophs and lactotrophs (often cup-shaped)

and between certain somatotrophs and corticotrophs was already

reported more than three decades ago in the rat pituitary by

Nakane (83). These observations were confirmed by Siperstein and

Miller (315) and Yoshimura and Nogami (316, 317). The lactotroph–

gonadotroph associations were also reported in horse (302, 318),

sheep (301), chicken (319) and frog pituitary (304). Associations

between lactotrophs and gonadotrophs reconstitute in monolayer

cultures of densely plated cells (320) and in reaggregate pituitary

cell cultures (321), indicating that the affinity between cell types is

locally regulated. In aggregate cultures, oestradiol significantly

decreases the occurrence of cup-shaped lactotrophs embracing

gonadotrophs (321). A functional correlate of the morphological

association is the observation that the cup-shaped lactotrophs are

always associated with gonadotrophs that contain calcitonin

immunoreactivity and that the changes in PRL output in vivo

evoked by ovariectomy, pregnancy and lactation in rats were

opposite in direction to that of the PRL change (253), which is

consistent with the inhibitory paracrine action of gonadotroph

calcitonin on PRL gene expression (see above).

Another peculiar characteristic of anterior pituitary gonadotroph

and lactotroph distribution is that these cells are densely repre-

sented near the intermediate lobe in several species such as rats

and horse (83, 318, 322). In this way, these cells are well exposed

to substances made by the neurointermediate lobe, such as the

PRL-releasing factor intermedin (see below) and, at the same time,

receive modulatory paracrine signals from the adjacent gonado-

trophs. The higher incidence of gonadotrophs near the intermediate

lobe has also been observed in the monkey pituitary and this is

even a selective location in juvenile monkeys (323).

In teleost fish, gonadotrophs distribute in close association with

somatotrophs. Unlike mammals, fish pituitary shows a zonation

according to cell types (324). Lactotrophs are located in the rostral

pars distalis, whereas somatotrophs reside in the proximal pars dis-

talis, but there they distribute together with the gonadotrophs.

Most interestingly, gonadotrophs always show a distribution as

central cell clusters surrounded by a matrix of somatotrophs. This

cellular association may form a microanatomical basis of local

functional interactions and many data are consistent with this view.

In salmonids, the population size of the somatotrophs fluctuates in

parallel with that of the gonadotrophs expressing the gonadotro-

phic hormone GTH-II (LH in fish) during sexual maturation (325). In

goldfish, the rise in GH level during sexual recrudescence and

spawning and during the pre-ovulatory GTH-II surge always occurs

together with that of GTH-II (326). GH has an important permissive

role in reproductive functions in fish (327). Moreover, in fish, GnRH

stimulates both GH and GTH-II secretion (328–330). Recently, direct

evidence for paracrine interaction between the cell types has been

reported. In experiments on carp pituitary cells, the effect of exoge-

nous GTH and GH and of immunoneutralisations of endogenous

GH or GTH indicated that GTH released from gonadotrophs stimu-

lates GH release and synthesis in somatotrophs, whereas secreted

GH maintains somatotroph sensitive to stimulation by GTH, and

inhibits basal GTH release from gonadotrophs (331).

Possible physiological significance of gonadotroph
paracrinicity

Gonadotrophs play the central executive role in the orchestration of

reproduction. However, these cells do not work alone. Homeostasis

and adaptation of the pituitary to reproductive needs also requires

adaptation to metabolic needs by a co-ordinated action between the
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hypothalamic-pituitary-gonadal (HPG) axis, GH and PRL and the HPT

axis. Both PRL and GH have essential roles to play in reproduction

and growth (332–335). A proper co-ordination of gonadotrophin,

GH and PRL release by the pituitary and the relative representation

of the respective hormone-producing cell types are therefore

mandatory. This is already the case during development as shown

by the accelerated lactotroph development from the second week

after birth in the rat (336) that coincides with the rapid expansion

of gonadotrophs (88–90), particularly in the females. Somatotrophs,

by contrast, are already well developed at birth, and are well prolif-

erating already during the first week of life (336). It therefore makes

sense that gonadotrophs stimulate PRL cells during the second week

after birth in the rat but that they release an inhibitory paracrine

signal to somatotrophs. Since high FSH levels during the second

postnatal week are thought to be an important stimulus for ovarian

follicle development, and since ovarian maturation also requires GH,

it is conceivable that GH output is also under a certain trophic con-

trol by gonadotrophs as well, hence, a dual effect of gonadotrophs

on somatotrophs is not surprising. Attenuation of postnatal somato-

troph expansion is also seen at the level of GHRH-R expression.

GHRH-R mRNA is highly expressed just before birth and declines

during the perinatal period to reach a nadir at 12 days of age and

increases again at 30 days of age (337).

On the other hand, it is well known that stress-induced activa-

tion of the HPA axis inhibits the HPG axis, such as during stress

and undernutrition, during which conditions for reproduction are

not optimal, reproduction is even contraindicated and saving energy

is important (338). At the pituitary level, the negative interrelation

of the HPA and HPG axis may be mediated by the paracrine nega-

tive signals of b-endorphin on GnRH-induced LH release. In addi-

tion, CART, being located in several cell types involved in the stress

response, can exert paracrine inhibitory feedbacks on GnRH-stimu-

lated LH release.

On the other hand, in a different context, it may be mandatory

that the reproductive system attenuates the stress response.

Gonadotrophs may contribute to this goal by releasing NPs that in

turn attenuate CRH-activated ACTH release. NPs inhibit the HPA

axis at a hypothalamic level (339), which makes sense in view of

the sodium and water retention properties of glucocorticoids during

enhanced HPA axis activity. Stress responses need to be attenuated

in certain physiological states, such as lactation and in situations

that lead to low levels of visceral adipose tissue (340). It has

been shown that, in such cases, responsiveness of the pituitary to

hypothalamic CRH ⁄ vasopressin appears depressed (340). The cellular

mechanisms still need to be explored, but one hypothesis is that

the pituitary NPs located in gonadotrophs are involved through

their paracrine actions, together with mechanisms located at the

level of CRH production in the hypothalamus (340). The NPs are

functional opponents of the renin–angiotensin system that is a

positive component of the stress response in the control of fluid

volume regulation at both central and peripheral level. A question

in this respect is whether NPs are up-regulated by oestrogen in

gonadotrophs. In heart tissue oestrogens and progesterone are

known to up-regulate NP expression (341). An increased inhibitory

tone by NP on corticotroph function during increased oestrogen

exposure during pregnancy is therefore not unlikely in the pituitary

as well.

Another contextual paracrine regulation is the inhibition of ovu-

lation during lactation. The primary factor responsible is at the level

of the GnRH pulse generator in the hypothalamus, where suckling-

induced increase of endorphinergic input leads to inhibition of the

GnRH pulses (298). The local lactotroph–gonadotroph association

in the pituitary may contribute to this suckling-induced negative

influence on ovulation via an inhibitory input of b-endorphin from

corticotrophs. Since the HPA axis is activated during pregnancy

and energy normally consumed for ovulation is senseless during

pregnancy, the raised pituitary b-endorphin and galanin tone may

contribute to silencing of the pre-ovulatory LH release. In addition,

pregnancy may antagonise the HPG axis via the growing activity of

the lactotrophs that make higher amounts of galanin under the

influence of oestrogen, which in turn not only will increase lacto-

troph activity, but also weaken LH release at the same time in

response to GnRH. As will be discussed below, another important

local negative regulator of the HPG axis activated during lactation

is the NO system in gonadotrophs and FS cells.

Although we have not been able to show a primary role of

angiotensin II from gonadotrophs in paracrine regulation of GH

and PRL release under basal conditions, such a role could exist in

other contexts. For example, we found that angiotensin II is much

more effective in releasing GH in pituitary aggregate cell cultures

from hypertensive and prehypertensive spontaneously hypertensive

rats (SHR) than in cultures from normal littermates (342) and,

recently, it has been reported that, whereas normal rat anterior

pituitary expresses the angiotensin AT1B-R, the SHR down-regu-

lates AT1B-R and induces expression of the AT1A-R (343). It would

be worthwhile to explore whether paracrine angiotensin II acts pri-

marily through the AT1A-R. The SHR is also much more responsive

to angiotensin II in terms of ACTH secretion (343). Since there is no

evidence for delivery of angiotensin II into the hypophyseal portal

blood (344, 345), it seems plausible that either circulating angioten-

sin II and ⁄ or the local renin–angiotensin system in the anterior

pituitary is involved in the exaggerated stress response of the pitui-

tary gland under pathological conditions but that, during preg-

nancy, this system is used to generate a normal increase in HPA

axis activity. In addition, CGRP and adrenomedullin in gonadotrophs

may help in modulating the HPA output during pregnancy as these

peptides stimulate and inhibit, respectively, CRH-induced ACTH

secretion at the level of the pituitary.

During recent years, considerable information was obtained in

support of a cross-talk between body energy reserves and fertility

(346–348). Metabolic demands increase substantially during preg-

nancy and lactation. Body weight and appetite increase. The mecha-

nisms involved in the regulation of these homeostatic changes are

still largely unknown (349). No data are available to associate one of

the above discussed peptides with that homeostatic system. However,

several orexigenic peptides that are involved in the up-regulation of

the energy balance and feeding in the hypothalamus have also been

detected in the anterior pituitary, such as ghrelin and orexins and

both stimulate GH release (350). Orexins also enhance LH (351) and

ACTH (352) secretion. Orexin-A is mostly found in lactotrophs and a
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small subpopulation of somatotrophs, gonadotrophs and thyrotrophs

and orexin-B only in corticotrophs (350). Orexin-1-R is found in

GH cells and orexin-2-R in ACTH cells (353). Thus, orexins are located

to enable cross-talk at the pituitary level for achieving appropriate

adaptations in energy homeostasis during pregnancy, but this area

remains to be fully explored.

Autocrine regulation of lactotrophs

An autocrine regulatory system is a stimulus–response system in

which the cell releasing the stimulus is also the target. Various

autocrine systems have been claimed in the anterior pituitary on

the basis of the following criteria: (i) the cell produces and secretes

the stimulus; (ii) the same cell type expresses the receptor for the

stimulus; (iii) the cell type under study responds to the exogenously

added stimulus; and (iv) addition of a receptor blocker or of an

antibody immunoneutralising the endogenous ligand or its receptor

has effects opposite to that of the exogenous ligand. Strictly, it

should also be demonstrated that single cells plated on a large dis-

tance from other cells meet the same criteria. However, under the

latter conditions, the context in which the autocrine system oper-

ates may be altered or even be destroyed and this may jeopardise

the functioning of the system. Evaluation of autocrine loops in sin-

gle cells has often been performed by means of the reverse haemo-

lytic plaque assay. In this assay, PRL secretion is measured from

individual cells that cannot interact by direct contact between each

other and paracrine action is avoided if, at least, the distance

between the cells is kept substantial (354).

There is firm experimental evidence for autocrine control of

lactotroph secretion, PRL gene expression and growth of the lacto-

trophs cell population in terms of the first four criteria, but demon-

stration that the signalling cell is also the responding cell is only

rarely provided. Therefore, autocrine systems can not always be dis-

tinguished from paracrine systems among cells of the same type. It

is important to distinguish between both, and several theoretical

models have recently been presented that show the biological

importance of this distinction (see below under ‘The dynamics of

autocrine and paracrine systems’). Nevertheless, on the basis of the

above four criteria, the most important autocrine loops reported

today are made by vasoactive intestinal peptide (VIP), galanin, ET,

several growth factors (i.e. TGF-a, TGF-b1, TGF-b3 and FGF-2) and

PRL itself. These autocrine loops can be interconnected, resulting in

an activation of positive feedforward mechanisms that enable

strong auto-activation (Fig. 4). As will be discussed in detail below,

the activity of these autocrine loops is strongly context-dependent

and the direction of the functional change seen in one condition is

sometimes opposite to that in another condition.

VIP

As repeatedly shown, VIP mRNA and peptide and VIP receptors are

expressed in anterior pituitary of several species, including human

(355, 356). The peptide is releasable and its expression is regulated

by thyroid, gonadal and adrenocortical hormones (183). Moreover,

the number of VIP immunoreactive cells in pituitary cell cultures

decreases upon dopamine treatment (357), suggesting a link to the

protagonist regulatory signal of PRL release. The peptide is located

in lactotrophs (358) and in a non-identified cell type with stellate

shape (359). After oestrogen treatment, VIP expression is increased

and is present in a subpopulation of lactotrophs also containing

galanin (289). It is well established that VIP is a PRL secretagogue

and the finding that addition of anti-VIP antiserum to cultured

anterior pituitary cells decreases PRL release is consistent with a

paracrine or autocrine role of the peptide (358–362). There is evi-

dence that the action is at least in part autocrine and not paracrine

because the phenomenon is seen in a reverse haemolytic plaque

assay set-up (358). The relevance of this in vivo is supported by the

finding that lactotroph hyperplasia and associated angiogenesis

induced by oestrogen in vivo can be reduced by treatment with a

VIP antagonist (362), indicating that VIP mediates in part the action

of oestradiol on lactotrophs. Serotonin-induced PRL release is asso-

ciated with VIP release and is also blunted in the presence of a VIP

antagonist (363). TRH-stimulation of PRL release is associated with

VIP release and, when this stimulation occurs in the presence of a

VIP receptor antagonist, TRH-induced PRL release is blunted, sug-

gesting an autocrine potentiating role of VIP in TRH action (361).

Insulin growth factor (IGF)-I-stimulated PRL release (but not IGF-I-

inhibition of GH release) could also be blunted by anti-VIP antibody

FS cell

Oestradiol

Oestradiol

Oestradiol

Oestradiol

Dopamine

5-HT

IGF-I

IGF-I

Galanin
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ET-1
ET-3

PRL

TGF-α
TGF-β3

TGF-β1

Mitosis

FGF

NGF
PRL mRNA

TRH

+ progesterone

Fig. 4. Schematic representation of the autocrine loops acting in lacto-

trophs. Full lines indicate pathways for which experimental criteria for auto-

crine action have been largely met. Interrupted lines are hypothetical

interactions proposed on the basis of the presence of the indicated factors

in the lactotroph and their pharmacological effects on the same cell. fi ,

Stimulatory effect; ^, inhibitory effect; ET, endothelin; FGF, fibroblast growth

factor; IGF, insulin-like growth factor; NGF, nerve growth factor; PRL, pro-

lactin; TGF, transforming growth factor; VIP, vasoactive intestinal peptide.
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(360). Also, the rebound in PRL secretion occurring upon with-

drawal of dopamine (364) is blunted by anti-VIP antibody (365).

Interestingly, the effect of VIP on PRL release itself appears to be

mediated by galanin released from a subpopulation of lactotrophs

that itself does not secrete PRL in response to VIP (366). Thus, VIP,

galanin and IGF-I appear to be linked to each other in a complex

autocrine ⁄ paracrine network in which VIP is a feedforward system

in the local regulation of lactotroph activity by galanin.

Galanin

This peptide is a well-studied autocrine regulator of PRL gene

expression and secretion in a gender-specific manner. It is located

mainly in a subpopulation of lactotrophs in female rats, in contrast

to its main location in somatotrophs and thyrotrophs in male rats

(367). The production of pituitary galanin fluctuates with oestrogen

levels during the oestrous cycle, pregnancy and lactation (367,

368), with oestradiol increasing its mRNA level with several orders

of magnitude. Oestradiol also increases the number of galanin-posi-

tive lactotrophs (366). It is in fact galanin that mediates the stimu-

latory action of oestradiol on lactotroph proliferation and PRL gene

expression. Galanin is releasable and antigalanin antiserum prevents

the action of oestradiol on lactotrophs (366). Direct evidence that

galanin is acting in an autocrine and not in a paracrine fashion on

lactotrophs comes from experiments using the reversed haemolytic

plaque assay. Galanin-positive lactotrophs (identified by in situ

hybridisation) release more PRL than galanin-negative lactotrophs,

whereas galanin antiserum significantly blunts PRL secretion from

galanin-positive cells. The oestrogen-dependent autocrine action of

galanin has been confirmed in vivo in transgenic mice with a gala-

nin gene null mutation (369). In female transgenic mice, PRL mRNA

levels and hormone content were significantly reduced compared to

wild-type controls, leading to a failure in lactation and reduced

plasma PRL levels. In the null mice, the proliferative response of

the lactotrophs to oestrogen was lost and oestrogen failed to stim-

ulate PRL release. Conversely, in transgenic mice overexpressing

galanin in lactotrophs, PRL release and synthesis was increased but

only in the presence of oestrogen (370).

TGF-a, TGF-b1, TGF-b3 and FGF-2

Galanin appears to be linked to another autocrine network that is

also recruited by oestrogen for lactotroph mitosis and differentia-

tion. That network includes, besides VIP, as discussed earlier, TGF-a,

TGF-b1, TGF-b3 and FGF-2. In rats and mice, lactotrophs produce

TGF-a and express the EGF-R (176). Exogenous TGF-a and its

homolog EGF have a mitogenic action on lactotrophs (171, 173,

177). Treatment of mouse pituitary cells cultured in serum-free

medium with an inhibitor of the EGF-R tyrosine kinase or with

antisense TGF-a oligonucleotides reduces the mitogenic effect of

oestradiol on lactotrophs (177). As already mentioned earlier, the

paracrine gonadotroph–lactotroph connection can only work in

context with the TGF-a–EGF-R system for functioning (171). More-

over, oestradiol has a positive feedforward effect as it stimulates

TGF-a expression (371). A positive feedforward effect of oestradiol

has also been noticed on TGF-b3-producing lactotrophs, as the oes-

trogen increases both the number of the latter cells and their pro-

duction of TGF-b3 (372). As immunoneutralisation of endogenously

secreted TGF-b3 or blocking endogenous TGF-b3 generation by

antisense TGF-b3 oligodeoxynucleotide treatment of cultures

reduces the mitogenic action of oestrogen, it is believed that

endogenous TGF-b3 mediates the proliferative effect of oestrogen

(373, 374). It appears that TGF-b3 does not act directly on lacto-

trophs because TGF-b3 stimulates lactotroph proliferation in a

mixed pituitary cell culture but not in cultures of enriched lacto-

trophs nor in the RC-4B ⁄ C cell line, a pituitary cell line representing

all cell types of the pituitary except FS cells (372). The addition of

FS cells to this cell line restores the response to TGF-b3 (372). The

factor mediating the effect of TGF-b3 appears to be FGF-2 pro-

duced by FS cells, because immunoneutralisation of FGF-2 abolishes

the effect of TGF-b3 (372). Moreover, oestradiol also favours lacto-

troph cell proliferation by attenuating an autocrine inhibitory loop.

It decreases expression of TGF-b1 and its receptor in a subpopula-

tion of lactotrophs, the number of TGF-b1-containing lactotrophs

and PRL secretion (255, 256, 375–377).

The relevance of the TGF-a system has also been evaluated

in vivo in transgenic mice. Targeting TGF-a overexpression in lacto-

trophs leads to lactotroph hyperplasia and adenoma formation

(378), with no effect on corticotrophs, despite EGF being able to

stimulate corticotroph proliferation (175). In another more powerful

approach, EGF-R signalling was blocked by overexpressing a domi-

nant negative EGF-R, lacking the intracellular protein kinase

domain, into GH and PRL cells. The mutant receptor was targeted

by GH and PRL promoters combined with a tetracycline-inducible

expression system, that allows expression at a precise age (379).

When the dominant mutant gene was overexpressed in GH cells

during embryonic life, both somatotroph and lactotroph numbers

were strongly depressed in adult life. However, when the dominant

negative mutant gene was expressed in the GH cells during the

early postnatal period, no change in the adult appearance of the

cells was observed. Moreover, when expression of the mutant

receptor was started during pregnancy, the typical hyperplastic

lactotroph response of pregnancy was maintained (379). These data

suggest that EGF-R signalling is only essential for the embryonic

expansion or maintenance of the lactosomatotroph lineage and

that, later in life, other mechanisms can compensate for the lack of

the TGF-a–EGF-R signalling. It should be noticed that initial differ-

entiation into GH cells is not dependent on EGF-R signalling

because the expression of the dominant negative EGF-R gene needs

an active GH promoter in order to be functional. Thus, TGF-a is

required for the expansion of the somatotrophs and lactotrophs

and not for their initial differentiation.

TGF-a is first synthesised as an integral transmembrane protein,

with the TGF-a sequence present in the extracellular domain. TGF-a
and other EGF-like molecules can be enzymatically cleaved and

shed into the extracellular space by a metalloproteinase-disintegrin,

also expressed as a transmembrane protein and known as ‘TGF-a
converting enzyme’ (380) and this processing is usually required in
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order to show a growth-promoting action (381). Nevertheless, as

for several other EGF-like molecules, the TGF-a precursor may also

function as an EGF-R agonist in an autocrine manner while still

bound to the membrane, and there is evidence that the obtained

effect can be different from that of the shed form (382). This may

be related to the fact that the EGF-R and the TGF-a precursor are

sorted to the same area on the plasma membrane to ensure rapid

and efficient recapturing of the shed TGF-a by the EGF-R (381,

383, 384). Exposing the cells randomly to free TGF-a, which occurs

when TGF-a is added exogenously, obviously leads to cellular

responses that may not be representative of the physiological

response to the endogenous ligand.

There is evidence that TGF-a acts in a strict autocrine way

because its endogenous action was demonstrated in a reverse hae-

molytic plaque assay (385). It has even been suggested that the

transmembrane form, and not the cleaved form, of TGF-a at the

surface of the lactotrophs is the effective form in the pituitary

gland (385), but this proposal could be criticised because the

method used may have failed to detect small amounts of released

TGF-a. It has been shown in other systems that normally processed

and cleaved TGF-a may be completely captured by the EGF-R pres-

ent in the immediate molecular vicinity and become undetectable

in the interstitium (386).

Autocrine loops may be essential for preserving specific auto-

stimulation of the expressing cell without neighbouring cells are

affected. This positional specificity has been assessed by Kudlow’s

group by comparing mice overexpressing wild-type TGF-a in lacto-

trophs with mice overexpressing an obligately soluble form of

TGF-a in lactotrophs (i.e. a TGF-a molecule lacking the transmem-

brane region of the gene) (387). Mice overexpressing the soluble

form of TGF-a did not display lactotroph hyperplasia, but the

pituitary became very large due to proliferation of nonhormonal

interstitial cells. These findings led the authors to propose that

the specific autocrine mechanism of lactotroph growth requires a

membrane bound TGF-a precursor that is shed in a strictly con-

trolled manner, whereas TGF-a shed in large amounts can diffuse

widely and act in a paracrine, but nonphysiological manner to

stimulate growth of interstitial cells all over the tissue. In the lat-

ter studies, however, it is strange that no growth of other glan-

dular cells was seen as these cells also express EGF-R (176) and

EGF can stimulate corticotroph proliferation (175). An additional

observation by the Kudlow’s group, however, was that mice over-

expressing the mutant TGFa lacking the intracellular kinase

domain developed a normal pituitary, which led the authors to

propose that the normal TGF-a precursor may be signalling

through its own intracellular domain instead of via the EGF-R

autocrine loop (387).

An autocrine EGF-R-implicating loop has also been demonstrated

in lactotroph cell lines. Treatment of these cells with the receptor

tyrosine kinase inhibitor herbimycin A, markedly reduced basal PRL

mRNA levels in a reversible manner, as well as Tyr phosphorylation,

and inhibited PRL mRNA gene expression induced by bFGF and TRH

(388).

It is important to emphasise here that the VIP-galanin-TGFa–

TGF-b1–TGF-b3–FGF-2 system provides a nice example of how an

autocrine system functions. It consists of several components that

can be recruited by the same factor (oestradiol) in a feedforward

manner in order to establish an efficient response. At the same

time, stability in the system is preserved by interaction with para-

crine substances such as signals from gonadotrophs. Stability and

fine-tuning is also reinforced by the existence of an autocrine neg-

ative feedback loop by ETs, as explained below, and by redundancy,

which can allow compensation in case one of the constituents in

the network would be lacking.

NGF

Another growth factor that may be implicated in autocrine growth

of lactotrophs is NGF. According to Missale, NGF is produced in

the rat pituitary and selectively expressed in lactotrophs already in

early postnatal life and is released by these cells when established

in culture (389), although others found NGF also in subpopula-

tions of other cell types (390). Exogenous NGF increased PRL

mRNA expression (391, 392) and augmented the number of cells

expressing PRL in monolayer cell cultures from newborn rats

(391). Immunoneutralisation of secreted NGF completely prevented

the generation of lactotrophs (391). Whether the action is strictly

autocrine or paracrine on lactotrophs remains unsettled. In reag-

gregated cell cultures from 14-day-old rats, we also found that

exogenous NGF increased mitotic activity in cells identified as lac-

totrophs and augmented the total number of cells expressing PRL

mRNA (393). However, addition of the same antibody that Missale

used in her monolayer cultures did not result in a decrease in

basal lactotroph expansion in our aggregates, despite it clearly an-

tagonising the action of exogenous NGF (393). A possible explana-

tion of the discrepancy in the findings is that autocrine action of

endogenous NGF may be restricted to the neonatal period and

that later spontaneous NGF release no longer affects lactotroph

cell renewal unless NGF release is specifically activated. Another

possible explanation is that, in three-dimensional cultures, the

antibody is not efficient enough to capture the released NGF due

to a much more restricted and locally aggregated NGF-R–NGF

complex, which would require a very high antibody concentration

to be broken. NGF secretion has been shown to be activated by

IL-1 (394) and VIP (389), whereas GHRH, TNF-a and FGF-2 inhibit

it and dopamine completely blocks the VIP-stimulated secretion.

Thus, the NGF autocrine loop may be switched on and off accord-

ing to the context in the microenvironment. Both IL-1 and VIP are

molecules that are important during the pituitary response to

immune stress. Another possibility is that endogenous NGF can

only function in a contextual setting when there is a three-

dimensional cellular organisation, and that the contextual setting

is not reached in the aggregate culture medium used, leading to

a silencing of endogenous NGF. In monolayer culture, NGF could

be secreted in an uncontrolled manner due to the loss of intimate

cell–cell contact in the latter culture system and, hence, immuno-

neutralisation would ‘show’ an endogenous NGF activity. We also

found that at least part of the action of NGF on lactotroph

expansion was through a proliferative effect on lactotroph pro-

genitor cells already expressing Pit-1 but not yet PRL (393). NGF

20 C. Denef

ª 2008 The Author. Journal Compilation ª 2008 Blackwell Publishing Ltd, Journal of Neuroendocrinology, 20, 1–70



was also shown to be important for normal expression of the

dopamine receptor D2 (395).

Endothelins

ET-1 and ET-3-like immunoreactivity and ET-R are expressed in the

anterior pituitary (261–263), more precisely in lactotrophs (396,

397). The peptides are secreted as shown in a reverse haemolytic

plaque assay (398). The functioning of endogenous ET is highly

context-dependent with time, with steroid hormones and dopamine

determining the direction of the secretory response to ET. The

prominent action of exogenous ET is profound inhibition of PRL

secretion (268, 399–401) but, when studied in a perifused cell col-

umn, ET-1 initially induces a prompt and short-lasting increase in

PRL release, which is followed by a profound sustained inhibition

(402). A similar response was seen for GH release (230). The auto-

crine action of ET via the ET(A)-R has clearly been documented in a

reverse haemolytic plaque assay (398). The ET(A)-R antagonists

BQ123 and BQ610, and the ET convertase enzyme inhibitory pep-

tide, [22Val]big ET1(16)38), increase basal PRL secretion, whereas the

ET(B)-R antagonist BQ788 was ineffective. A peculiar phenomenon

in ET action is that, after long-term (48 h) exposure to dopamine in

culture, the inhibitory component of ET-1 on PRL secretion reverses

into a stimulatory one (403). The stimulatory versus inhibitory com-

ponent also appears to depend on gender and oestrogen status.

Blocking the ET-mediated autocrine loop with the ET(A)-R antago-

nist resulted in an increase in PRL secretion when pituitary cells

were obtained at pro-oestrous, oestrous, and dioestrous-1, whereas

PRL secretion was decreased by the antagonist at dioestrous-2

(404). Importantly, the authors found that the concentration–

response curves of the stimulatory effect of the ET(A) antagonist

were bell-shaped at pro-oestrous and dioestrous-1 but that, at

oestrous, the dose–response was monophasic, indicating that

endogenous ET at pro-oestrous and dioestrous-1 is both stimula-

tory and inhibitory depending on receptor occupancy and that, at

dioestrous-2, endogenous ET is predominantly stimulatory. These

findings led the authors to propose that, at oestrous, the autocrine

negative feedback by ET may play a role in restraining PRL secretion

following the oestradiol-induced pro-oestrous PRL surge. The gona-

dal steroid modulation of the lactotrophs ET system is further illus-

trated by the finding that ET(A)-R antagonism did not affect PRL

secretion in cultured cells obtained from progesterone-implanted

ovariectomised animals but increased PRL secretion in the cells

from oestradiol and oestradiol + progesterone-treated groups (405).

Once released, ETs may also target other autocrine networks or

may be itself a target of other networks. ETs release Substance P

(406) and ET-3 release is augmented by IGF-I and inhibited by

TGF-b, whereas ET-1 secretion is augmented by TGF-b (262). Thus,

through altering the availability of ET, these interactions may

trigger feedforward inhibition or, depending on the interacting

substance, exert negative feedbacks.

As already discussed earlier, ET peptides are also present in

gonadotrophs and somatotrophs and could therefore affect

lactotrophs in a paracrine manner (199). Moreover, ovarian steroid

hormones have a differential effect on the distribution of ET over

these cell types (199): the number of ET-1 immunoreactive pituitary

cells in ovariectomised rats was unaffected by prior in vivo treatment

with progesterone alone whereas treatment with oestradiol slightly

decreased the number of ET-1-positive lactotrophs and somatotrophs

but increased the occurrence of ET-1-positive gonadotrophs. Com-

bined treatment with oestradiol and progesterone robustly increased

the proportion of ET-1 immunoreactive lactotrophs and gonado-

trophs but had no effect on somatotrophs. Thus, the ovarian oestro-

gen signal augments the paracrine action of gonadotrophs on

lactotrophs whereas oestrogen and progesterone in combination

augment autocrine signalling in lactotrophs.

Autocrine regulation of somatotrophs

Whereas autocrine regulation of lactotroph function is a target of

oestrogen and related to reproductive functions, it can be expected

that autocrine regulation of somatotrophs may be related to energy

homeostasis because GH is one of the protagonist players in energy

expenditure, an action performed in concert with TSH and also PRL.

Molecules playing a central role in food intake regulation at the

hypothalamic level, such as ghrelin, leptin, NPY and TRH, are also

expressed in somatotrophs and operate directly in the pituitary

(Fig. 5). However, to date, there is only indirect evidence for auto-

crine regulation by these peptides.

Ghrelin

Ghrelin, a 28-amino-acid acylated peptide originally isolated from

the rat stomach, displays manifest orexigenic activity (407). In the

rat pituitary, it is expressed in somatotrophs, lactotrophs and
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GHGHRH

Early postnatal period

Glucocorticoids

Glucocorticoid

GH

GH mRNA
TGF-α
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Fig. 5. Schematic representation of autocrine loops acting in somatotrophs.

Full lines indicate pathways for which experimental criteria for autocrine

action have been largely met. Interrupted lines are hypothetical interactions

proposed on the basis of the presence of the indicated factors in the

somatotroph and their pharmacological effects on the same cell. fi , Stimu-

latory effect; ^, inhibitory effect; ET, endothelin; GH, growth hormone;

GHRH, growth hormone-releasing hormone; NPY, neuropeptide Y; TGF, trans-

forming growth factor; TRH, thyroid-releasing hormone; VIP, vasoactive

intestinal peptide.
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thyrotrophs, but not in corticotrophs and gonadotrophs (408).

Ghrelin and GH secretagogue receptor GHS-R1a mRNA expression

were also detected in GH3 cells (409) and in human pituitary (410).

Ghrelin strongly stimulates GH release (407). Endogenous pituitary

ghrelin appears to play a physiological role in GH release because

the GHS-R-specific antagonist [d-Lys-3]-GHRP-6 significantly

reduces GHRH-stimulated GH release in vitro (411). Thus, local

ghrelin is a positive feedforward system for GHRH action by sensi-

tising the somatotroph to GHRH. Local regulation is also adapted

for such a role because ghrelin mRNA and peptide content change

in the same direction as GHRH content in the hypothalamus under

various conditions. For example, GH treatment, glucocorticoid

excess, hyperthyroidism and food deprivation decrease hypotha-

lamic GHRH and pituitary ghrelin mRNA and peptide levels,

whereas the opposite was found in dwarf rats, and during gluco-

corticoid deficiency and hypothyroidism (408, 411). GHRH treatment

increases ghrelin expression in the pituitary (408, 412).

Of note, pituitary ghrelin expression fluctuates developmentally

(408), being highest at E18 in rats and then declining with age

(412). GHS-R expression is also high in fetal and neonatal life,

decreases postnatally and increases again just before puberty to

decrease again later (413). Moreover, at early postnatal age,

somatotrophs are more sensitive to GHRH (414–417). These high

early postnatal levels of ghrelin and ghrelin receptor correlate

with higher GH levels at late embryonic and early postnatal ages

(418, 419), when hypothalamic GHRH is still low, suggesting a

more important local role of pituitary ghrelin system in releasing

GH at that young age and possibly also at puberty. Ghrelin is also

able to increase Pit-1 gene transcription in neonatal rat anterior

pituitary cells (420), suggesting a role in pituitary somatotroph

development.

It is interesting to relate these findings to the age-dependent

differences in sensitivity of GH secretion in vitro in response not

only to GHRH, but also to angiotensin II and TRH. We found that

all these peptides have dual effects on GH release in aggregate

pituitary cell cultures, with the response being predominantly stim-

ulation in neonatal life and inhibitory after puberty (229, 232, 233).

Glucocorticoids enhanced the stimulatory component but only in

aggregates from prepubertal rats; at adult age, glucocorticoids

increased the inhibitory effect (229). It is tempting to speculate

that the occurrence of a strong GH response to angiotensin II in

the presence of glucocorticoids in neonatal life may be related to

the high level of ghrelin at that age, and the increased level of

GHS-R1a known to be induced by glucocorticoids (421). In favour

of the implication of a paracrine system in establishing the GH

releasing effect of angiotensin II is the finding that the GH

response to angiotensin II disappears when pituitary cells are used

dispersed in a cytodex bead cell column, whereas the PRL response

is preserved (229). The stimulation of GH release by VIP in the

presence of glucocorticoids (233) is perhaps also related to the

ghrelin system.

It is interesting to relate pituitary ghrelin function to pathophysi-

ological phenomena occurring during protracted critical illness in

humans. In these patients, the synchrony among pulsatile GH, PRL

and TSH secretion is lost and pulse height is depressed. Upon infu-

sion, GHRP-2, a synthetic GH secretagogue acting through the

ghrelin receptor, restores these pulses and synchronisation to some

extent (422). As ghrelin is expressed not only in somatotrophs, but

also in a subpopulation of lactotrophs and thyrotrophs (at least as

studied in the rat), it would be worthwhile to test the hypothesis

that the local pituitary ghrelin system is depressed in these

patients, leading to a depression of pulses and hormone peak mag-

nitude. It is also noteworthy that, in anorexia nervosa, there is a

decreased sensitivity to the GH releasing action of ghrelin even

though ghrelin plasma levels are increased (423).

TRH

Whereas thyroid hormone increases appetite, TRH has central

effects reducing food intake (424). TRH has also been detected

within the anterior pituitary. Gwen Childs was the first to notice

the presence of TRH immunoreactivity in the intact rat anterior

pituitary in secretory granules of thyrotrophs and PRL cells (202).

The presence of the proTRH mRNA was later shown in a subpopu-

lation of somatotrophs by Bruhn et al. (425). In culture (from

2-week-old rats), TRH expression was stimulated by thyroid hor-

mone and potentiated by glucocorticoids (426), whereas TRH gene

expression was undetectable in cultures deprived of glucocorticoid

(427). Cultures from female rats contained and secreted higher

amounts of TRH than those from males (428).

Although there is ample evidence for a secretagogue action of

TRH in GH, TSH and PRL release, an autocrine action on somato-

trophs remains to be demonstrated. Exogenous TRH is capable of

stimulating GH secretion in vivo, but this is only under particular

developmental, experimental or pathological conditions (429, 430).

TRH stimulates GH release in neonatal rat pituitary in vivo (431)

and in cell culture (232, 417) whereas, in adults, it inhibits GH

release stimulated by VIP in vitro (233). Stimulation in vitro has also

been observed in pituitary tissue from adult hypothyroid rats (as is

the case in hypothyroid humans) (432) or in pituitary tissue from

euthyroid rats after pre-exposure to GHRH (433). The TRH-1-R has

been detected by in situ hybridisation in approximately 50% of the

GH cells (434) as well as in human GH adenomas (429). In lower

vertebrates (birds and amphibians), TRH is a prominent GH secreta-

gogue, particularly in immature chicken (435). In adult chicken, the

GH releasing action of TRH depends on the feeding status of the

animal (435) and can also be evoked in vitro in the presence of

GHRH (436).

Although there is no experimental evidence that TRH is an auto-

crine GH secretagogue, there is circumstantial evidence for a para-

crine action on TSH secretion (437). The latter may be important for

TSH release in concert with GH release for the control of energy

expenditure. When cultures are treated with disulfiram, an inhibitor

of the C-terminal amidation of glycine-extended TRH precursor, the

accumulation of TRH is drastically lowered, as is TSH release (437).

However, release of GH was not affected, suggesting that no auto-

crine loop of TRH on GH secretion is operative under conditions

where it was acting in a paracrine manner. The latter observation

again emphasises the importance of contextual conditioning of

autocrine and paracrine interactions.
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Leptin

Leptin is a hormone secreted by adipocytes that signals the energy

reserve status stored in fat to hypothalamic centres regulating sati-

ety and energy expenditure. It negatively affects food intake and

body mass and increases metabolic rate, psychomotor activity and

body temperature (438, 439). A sufficient leptin signal is also essen-

tial for normal activity at all levels of the HPG axis (439). Leptin

(440, 441) and leptin receptor (440) have also been located in the

pituitary gland in several species including humans (442–444). In

the rat, leptin is found in subpopulations of somatotrophs, gonado-

trophs, thyrotrophs, corticotrophs and FS cells but very little in PRL

cells (200), whereas other studies found it only in somatotrophs

and gonadotrophs (201), and still others in thyrotrophs (440) or in

gonadotrophs and less in thyrotrophs (445). In humans, leptin was

found in somatotrophs, gonadotrophs, thyrotrophs and cortico-

trophs but, again, not in lactotrophs (446). Thus, it appears that

leptin is expressed in all hormonal cell types, except lactotrophs. By

contrast, the leptin receptor is distributed more restrictively. In the

rat, most somatotrophs express leptin receptor, whereas only 1% of

the other cell types is leptin receptor-positive (445). It therefore

appears that local leptin signals converge the needs of the different

hypothalamic-pituitary-peripheral axes to the somatotrophs. Such a

convergence is of particular importance whenever there is a need

for adaptation in energy homeostasis. Indeed, during starvation,

there is a concerted adaptation in the GH axis, the HPT axis and

the HPA axis. Leptin plasma levels fall during starvation and this is

the physiological stimulus for suppression of pro-TRH mRNA

expression in the paraventricular nucleus within the hypothalamus,

which in turn will result in decreased activity in the HPT axis in

order to save energy (447). During starvation, the TSH response to

TRH is diminished and, in most species, there is an increase in GH

secretion with a decrease in IGF-1 levels and a rise in GH respon-

siveness to GHRH (448).

A contribution of the pituitary leptin system for the sake of

decreasing metabolic rate but, at the same time, favouring GH out-

put during starvation would require that starvation would lead to

less leptin action in somatotrophs, which in turn would lead to an

increase in the sensitivity to GHRH. However, to date, no studies

have demonstrated a fall in pituitary leptin levels during starvation.

Nevertheless, studies with leptin treatment in sheep and swine

already revealed actions of leptin that are compatible with a pitui-

tary leptin contribution in the right direction. In sheep, treatment

with leptin for 1–3 days reduces mRNA levels of GH and GHRH-R

in the pituitary, and decreases the GH secretory response to GHRH

(449). In pig pituitary in vitro, leptin acutely increases GH secretion

and, as in sheep, inhibits GHRH-stimulated GH release (450, 451).

Thus, in case leptin levels decrease, such as during starvation, the

opposite is expected to occur: a rise in GH output and sensitivity to

GHRH. Whether endogenous leptin acts in a similar manner in an

autocrine or paracrine way on somatotrophs still remains to be

demonstrated.

Nevertheless, pituitary leptin reserves appear to adapt to changes

in the HPG axis in a cell type-specific manner. The proportion of

leptin-positive somatotrophs increases from dioestrous to pro-

oestrous (442) and the number of leptin-positive cells increases

after short-time treatment in vitro with GHRH and oestrogen (452).

Another potential role of pituitary leptin may be related to the

GH axis during development because leptin can stimulate GH secre-

tion at the level of the pituitary in human fetal pituitary in vitro

(442). By contrast, no such effect was seen in adult rat pituitary

when the GH axis is no longer necessary for growth (453).

Other peptides

Various other peptides have been shown to be present in somato-

trophs such as enkephalin (454), NPY and Substance P (particularly

in male rats) (183, 455).

NPY has been reported to stimulate basal GH release (197) but

to block the GH response to GHRH in porcine pituitary cells (231).

Based on the prominent action of NPY at the hypothalamic level in

regulating feeding and energy consumption (456) and the role of

GH in energy homeostasis, the question can be raised as to

whether NPY may participate in such actions by modulating GH

secretion at the pituitary somatotroph level.

No effect of Substance P on GH release has been found but sev-

eral Substance P antagonists reduced the stimulation of GH release

by GH-releasing peptides (ghrelin receptor agonists) but not GHRH

(457). An inhibitory effect of Substance P antagonists on basal GH

release was also reported by us in aggregate cell cultures (458).

However, the latter study also showed nonspecific actions of these

antagonists. The presence of Substance P in somatotrophs has also

been detected in the porcine pituitary (459). Importantly, food

restriction during pregnancy increases the activity of the GH axis in

the fetus, including an increased somatotroph cell size and the

appearance of a higher proportion of somatotrophs expressing Sub-

stance P (459). GHRH is known to increase Substance P in the pitu-

itary (460). The significance of these findings is unknown but is

intriguing considering that Substance P was found to be ineffective

with respect to in vitro GH secretion (457, 461).

Autocrine regulation of gonadotrophs

Evidence for autocrine control of gonadotroph function is substan-

tial, particularly with respect to the differential regulation of FSH

and LH secretion. Various signalling molecules participate, forming

a complex network (Fig. 6). Importantly, there is evidence for cross-

talk between at least certain autocrine substances, such as between

NO, CNP and leptin and between PACAP and the activin–follistatin

system.

The activin–inhibin–follistatin system

Activin and inhibin are growth and differentiation factors belonging

to the TGF-b family. Members of this family are involved in many

developmental and functional processes of many cell types in nor-

mal as well as tumoural state. The system plays an important role

at all levels of the HPG axis (462). Inhibin consists of an a-subunit
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(inhibin-a) and a b-subunit, which can be either a bA or a bB iso-

form (inhibin A and inhibin B). Activins are dimers consisting only

of the inhibin b-subunits [i.e. either two identical bA isoforms (acti-

vin A), two identical bB isoforms (activin B) or a hetero bA ⁄ bB

complex (activin AB)]. Activin bA and bB as well as the activin

receptor and coreceptors are expressed in the anterior pituitary and

anterior pituitary cells secrete activin A and B (463). In mammals,

the main site of synthesis is within the gonadotrophs (462). Also

inhibin-a is expressed together with the b-subunits in rat gonado-

trophs (464), although secretion of native inhibin B from these cells

has not been demonstrated yet. In frogs, activin subunits are

located in thyrotrophs, gonadotrophs and somatotrophs (465, 466).

In fish both bA and bB subunits have been located in somatotrophs

and not in gonadotrophs and inhibin-a is located mainly in nerve

endings (467), suggesting that in fish pituitary mainly native activ-

ins are operative. In mammals, activin A and B stimulate FSH syn-

thesis and secretion in pituitary cell cultures (468) and there is

essentially no effect on LH release except under particular condi-

tions (469). In frogs, activins stimulate FSH as well as LH produc-

tion and inhibin blocks both these effects (466). In fish, activin A

and B as well as inhibin stimulate GH secretion (467), which is

interesting in view of the protagonist role of GH in gonadal func-

tion in that animal class. Moreover, in cultured gold fish pituitary

cells, activin B stimulates the gonadotrophin GTH-Ib but suppresses

GTH-IIb mRNA levels (470). As shown in mammals, inhibin dimin-

ishes FSH production by obliterating the action of endogenous acti-

vin at its receptor, for which the coreceptor b-glycan is obligate

(471, 472). When activin and inhibin are added to pituitary cell cul-

tures simultaneously, FSHb mRNA becomes undetectable (473),

suggesting that inhibin is dominant over activin in regulating FSHb
expression.

Autocrine activin

Activin is acting in an autocrine loop in both basal and specified

physiological situations and represents one of the fundamental

mechanisms for selective regulation of FSH expression and secre-

tion under the governance of a single GnRH. By using a specific

anti-activin B (not cross-reacting with activin A or inhibin) mono-

clonal antibody, it has been shown that activin B from gonado-

trophs in culture exerts a tonic stimulatory influence on FSHb
mRNA levels and FSH secretion, because adding this antibody to

cultures resulted in a decrease in basal FSHb mRNA levels and FSH

secretion without affecting secretion of LH (468). The same anti-

body fully blocked the stimulation of FSHb expression elicited by

added activin B but not the inhibition by added inhibin (albeit it

was smaller in magnitude) (468). Similarly, in castrated mice in

which the gene for activin receptor type II (Act-R-II) was disrupted,

FSHb expression in the pituitary is lower than in castrated wild-

type mice (474).

Several known effects of steroids on FSHb expression appear to

be mediated at least in part by activin B released from the gonado-

trophs after application of these hormones. Testosterone, progester-

one or glucocorticoid treatment increased FSHb levels in cell

cultures and, again, this effect can be blocked with the monoclonal

antibody against activin B (463, 475–478). Immunoneutralisation

studies also showed that activin B mediates the rise in FSH after

ovariectomy in vivo in the rat (479–481) and that, in sheep, oestra-

diol depresses pituitary FSHb expression, at least partly via inhibi-

tion of activin B expression (482). The latter findings are

particularly relevant as the ovine FSHb promoter has an oestrogen

responsive region, but not an oestrogen response element, suggest-

ing that oestrogen regulates FSH expression indirectly (483) via

repression by the latter of the activin bB subunit gene.

Even though the above experiments provide strong evidence for

a local control of FSHb expression and FSH secretion by activin B,

they leave the question open whether activin B acts in a strict

autocrine manner or diffuses to neighbouring gonadotrophs to

exert its effect in a paracrine fashion. Some indirect evidence has

been found, however, that the action of activin is at least in part

autocrine. Using a cell blot assay test system, in which the secre-

tion of single cells can be separately explored and in which no

cell–cell contact exists, it was found that testosterone, known to

increase FSH production via activin B, does not increase the number

of FSH-secreting cells but significantly augments the amount of

FSH secreted from the FSH-positive cells (484). Interestingly, the

largest secretors did not increase their output upon testosterone

application.

Several physiological events appear to operate through altera-

tions of activin B expression. Whereas the pro-oestrous rise in FSH

and LH secretion is dependent on the GnRH pre-ovulatory peak, the
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Fig. 6. Schematic representation of autocrine loops acting in gonadotrophs.

Full lines indicate pathways for which experimental criteria for autocrine

action have been largely met. Interrupted lines are hypothetical interactions

proposed on the basis of the presence of the indicated factors in the

gonadotroph and their pharmacological effects on the same cell. fi , Stim-

ulatory effect; ^, inhibitory effect; Act-R, activin receptor; CNP, C-type

natriuretic peptide; FS, folliculo-stellate; FSH, follicle-stimulating hormone;

GnRH, gonadotophin-releasing hormone; IL, interleukin; iNOS, inducible nitric

oxide synthase; LH, luteinising hormone; LPS, lipopolysaccharide; nNOS, neu-

ronal nitric oxide synthase; NO, nitric oxide; PACAP, pituitary adenylate

cyclase-activating peptide.
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second FSH rise on oestrous, which is important for recruitment of

follicles, is independent on hypothalamic GnRH input (485, 486). It

is the latter selective FSH rise that is dependent on activin, as

treatment with the activin B monoclonal antibody on the evening

of pro-oestrous attenuated the rise of serum FSH on early oestrous

(480). The second FSH peak is intrinsic to the pituitary because it

persists in culture when pituitaries are isolated at the time that the

second FSH peak would have occurred (487). Another argument in

support for activin-controlled FSH secretion is the finding of FSH

hypersecretion after ovariectomy in hypophysectomised rats receiv-

ing a pituitary graft under the kidney capsule and of inhibition of

this secretion by quenching the action of activin by follistatin (479).

Activins are also permissive for the stimulation of FSH production

by GnRH (488, 489).

Activin appears to be involved in the juvenile FSH rise in the

female rat. As already mentioned, it is well documented that FSH

plasma levels in rats increase to very high levels between the end of

the first and second postnatal week, particularly in females (88–90),

and that the gonadotroph cell population expands rapidly to propor-

tions never obtained in later life (91, 490), raising the intriguing

question of whether this developmental change is also mediated by

activin B. Some answers to this question were given by Wilson and

coworkers (491, 492). They showed that activin bA subunit mRNA

reaches a peak level at 10 days of age and then falls gradually to an

adult level at day 21, whereas bB subunit mRNA level displays a

marked peak value at day 10 and has already fallen to normal adult

level by day 12. Moreover, Act-R-II mRNA was found to be

expressed diffusely over the entire anterior pituitary whereas mRNA

of Act-R-IIB, which is the preferred receptor for activin B, was

almost exclusively found in gonadotrophs, but there was no appar-

ent change in the level of Act-R-IIB during the second and third

week of life. These data suggest at least the possibility that activin B

can have an autocrine ⁄ paracrine role for up-regulation of FSHb
expression during the second week of postnatal life. Furthermore,

experiments with androgen and oestrogen antagonists in vivo and

with androgen agonists in pituitary cell culture have clearly shown

that oestradiol and testosterone are responsible for the rise in FSH

production at 2 weeks of life (492). Moreover, plasma levels of oes-

tradiol (493) and binding of oestradiol to its receptors (494) in the

anterior pituitary increase dramatically around postnatal day 10,

declining slightly thereafter, and the expression level of oestradiol

receptor-b mRNA is much greater in the gonadotrophs of immature

than of adult female rats (495). An additional sensitisation mecha-

nism for FSH production at 1–2 weeks of life is that the conversion

of testosterone to 5a-dihydrotestosterone, which is the preferred

form for binding to the androgen receptor and the preferential

androgen to stimulate FSH production (496), also increases dramati-

cally between days 10 and 15 of life (497), with this conversion

occurring mainly in the gonadotrophs (498).

Autocrine inhibin

The question whether there is also a negative tone of pituitary inhi-

bin on FSH secretion has not been definitely answered, but there

are data supporting this view. Kumar et al. (474) compared Act-R-II

null mice, which are unable to respond to endogenous pituitary

activin, with inhibin-a null mice, which cannot make inhibins; these

mice were also castrated to eliminate circulating inhibins from

gonadal origin. The inhibin-a null mice showed enhanced levels of

FSH plasma levels but the level of FSHb mRNA in the pituitary was

unchanged. Furthermore, in mice that lacked both inhibin-a and

the Act-R-II genes (474), FSHb mRNA levels were as low as in the

mice with only the Act-R-II gene disrupted and the absence of

inhibin increased serum FSH levels both in the presence and

absence of the Act-R-II (474).

Paracrine ⁄ autocrine follistatin

An important paracrine ⁄ autocrine modulator of activin-regulated

FSHb gene expression and FSH secretion is follistatin. This glycopro-

tein binds activin and in this way masks the binding domain of the

activin molecule, preventing it from binding to the Act-R-II; conse-

quently, activation of Act-R-I does not occur (472), resulting in bio-

neutralisation of activin. Follistatin has been shown to be present

in and secreted by pituitary FS cells (499). It was later found that

several pituitary cell types, including gonadotrophs, also express

follistatin (500–503). At midcycle, follistatin is expressed mainly by

LH gonadotrophs, but it is expressed by all other hormonal cell

types earlier in the cycle (503). The local availability of follistatin

appears to be important in orchestrating the efficacy of locally

secreted activin B to drive basal FSH secretion (502, 504). GnRH,

gonadal steroids and plasma all decrease the expression of follista-

tin (481, 505, 506), as shown by GnRH immunoneutralisation and

GnRH antagonist treatments and by gonadectomy experiments,

providing evidence that these substances are physiological regula-

tors of follistatin. Activin and PACAP stimulate follistatin expression

(507).

Another level of differential FSH and LH regulation is via changes

in GnRH pulse patterns. At least in part, these patterns are trans-

lated in changes in inhibin, activin bB and follistatin expression

that in turn change the FSH : LH ratio (508). During the oestrous

cycle in the rat, pituitary follistatin levels are high before the pri-

mary gonadotrophin surge, decrease on pro-oestrous evening, and

rise again at midnight on pro-oestrous before returning to basal

levels on oestrous morning when the second FSH peak occurs (509,

510). The peak in follistatin mRNA levels precedes the peak in FSHb
gene expression by 6 h (510). The fall in serum inhibins, together

with pituitary follistatin following the primary surge, is thought to

facilitate the generation and bioavailability of the secondary surge

of FSH on oestrous morning, necessary for new follicle recruitment

for the next cycle (511, 512).

The NO system

NO is a gaseous transmitter that is produced intracellularly from

L-arginine through the enzyme NO synthase (NOS). NO plays an

important regulatory role in many tissues including the neuroendo-

crine system (513). There are three forms of NOS: type 1 (neuronal)
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(nNOS) and type 3 (endothelial) (eNOS) are constitutively expressed

and Ca2+-calmodulin-dependent, whereas type 2 is inducible (iNOS)

and Ca2+-independent. All three types are expressed in the anterior

pituitary (514, 515).

Distribution and regulation

nNOS is expressed primarily in gonadotrophs and FS cells (516,

517). There are important gender differences in cellular distribution,

and expression changes according to reproductive status. In male

rats, nNOS resides mainly in FS cells, whereas, in females, it is

mainly in LH cells (518). Gonadectomy causes nNOS up-regulation

in LH cells and down-regulation in FS cells and this can be reversed

by testosterone or oestradiol treatment (517–519). The effect of

gonadectomy is mediated by endogenous GnRH, as it was abolished

by treatment with a GnRH antagonist and the GnRH antagonist

also decreased basal NOS expression (519). A GnRH agonist

increased nNOS expression but only in gonadotrophs and not in FS

cells (519). nNOS activity fluctuates with the oestrous cycle and

pregnancy ⁄ lactation. A steep rise in nNOS expression in gonado-

trophs (but not FS cells) occurs during the afternoon of pro-

oestrous and, again, this effect is abolished by treatment with a

GnRH antagonist (520). In lactating rats, LH cells overexpress nNOS,

whereas LH cell size decreases and serum LH levels become low

(518).

Actions of NO

The change in nNOS expression and the concomitant depression of

LH cell activity during lactation both suggest a role of the NO

system in down-regulating the HPG axis. At the hypothalamic

level, however, NO stimulates GnRH secretion whereas, in isolated

rat pituitary or dispersed cells, NO stimulates basal LH and FSH

secretion, with both actions being through a cGMP-independent

mechanism (517). By contrast, NO appears to inhibit GnRH-stimu-

lated LH release at the pituitary level. Several workers found that

the NO donor SNP significantly reduced GnRH-induced LH secre-

tion, whereas the NOS inhibitor Me-Arg potentiated it (516, 517,

521). These data support an intracrine or autocrine negative feed-

back loop on GnRH stimulation of LH release (but not basal LH

release). However, anterior pituitary of pro-oestrous rats made

NO-deficient by chronic treatment with a NOS inhibitor showed a

lower LH response to GnRH than that of normal controls (522). The

effect of an NO donor and a NOS inhibitor had clear effects on the

LH response but they depended on whether the pituitaries were

from normal or NO-deficient rats, indicating the complexity of

the local NO actions (522). Possibly, NO can be inhibitory and

stimulatory, and it has been suggested that this may depend on

the cellular source of NO (518). NO from FS cells may inhibit

GnRH-stimulated LH release as, in cocultures of gonadotroph-

enriched populations with FS cell enriched populations, the LH

response to GnRH is blunted (94). Another aspect suggesting the

complexity of the NO system in the gonadotrophs was revealed by

looking at the mechanism of action of NO. Most NO actions are

established by activation of soluble guanylate cyclase by NO, result-

ing in a rise of cGMP (523). However, in isolated rat pituitary cells,

the stimulatory action of NO on basal LH and FSH secretion is

through a cGMP-independent mechanism (517). Moreover, cGMP

does not affect LH release (524). It is known that GnRH stimulates

cGMP levels in pituitary in vitro (blockable by a NOS inhibitor) (520)

and that treatment of pituitary slices with NO donors results in the

appearance of cells expressing cGMP, mostly gonadotrophs but not

FS cells (525). Together, these data support a cross-talk between

GnRH and the gonadotroph NO system on cGMP-dependent pro-

cesses. Below, whether another autocrine cross-talk via cGMP could

be established by the natriuretic peptide CNP in the gonadotrophs

is discussed.

The importance of the pituitary nNOS system has also been

illustrated by the finding that the nNOS promoter contains the

transactivation domain AF-2 of steroidogenic factor-1 (SF-1), an

essential transcription factor for gonadotroph differentiation. Dele-

tion of this promoter fragment strongly inhibits nNOS promoter

activity (526). The importance of nNOS has also been assessed in

vivo in mice with targeted disruption of the nNOS gene. Although

serious hypofertility was found (fewer oocytes in the oviducts),

pituitary responsiveness to GnRH was intact, suggesting that

compensatory mechanisms can take over control at the pituitary

level (841).

In humans, an interesting interaction of the NO system activated

by GnRH has been observed. In vivo treatment with a NOS inhibitor

attenuated the LH and FSH response to GnRH but this characteris-

tic was lost when simultaneously treated with oxytocin whereas, by

itself, oxytocin did not affect the response to GnRH (527)

Interestingly, in frog pituitary, NO increases both basal and

GnRH-stimulated LH release (528) and, in goldfish, in which GH is

even more essential than in mammals for gonadal function, GnRH

stimulates GH secretion and this effect also is attenuated by

endogenous pituitary NO (529).

CNP

CNP is the third member of the NP family, comprising ANP, BNP

and CNP. As all NPs, it acts via a one-pass transmembrane receptor

with intrinsic guanylyl cyclase (GC) activity, located in the intracel-

lular domain (339). The highest tissue concentration of CNP is

found in the anterior pituitary where CNP is synthesised in a sub-

population of gonadotrophs (192). The A-type (GC-A) and B-type

(GC-B) receptors are selectively activated by ANP and CNP, respec-

tively, and are both expressed in the pituitary as well (192, 530,

531). Since the GC-B mRNA is detectable in gonadotrophs, CNP is a

candidate autocrine regulator of gonadotrophs (192). Such an auto-

crine action remains to be experimentally demonstrated. However,

the actions of exogenous CNP have been explored in primary pitui-

tary cell cultures and in the gonadotrophic cell line aT3-1 (192,

532), and these observations indeed support a putative autocrine

role. Strikingly, CNP robustly increases cGMP levels and the intra-

cellular free Ca2+ concentration, but does not affect GnRH-stimu-

lated LH release. Nevertheless, GnRH reduced CNP-stimulated cGMP
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accumulation by a protein kinase C-mediated mechanism, suggest-

ing that there is cross-talk between the GnRH signal transduction

pathways and the CNP-activated pathways. Secondarily, a cross-talk

via cGMP may also be generated with the gonadotroph NO system.

Interestingly, ANP is also expressed in gonadotrophs and does stim-

ulate LH and FSH release (216).

Leptin

Since leptin is present in gonadotrophs (200, 201, 445, 446) and

the number of gonadotrophs that contain leptin increases at pro-

oestrous and during pregnancy, and since GnRH stimulates leptin

secretion in cultured pituitary cells (201), an autocrine function

may exist. Leptin has been shown to stimulate basal and to mag-

nify GnRH-stimulated LH and FSH release from rat pituitary in vitro

and from rat (218, 533, 534) and sheep (535) pituitary cell cultures.

However, in rats, the leptin receptor has been detected mainly on

somatotrophs (236), a finding pleading against an autocrine action

of leptin in gonadotrophs, unless leptin receptors on gonadotrophs

fell below detection limits in the respective study. In sheep, leptin

receptors have indeed also been located in gonadotrophs (536).

Interestingly, there may be a connection between leptin and the

NO system, described above, as leptin-induced LH release from iso-

lated pituitary appears to be mediated by NO, with the effect being

most pronounced in pituitary from pro-oestrous female rats (537,

538).

Final proof of leptin autocrine ⁄ paracrine action by immunoneu-

tralisation experiments still needs to be given.

NPY

Although NPY is secreted in portal blood (539), it is also synthesi-

sed in the pituitary gonadotrophs and released from this source, as

mentioned earlier. Several research groups have shown that NPY is

essential for ovulation. At pro-oestrous, its synthesis in the arcuate

nucleus and its release into portal blood is increased (540). At the

pituitary level, NPY augments the magnitude of the LH response to

GnRH during the pre-ovulatory LH surge (541). For this purpose,

NPY appears to act only when the appropriate endocrine milieu

that exists just before ovulation is present. In vitro, NPY augments

GnRH-stimulated LH secretion from anterior pituitary removed

from pro-oestrous, but not metoestrous, rats (542). When NPY

action is blocked by infusion of anti-NPY antiserum (539) or by

deleting the NPY gene in transgenic mice (543), the ovulatory LH

surge is significantly attenuated. In pentobarbital-blocked rats,

ovulation can only be restored by combined treatment with GnRH

and NPY (544). One mechanism of sensitisation of the response to

NPY is enhancement of the expression of the NPY receptor Y1

under the influence of the pre-ovulatory increase in oestrogen

secretion (541, 545). Thus, the well known positive feedback of

oestrogen is realised partly via augmentation of NPY action. NPY

also acts as a facilitatory stimulus for the onset of puberty, as

shown by the effect of immunoneutralisation of NPY on the

release of LH and LHRH (546).

Before we can establish NPY as an autocrine factor, it remains

to be demonstrated whether immunoneutralisation of NPY in pitui-

tary cell cultures or selective deletion of NPY expression in the

pituitary decreases the LH response to GnRH.

PACAP

Although PACAP is present in portal blood, it may also have an

autocrine action on gonadotrophs, as already above. PACAP is tran-

siently present in the gonadotrophs during pro-oestrous (187, 188,

547). The peptide stimulates LH release in pro-oestrous pituitary

(548). Treatment with oestradiol or oestradiol + progesterone rap-

idly enhanced basal and GnRH- or PACAP-stimulated LH secretion,

whereas prolonged treatment with oestradiol and progesterone

reduced the response to GnRH (549). The peptide was also reported

to increase expression of aGSU but to depress FSHb (550). The lat-

ter appears to be brought about by stimulating follistatin gene

transcription in the FS cells that bear PACAP receptors (550, 551).

Thus, PACAP may set the balance between LH and FSH secretion in

favour of LH.

It is noteworthy that PACAP interacts with the NO system by

increasing nNOS expression and potentiating the cGMP rise in

response to GnRH (552); NADPH diaphorase staining revealed that

these changes occurred in gonadotrophs (552).

Endothelins

As already mentioned, ETs have been located in gonadotrophs and

are releasable as far as tested in monolayer cell cultures. ET recep-

tors are found on aT3-1 cells and ET1 has been shown to acutely

stimulate intracellular Ca2+ and LH secretion in cultured pituitary

cells (553). These data should prompt studies investigating whether

the immunoneutralisation of ET would lead to attenuated LH

release.

ATP

The purine ATP, and the derivatives ADP and adenosine, are known

to induce various responses in a number of biological systems

(554). ATP is coreleased with neurotransmitters and hormones dur-

ing exocytosis and is believed to augment the exocytotic process

through an autocrine positive feedback. Also in the anterior pitui-

tary, ATP is costored with hormones in secretory granules and cose-

creted (555, 556). The gland has been shown to express different

subtypes of purinergic receptors: P1-R, P2Y-R and P2X-R, in a cell

type-specific manner (557) and their activation leads to amplifica-

tion of intracellular free Ca2+ responses to secretagogues (558). The

pituitary is also equipped with enzymes (ectonucleotidases) that

degrade extracellular ATP (559). The enzymatic cascade generates

ADP, the primary agonist for some P2Y-Rs, and adenosine, the ago-

nist for purinergic P1-R (560).

GnRH enhances ATP release from dispersed pituitary cells (555,

556). Addition of ATP to cultured pituitary cells produces a rapid

increase in intracellular free Ca2+, blockable by a P2Y-R antagonist
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(561). The effect was seen in identified gonadotrophs and in the

gonadotrophic cell line aT3-1. In perifused pituitary cells ATP

promptly caused a more than ten-fold rise of basal LH release

(556), with an agonist-order of potency typical for the P2Y-R.

Gonadotrophs were also reported to express functional P2X-Rs,

which are ion-channel receptors (562), that may have a role as

pace-making channels (563). Through these receptor channels, ATP

induces non-oscillatory, depolarising, slowly desensitising, and

rapidly deactivating Ca2+ currents, leading to initiation of firing in

quiescent cells, an increase in the frequency of action potentials in

spontaneously active cells, and a transient stimulation of LH

release. The ATP signalling is contextual, because inositol-1,4,5-tri-

phosphate-dependent oscillations were found to be facilitated,

slowed, or stopped, depending on ATP concentration.

The available data clearly suggest a putative autocrine role for

ATP in gonadotroph function, although it cannot be excluded that

ATP also acts in a paracrine way on other gonadotrophs in the

neighbourhood. The physiological conditions under which ATP

action takes place also remains to be studied.

Corticotrophs as autocrine ⁄ paracrine cells and targets

Corticotrophs transduce the stress response registered in the brain

towards peripheral organs. They do this directly by releasing ACTH

in response to CRH and vasopressin but also by transmitting this

response to other hormonal cell types in the pituitary. Again, tuning

of the corticotrophs via autocrine loops can be anticipated due to

the complexity and context of the stress phenomenon (Fig. 3).

Vasopressin and paracrine communication among
corticotrophs

It is well known that arginine-vasopressin (AVP) is one of the corti-

cotroph secretagogues. It releases ACTH via the V1b-R (564). In

addition, AVP enhances the responsiveness of corticotrophs to CRH

in terms of ACTH secretion (565) but not in terms of POMC gene

transcription (566). AVP plays an important role in chronic stress

(564) and appears to compensate for the lack of CRH drive on

ACTH secretion in CRH-R1 knockout mice (567). The main source of

AVP is the hypothalamic paraventricular nucleus but the anterior

pituitary itself contains AVP (568–570) and pro-AVP mRNA (569).

Pro-AVP mRNA is located mainly in corticotrophs, although AVP

immunoreactivity has been detected in all hormone-secreting cell

types except somatotrophs (571). Approximately 45% of the ante-

rior pituitary cells are AVP-immunoreactive (569). AVP is secreted

by cultured pituitary cells but this is not augmented by CRH (569)

and remains elevated during exposure to glucocorticoids, which is

consistent with its role in chronic stress situations. Glucocorticoids

even increase the coupling efficiency and signal transduction of the

V1b receptor (564).

To what extent pituitary AVP contributes to the output of pitui-

tary ACTH under basal conditions or during enhanced input of CRH

and AVP from the hypothalamus, however, remains unexplored. This

is surprising because highly selective antagonists of the different

AVP receptors are available that would allow experiments to dem-

onstrate an autocrine action of endogenous AVP.

Nevertheless, there are data supporting inhibitory and stimula-

tory paracrine control of corticotrophs amongst each other in rela-

tion to the actions of AVP in the pituitary. Not all corticotrophs are

responsive to CRH or AVP and a remarkable observation is that AVP

augments the number of corticotrophs that are responsive to CRH.

CRH also increases the percentage of corticotrophs that bind AVP

(572–574). The latter regulation is modulated by paracrine interac-

tions.

Inhibitory paracrinicity

Schwartz and Cherny (574) have demonstrated a peculiar auto-con-

trol system among corticotrophs in the rat that regulates the pro-

portion of AVP- and CRH-responsive corticotrophs, and this may

obviously modulate the overall responsiveness of the pituitary HPA

axis at the pituitary level. The authors showed that elimination in

culture of CRH target cells, by treatment with a CRH-toxin conju-

gate (taken up by receptor-mediated endocytosis, the toxin being

released intracellularly), did not result in a fall of basal ACTH secre-

tion, which was even elevated, despite the number of corticotrophs

and overall ACTH content being decreased by the treatment, sug-

gesting that CRH-responsive corticotrophs inhibit the secretion of

the other corticotrophs. A similar observation was later made using

sheep pituitary cells (575). This inhibitory paracrine mechanism was

confirmed by means of the reverse haemolytic plaque assay (576).

By comparing the ACTH response of cells seeded at different densi-

ties, it was observed that the number of CRH-responsive cortico-

trophs increased to almost double when a certain distance between

the cells was exceeded, presumably because the paracrine factor

depressing responsiveness dilutes out and becomes ineffective

when distances between cell become too large. That factor appears

to be delivered by the CRH-responsive cells themselves because

selective laser-ablation of the CRH-responsive cells allowed ACTH

secretion in response to CRH by cells that before were not secreting

ACTH. The latter mechanism was proposed to have a role in holding

corticotrophs in reserve.

Stimulatory paracrinicity

There is also evidence for the existence of a stimulatory paracrine

factor released from non-CRH-responsive cells, as medium condi-

tioned by exposure to a pituitary cell population, in which CRH-

target cells were destroyed by a CRH-toxin conjugate, was found to

increase ACTH secretion in naive pituitary cells (574).

AVP also appears to be implicated in the local control of the

total size of the corticotroph cell population (577, 578). This popu-

lation expands after adrenalectomy and chronic stress and involutes

by glucocorticoid treatment. Adrenalectomy also increases cell mito-

sis in the pituitary but the bulk of mitotic cells do not express

ACTH. They may be progenitor cells or stem cells. AVP appears to

mediate the effect of adrenalectomy because, in V1b receptor null

mice and in mice treated with a V1b antagonist, this mitotic
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response was absent (579). V1b-R gene knockout also prevents the

increment of corticotroph number after long-term adrenalectomy.

The question remains as to whether this population growth is

induced by the risen output of hypothalamic or of pituitary AVP or

both. Since destruction of the AVP neurones in the hypothalamus

did not affect basal ACTH levels, although it strongly reduced

stress-induced ACTH release (580) but was unable to prevent corti-

cotroph proliferation after adrenalectomy (581), it is possible that

adrenalectomy induces pituitary AVP to support basal ACTH secre-

tion and to mediate a trophic effect on the corticotroph population.

In support for the latter hypothesis is the finding that adrenalec-

tomy increases pituitary AVP content (568) and exogenous AVP

increases cell proliferation in the anterior pituitary (578, 582, 582).

Very interestingly, the same population of progenitor cells that

develops after adrenalectomy also proliferates after gonadectomy

(578). We also found enhanced cell mitosis in pituitary aggregate

cell cultures during the first week of culture (116) and this mitotic

activity was for a large part in nonhormonal cells (393). Other

investigators found a three-fold increase in pituitary AVP secretion

after a 3-day culture period (570). Thus, there may be a relationship

between pituitary AVP and progenitor cell mitosis.

CRH and urocortin peptides

Pecori et al. (583) have provided evidence for an autocrine or at

least paracrine activity of CRH on corticotrophs in the anterior

pituitary. Combined in situ RT-PCR and immunocytochemistry dem-

onstrated the presence of CRH in corticotrophs and CRH was found

in the medium of anterior pituitary cell cultures. Incubation of

anterior pituitary cells with an anti-CRH antibody reduced basal

ACTH secretion compared to non-immune serum-treated controls.

The antibody as well as a-helical CRH(9)41), a CRH antagonist, also

blunted the ACTH response to K+ and forskolin.

The recently identified urocortin peptides play an important role

in the HPA axis, in part by attenuating various functions activated

by CRH. The urocortin gene is highly expressed in the anterior pitu-

itary of the rat and human (584, 585). An autocrine or paracrine

action of urocortin is feasible because urocortin was localised in

corticotrophs in fetal sheep pituitary and transfection of sheep

pituitary cells in culture with urocortin antisense oligonucleotides

depressed ACTH secretion, whereas exogenous urocortin stimulated

ACTH release (586). In human, the great majority (75%) of urocor-

tin-immunoreactive cells were shown to be somatotrophs, whereas

20% were lactotrophs and only a few were corticotrophs, suggest-

ing that urocortin is a paracrine rather than an autocrine peptide

on corticotrophs. Urocortin II is also expressed in the anterior pitui-

tary (587), in the rat more specifically in the corticotrophs, where

its expression is increased by CRH and inhibited by glucocorticoids

(588). To date, no evidence for the expression of urocortin III in the

pituitary has been found (589).

CRH and the different urocortin peptides bind with similar affin-

ity to the CRH1-R, but the affinity of urocortin for the CRH2-R is

much higher than that of CRH, whereas urocortin II has no affinity

for CRH1-R (590). Since CRH1-R is mainly expressed on cortico-

trophs and CRH2-R mainly on gonadotrophs (591), it can be

expected that urocortins have an autocrine and paracrine function

on both the HPA and HPG axis but this needs still to be demon-

strated experimentally.

The physiological significance of CRH and urocortins within the

anterior pituitary needs to be further investigated but it can be

proposed that the presence of CRH and urocortins in the pituitary

may explain why POMC mRNA levels are not decreased during

hypothalamic-pituitary disconnection (584) and why humans with

panhypopituitarism due to agenesis or transsection of the pituitary

stalk still have ACTH secretion (592). Division of labour between the

hypothalamus and anterior pituitary for providing basal ACTH

secretion would make sense for a system that has been of crucial

importance for survival and evolution.

An interesting observation is that in lower vertebrates CRH stim-

ulates the release of TSH, and hence of aGSU, via the CRH2-R

(593). This phenomenon may pave the way to explore whether uro-

cortins influence the release of aGSU in mammals as well, particu-

larly because cells exist in rat as well as chicken pituitary that

express both POMC and aGSU (161).

Acetylcholine

A neurotransmitter in non-neuronal tissue

The anterior pituitary has been one of the first non-neuronal tis-

sues in which a cholinergic system has been identified. Today, it

has become clear that extra-neuronal cholinergic systems are pres-

ent in many tissues (65–71). Anterior pituitary acetylcholine has

been established as a paracrine factor by Carmeliet and Denef (65,

66, 260, 594). Choline acetyltransferase (ChAT) has been demon-

strated in the cytoplasm of rat pituitary corticotrophs by means of

different polyclonal and monoclonal antibodies. Production and

release of acetylcholine was demonstrated in cultured rat anterior

pituitary cell aggregates using [3H]choline as precursor. Acetylcho-

line synthesis was blocked by classical inhibitors of neuronal acetyl-

choline production. Both synthesis and release of acetylcholine are

increased by glucocorticoids. Also, the corticotroph cell line AtT20

expresses a functional cholinergic system.

The pituitary cholinergic system appears to be highly
context-dependent

Perifusion of anterior pituitary cell aggregates or organ-cultured

anterior pituitaries with the muscarinic agonist carbachol can stim-

ulate or inhibit basal PRL and GH release, depending on the hor-

monal environment. PRL release is stimulated in the presence of T3

but inhibited in the presence of T3 and glucocorticoid simulta-

neously; GH release is stimulated in the presence of T3 but inhib-

ited in the presence of glucocorticoid. A paracrine action of

endogenous acetylcholine could only be demonstrated for the

inhibitory component of acetylcholine on secretion. Indeed, in

perifused pituitary aggregates, muscarinic receptor antagonists

evoked a dose-dependent (0.1–100 nM) increase in basal PRL and
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GH secretion only when glucocorticoids had been added to the cul-

ture medium. No effect of the antagonists was seen under condi-

tions in which carbachol showed a stimulatory effect on secretion,

indicating a stimulatory paracrine action is not active or desensi-

tised under basal conditions. Muscarinic antagonists also potenti-

ated the stimulation of GH release by the b-adrenergic agonist

isoproterenol and of PRL release by VIP in glucocorticoid-supple-

mented aggregates.

As shown in frogs, acetylcholine is a putative autocrine factor in

melanotrophs in the intermediate lobe of the pituitary. These cells

also express ChAT, and acetylcholine stimulates a-MSH release via

an M1-R (595–597). Whether endogenous acetylcholine has a simi-

lar action and when it is recruited physiologically, remains to be

studied.

Cross-talk with the NO system?

There are highly suggestive data that the cholinergic system cross-

talks with the NO system (1). FS cells express nNOS (2, 517, 518).

Carbachol inhibition of GH release in aggregates can be blocked by

the calcium channel blockers cadmium and verapamil (594), consis-

tent with the activation of nNOS by intracellular free calcium (3,

598). FS cells express muscarinic receptors, probably of the M1 type,

that mediate activation of phospholipase C and intracellular free

Ca2+ rises (4, 599). Carbachol does not inhibit GH secretion in the

GH3 cell line cultured as aggregates (5, 594). The muscarinic inhibi-

tion of PRL release is abrogated by the NO synthase inhibitor

L-NAME (6, 600). Muscarinic inhibition of PRL release is more

prominent in pituitary cell aggregates from male rats than in those

from females (260), which is consistent with the knowledge that, in

male rats, nNOS resides mainly in FS cells whereas, in females, it

resides mainly in LH cells (7, 518). The inhibition of PRL release by

acetylcholine found in aggregates is lost when cells are attached to

cytodex beads, which precludes a tight contact with FS cells (260).

Putative functions of pituitary acetylcholine

The role of pituitary acetylcholine remains to be identified but sev-

eral data at least suggest some putative links. The glucocorticoid

dependency of paracrine inhibition of GH and PRL release suggests

a relationship of the pituitary cholinergic system with the modula-

tion of these hormone secretions during stress. The suggested

implication of the FS cell NO system (see above) in the inhibitory

response points towards a role of the pituitary cholinergic system

during immune or inflammatory stress. The FS cells are important

targets for inflammatory molecules in the pituitary and during

inflammatory events GH and PRL secretion change (see below).

Moreover, the pro-inflammatory molecule IL-1 was found to down-

regulate ChAT (601). IL-1 is known to activate the HPA axis and to

alter GH and PRL secretion via hypothalamic and pituitary sites

of action (see below). The inhibition of acetylcholine production by

IL-1 has biological sense as, during immune stress, GH and PRL

secretion increase, and inhibiting ChAT would result in less tonic

inhibition of these secretions by paracrine acetylcholine.

The pituitary cholinergic system might also be related to the

HPG axis. Inhibition of PRL release by acetylcholine is not uniquely

dependent on glucocorticoids and can be seen in the combined

presence of T3 and oestradiol (600). Here, a possible link may exist

with the NO system in gonadotrophs. Moreover, there is ChAT

expression also in some lactotrophs (65, 66, 260, 594) and this

expression may be affected by oestrogens, although this remains to

be demonstrated.

It is also interesting to relate the well-known rise in PRL plasma

levels during ageing to the pituitary cholinergic system, since basal

and TRH-induced PRL release become less sensitive to inhibition by

acetylcholine with age (602).

It is noteworthy that a subpopulation of POMC neurones in the

arcuate nucleus of the basal hypothalamus also expresses the ele-

ments of a cholinergic system (603, 604). POMC neurones in the

arcuate nucleus also coexpress CART and are central regulators of

energy homeostasis by suppressing food intake (456). Cholinergic

mechanisms are known to interfere in energy homeostasis. Nicotine

reduces appetite and body weight (605, 606) and a M3-R-mediated

cholinergic pathway operates downstream of the hypothalamic

POMC system, facilitating food intake (607). Just like POMC cells in

the arcuate nucleus (456), pituitary corticotrophs express CART and

a cholinergic system. Thus, it appears that the coexpression pattern

in POMC cells of the pituitary and hypothalamus are very similar to

each other, suggesting a concerted action of the expressed mole-

cules for a common aim. It would be worthwhile to evaluate

whether ACh co-operates with POMC-derived a-MSH and CART to

increase energy expenditure via a pituitary-located effect on GH

and PRL secretion. GH is catabolic in terms of promoting lipid and

carbohydrate breakdown (448). During periods of fasting, lipid util-

isation is promoted in part via GH secretion. Fasting increases

plasma GH levels in all species although, in the rat, the amplitude

of GH pulses is decreased but basal levels may be increased (608,

609). During fasting, pituitary GHRH receptor and ghrelin receptor

mRNA level and sensitivity to GHRH and ghrelin is increased (610,

611). Since acetylcholine is inhibitory on GH release in the presence

of glucocorticoids (594), it could be assumed that GH release in

response to a GHRH pulse will be smaller in the rat when the HPA

axis is activated. Since, during fasting, the HPA axis is activated

(612), the pituitary cholinergic system may contribute to the

decrease in GH pulse height during fasting in the rat.

Neuromedin U (NMU) and apelin

Several other peptides are located in corticotrophs and are putative

autocrine factors, namely NMU) (613, 614) and apelin (615). NMU

is anatomically and functionally linked to the HPA axis at several

levels. It amplifies the stress response and reduces food intake

(616). In the rat, the pituitary is the tissue with highest expression

level of NMU mRNA. Significant expression is also found in the

pars tuberalis (617). The pituitary does not appear to express the

NMU receptor NMU-R1 (618, 619) (which, until recently, was an

orphan receptor called FM-3 or GPR66) (620), but low level expres-

sion of the NMU-R2 (previously called TGR-1) was found (621,
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622). So far, direct effects of NMU on anterior pituitary function

have not been reported. However, in obese (fa ⁄ fa) Zucker rats,

NMU expression in the anterior pituitary (and pars tuberalis) is

decreased, whereas fasting in rats lowers the anterior pituitary

NMU mRNA level, suggesting a role for NMU in adapting ACTH

secretion to lower energy expenditure during fasting (617). Another

interesting observation is that anterior pituitary NMU content

increases several-fold upon administration of TRH (623), an effect

established via increased T3 secretion, suggesting a link between

the HPT and HPA axes via NMU in the pituitary.

Apelin, the endogenous ligand of the human orphan GPCR APJ,

as well as the apelin receptor, are located in corticotrophs and mel-

anotrophs, although, in part, also in other unidentified cells (624).

Since apelin is capable of stimulating basal ACTH secretion (624), it

is a putative autocrine ACTH secretagogue but the secretion of ape-

lin still needs to be shown. Interestingly, apelin inhibits cAMP levels

(625, 626). The negative coupling to adenynyl cyclase also suggests

an inhibitory component in apelin action, which may be unmasked

in the presence of CRH.

Intermedin ⁄ adrenomedullin-2, the PRL-releasing factor
(PRF) from the neurointermediate lobe (NIL)?

It is known for many years from the work of Nira Ben-Jonathan

and Georges Nagy that the NIL produces PRL releasing factors that

appear to be important for the suckling-induced PRL release (627).

This factor may reach the anterior pituitary lactotrophs, particularly

those that are concentrated near the NIL (83), by diffusion or via

the small portal vessels. One of these PRFs may be oxytocin (628)

and another salsolinol (629), a dopamine-derived compound. There

are still other PRFs that can be distinguished from b-endorphin,

a-MSH, b-MSH, ACTH, TRH, angiotensin II, VIP and corticotrophin-

like intermediate peptide (630).

Recently, a novel peptide belonging to the calcitonin ⁄
CGRP ⁄ amylin ⁄ adrenomedullin family has been discovered. It was

named intermedin (IMD), also known as adrenomedullin-2 (631,

632). The peptide is located in both central and peripheral tissues

and in the anterior and intermediate lobe of the pituitary (626,

631), more precisely in corticotrophs and melanotrophs, but not in

other cell types (631). IMD has a selective PRL-releasing activity in

pituitary cells of female (631), but not male rats (633), and inhibits

GHRH-stimulated (but not basal) GH secretion and cAMP levels in

the latter (633). A physiological role of IMD in lactation is sup-

ported by the finding that, during lactation, the expression of IMD

doubles. Conversely, ovariectomy causes a 90% reduction of IMD

expression in the pituitary whereas oestrogen treatment is stimula-

tory (631). On the basis of these data, IMD has been proposed to

represent the PRF from the NIL (631).

It is important to realise that the specificity in the action of the

individual calcitonin-like peptides is dependent on interaction with

coreceptors. Calcitonin classically acts through the calcitonin recep-

tor (CR), a GPCR, but the other calcitonin-like peptides act through

a heterodimer consisting of the CR or the calcitonin receptor-like

receptor (CLR), also a GPCR, and either one of the recently discov-

ered ‘receptor activity-modifying proteins’ (RAMP-1, -2 and )3)

(634). RAMPS are one-span transmembrane proteins that enable

CLR delivery to the cell surface and determine the selectivity of the

heterodimer for the individual calcitonin peptide. Thus, the

CR ⁄ RAMP-1 and CR ⁄ RAMP-3 heterodimer form amylin receptors,

the CLR ⁄ RAMP-1 heterodimer functions as the CGRP receptor, and

both CLR ⁄ RAMP-2 and CLR ⁄ RAMP-3 are functional adrenomedullin

receptors. Heterodimerisation of CLR with any of the three RAMPs

is sufficient to generate an IMD receptor (631, 632).

The machinery for assembling selective receptors for the calcito-

nin peptides exists in the pituitary, and regulation fits with a role

of IMD during reproduction. The mRNAs coding for RAMP-1 and -3

are detected in the anterior and intermediate lobes (631) and, dur-

ing lactation, the expression of RAMP-3 doubles whereas levels of

CLR and RAMP-1 do not change (631). Changes in RAMP-3 expres-

sion are also seen during the oestrous cycle and pregnancy in other

parts of the reproductive axis (274). As discussed in the latter

review, in most tissues under basal conditions, expression of

RAMP-3 is relatively low and mainly RAMP-2 is expressed. During

pregnancy, the expression of RAMP-3 is strongly increased whereas

RAMP-2 and CLR expression are depressed. Furthermore, regulatory

regions of the RAMP-3 gene contain oestrogen response elements.

Increased RAMP-3 expression has been suggested to switch the cell

from a state of high responsiveness to adrenomedullin (high

RAMP-2 expression under basal conditions) to a blunted respon-

siveness.

To further assess the putative function of IMD, further work is

needed to study the consequence of pharmacological IMD receptor

blockade or immunoneutralisation of IMD on suckling-induced PRL

release. Most interesting in this respect is the compound

BIBN4096BS, a nonpeptide CGRP antagonist that acts at the extra-

cellular interface of the RAMP-1–CLR protein interaction (635),

already indicating a proof of principle.

It is also most important to realise that calcitonin, adrenomedul-

lin and CGRP are made by gonadotrophs (see above) and IMD is

made by corticotrophs and melanotrophs. In this way, the

CLR ⁄ RAMP-3 could be an interface integrating signalling between

gonadotrophs, corticotroph ⁄ melanotrophs and lactotrophs, particu-

larly during pregnancy and lactation, when the entire pituitary

function is homeostatically adapted.

Thyrotrophs as autocrine ⁄ paracrine cells and targets

Thyrotrophs have attracted relatively less attention with respect to

their role as autocrine ⁄ paracrine cells or as paracrine targets. Yet,

to meet particular physiological needs in the body, the function of

these cells also needs to be co-ordinated with that of other pitui-

tary cell types. For example, during cold stress, the HPA axis is acti-

vated and there is a need for increased metabolic rate in order to

maintain body temperature. This is brought about by activation of

the HPT axis (636). During pregnancy and lactation, energy con-

sumption has to be adapted to the needs of the growing fetus and

newborn and, during starvation, energy expenditure needs to be

minimised. Under these conditions, the metabolic rate needs to be
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changed through increased or decreased TSH output. Therefore, it is

expected that corticotrophs and gonadotrophs may signal to thyro-

trophs. Furthermore, thyrotroph function may be adapted to chang-

ing needs through alterations in putative thyrotroph autocrine

factors, the synthesis and ⁄ or release of which may be affected by

peripheral or hypothalamic hormones.

Neuromedin B (NMB)

This peptide belongs to the bombesin peptide family, in mammals

together with gastrin-releasing peptide (neuromedin C) (183). The

anterior pituitary appears to be the tissue with the highest concen-

tration of NMB in the body (637). In rat, mouse and human, it is

mainly found in thyrotrophs (614). There is ample evidence for an

autocrine negative feedback of NMB on thyrotroph activity. In iso-

lated pituitary or cultures, exogenous NMB inhibits TSH secretion

whereas an anti-NMB antibody has the opposite effect (638, 639).

This can be explained by an autocrine action of endogenous NMB,

because thyrotrophs are not numerous and can occur rather isolated

in the tissue, so that paracrine actions on other thyrotrophs appear

unlikely. NMB also attenuates TRH-stimulated TSH release in vitro

(640). Consistent with the characteristics of an autocrine system,

NMB content in thyrotrophs increases with physiological changes

that have a negative impact on TSH secretion, such as fasting and

diabetes when TSH secretion is decreased (641). The pituitary con-

tent of NMB increases in hyperthyroidism and decreases in hypothy-

roidism. In hypothyroid pituitaries, thyroxine or T3 increases NMB

content within 30 min and this is associated with suppression of

TSH secretion (642). Somatostatin treatment, which inhibits TSH

secretion, also raises NMB content (643). The NMB autocrine loop is

physiologically related to energy homeostasis, as TRH and leptin rap-

idly decrease pituitary NMB levels, which, in turn, might increase the

efficacy of TRH on TSH release (644). Mice with a disrupted NMB

gene display slightly enhanced TSH plasma levels, reduced T3 levels,

increased TRH receptor mRNA level in the pituitary and an enhanced

TSH response to TRH compared to wild-type mice, demonstrating

that the autocrine action of NMB may also operate in vivo (645).

Leptin

As already mentioned earlier, leptin is found in various cell types in

the anterior pituitary, including thyrotrophs. Leptin decreases pitui-

tary NMB levels (644). These data may point towards an inter-rela-

tionship between leptin and NMB in the control of TSH secretion at

the pituitary level during adaptation to nutritional status. When fat

stores are high, circulating leptin is high and TSH secretion should

not be restrained. However, during starvation, when circulating lep-

tin is low, NMB would rise, which, in turn, would result in less TSH

release, and this would help saving energy stores. This reasoning is

confirmed by in vivo observations that, in normal fed rats, serum

TSH levels increased and pituitary NMB content decreased 2 h after

subcutaneous injection of leptin (644). There is direct evidence for

an autocrine or paracrine action of endogenous pituitary leptin

(646). In isolated pituitaries from hyperthyroid rats (in which NMB

is high), leptin reduced TSH release whereas antileptin antiserum

increased TSH secretion. In pituitaries from hypothyroid rats (in

which NMB is low), however, there was no effect of leptin nor of

leptin antiserum on TSH secretion. These data suggest that the lep-

tin–NMB–TSH axis is affected by thyroid negative feedback.

AVP

This peptide is known to render more cells responsive to CRH (see

previous section). The identity of these target cells has not been

established (647) but one candidate is the thyrotroph. It has been

shown that almost as many thyrotrophs as corticotrophs bind AVP

and part of these thyrotrophs starts expressing POMC rapidly when

the animals had been subjected to cold stress in vivo, an effect that

could be simulated by AVP treatment in vitro (572).

Paracrine control by nonhormonal cells

The nonhormonal cell population of the anterior pituitary represents

a substantial proportion of the pituitary cell population. Based on

estimates by means of single-cell RT-PCR, we count approximately

30% in 14-day-old rats and approximately 10–20% in adult rats

and mice as being nonhormonal (648, 649). Part of the nonhor-

monal cells may be degranulated hormonal cells in a quiescent

phase of their secretory cycle but they remain poorly defined as a

population due to lack of a biochemical marker. Their proportional

number appears to depend on the hormonal status since reciprocal

changes in the number of nonhormonal cells and of GH cells or

PRL cells have been observed after treatment with glucocorticoids

(increasing the number of GH expressing cells) (Pals and Denef

unpublished observations) or T3 (increasing the number of PRL

expressing cells) (648). The other nonhormonal cells include FS cells

(5–10%), dendritic cells (650, 651), macrophages (650), endothelial

cells, pericytes (see below), fibroblasts, transferrin-positive cells

(652) and, as recently identified, ‘colony-forming cells’ (653–655),

nestin-positive cells (656) and cells displaying the peculiar capacity

of exporting the dye Hoechst-33342 (657). The latter cells are called

‘side population’ (SP) cells on the basis of their sorting behaviour in

a flow cytometry system, and amount to approximately 2% of the

cells in mouse pituitary (657).

The nonhormonal cells are small- to medium-sized and display

low granularity. When dispersed and sedimented at unit gravity,

they remain in the upper layers of the sedimentation gradient sys-

tem (656). As examined by flow cytometry, most FS cells do not

sort within the SP but between the SP population and the bulk of

hormonal cells (657). Thus, with appropriate machinery, it is possi-

ble to study subpopulations of nonhormonal cells with respect to

their putative paracrine actions.

‘Side population’ cells may have local activities in cell
renewal

The SP cells include nestin-positive cells (656) and cells expressing

stem cell antigen-1 (sca-1) and markers typical for stem cells in
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other tissues (Oct-4 and nanog) and early embryonic markers such

as Lhx4 and molecules belonging to the Notch, Sonic hedgehog

and Wnt signalling pathways (657). On the basis of the latter

expression profile, SP cells are suspected to include pituitary stem

cells or early progenitor cells. However, whether these are

stem ⁄ progenitor cells of hormonal or nonhormonal cells or both,

remains unknown. The stem cell ⁄ progenitor cell hypothesis is

further supported by the finding that the SP cells spontaneously

make proliferating ‘spheres’ when kept in suspension culture (656)

and grow rapidly in monolayer culture (656) but not in a three-

dimensional cell culture system in which hormonal cells are present

(648). On the other hand, stem cell markers and early embryonic

markers may be phenotypic features of cells with trophic roles, as

is the case in embryonic tissue. According to this view, SP

cells ⁄ nestin-positive cells may play a role in local homeostasis and

tissue remodelling, particularly because their number increases in

response to various growth factors, such as leukaemia-inhibitory

factor (LIF), FGF-2 and EGF, and in response to activating the Notch

pathway (658), and as in aggregate cell culture nestin-positive

cells organise in a network with long cellular extensions (648).

Nestin-positive cells display a high mobility when plated on

collagen-coated plastic (656), suggesting their potential to migrate

to particular targets. Nestin-positive cells have their unique pheno-

type because nestin does not localise in fibronectin-immunoreactive

cells (mesenchymal cells) or sporadic cells expressing a-smooth

muscle actin (656). However, nestin-positive cells often codistribute

with the latter cells, mostly around capillaries (656).

FS cells are the best characterised among nonhormonal
cells

The characterisation of FS cells has been considerably improved

since these cells can be identified on the basis of both cellular and

functional molecules. Most if not all FS cells express the S-100

protein (82). The functional marker of FS cells is uptake of the

fluorescent dipeptide b-Ala-Lys-N�-AMCA (659). Several FS cell

lines have been produced, such as TtT ⁄ GF (mouse) (660), Tpit ⁄ F1

(mouse) (661), FS ⁄ D1h (rat) (95) and PDFS cells (human) (662).

Recently, transgenic mice have been generated that express

green fluorescent protein under the direction of the S-100 gene

promoter (663).

Micro-anatomical architecture of FS cells suggests a role of
FS cells in microcirculation of nutrients, ions and waste
products in the pituitary

FS cells form two microanatomical structures (Fig. 7), which may

have a large impact on pituitary cell physiology. In the centre of

the hormonal cell cord (lobule), they can arrange in clusters and

form follicles, usually of submicroscopic size in the rat but in

other species, including human, of a larger size (664, 665). In the

follicles, numerous microvilli protrude and some cilia are present.

Follicle-forming FS cells are polarised. At the apical pole, bordering

the follicle, they form tight junctions among each other, although

not always fully sealed (666), and, more laterally, junctions of the

‘zonula adhaerens’ type (desmosomes) (664). The basolateral side

makes contact with the hormonal cells and with other FS cells,

and extends processes that end on the basal membrane surround-

ing the cell cords (Fig. 7). A second group of FS cells extends

long cytoplasmic processes between the hormonal cell types

within each glandular cell cord (664). These processes form inter-

cellular junctions, mostly of the zonula adherens-type, amongst

each other (667–669), but they are also eletrotonically coupled

through gap junctions (665). Some FS cells make intimate foot

processes with the basal membrane of the extra-vascular spaces

at the periphery of the cell cords (664, 665). In some species FS

cells located in the periphery of the cell cords are juxtaposed in

a way that they form sinusoid-like spaces (670). Intercellular

lacunae are also often seen between hormonal cells (664).

Apparently, lacunae between hormonal cells, sinusoid-like spaces

surrounded by FS cells and peri-vascular spaces form a micro-

channel system within the pituitary, through which hormones,

paracrine factors, nutrients, ions and waste products can circulate.

Such a channel system is thought to play an important physio-

logical role, although the precise details and regulation of flow

remain obscure.

Some functional importance can also be inferred from studies on

the development of FS cells and follicles. In infant rats (10 days of

life) the FS cell follicles are elongated and participating FS cells

have a columnar shape without cellular extensions and displaying

very little junctions. Later on (30 days), they separate into smaller

follicular units and start making extensions and junctions, especially

tight junctions (665). It appears therefore that the mico-channel

function is more related to the mature pituitary physiology than to

the development of the gland. In fact, before postnatal day 10, very

little S-100 is expressed in the pituitary, although this expression is

induced as soon as the pituitary cells of newborn rats are estab-

lished in aggregate cell culture (648; Pals and Genef, unpublished

observations).

In a series of elegant in vitro experiments, using a near-homog-

enous FS cell population from bovine anterior pituitary or pars

tuberalis, Ferrara and colleagues presented strong evidence that

FS cells can make tight and functionally polarised epithelia,

displaying the typical ion transport characteristics of such epithelia

(671, 672). Monolayers of these FS cells, grown on polycarbonate

filters and placed in Ussing chambers, show a transepithelial

potential difference of approximately 1.1 mV and a short-circuit

current, consistent with transepithelial ion transport. These conflu-

ent cultures also made domes, a typical feature of cultures of

transporting epithelia. The current was inhibited by ameloride

applied at the mucosal surface and further depressed by ouabain

applied at the serosal surface, indicating a current made by active

Na+ absorption. Also, the domes collapsed after treatment

with ameloride (671). Interestingly, the current was increased by

b-adrenergic agonists, prostaglandin E2, bradykinin and lysine

vasopressin (671, 672).
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Intracellular Ca2+ waves from cell-to-cell suggest a role for
FS cells in co-ordinating cellular activity

Of utmost functional importance is that FS cells make gap junc-

tions, mostly with the adjacent FS cells (665) but also with a few

hormonal cells (673). Junctions among FS cells, however, are

incomplete and do not seal off compartments from diffusion of

biological molecules; intercellular spaces (between hormonal cells)

are also freely accessible for diffusing molecules (668, 669). FS cells

are excitable and electrotonically coupled through their gap junc-

tions, as shown by rapid transduction of Ca2+ currents over long

distances in the gland (674). On this basis, they are thought to co-

ordinate activity of hormonal cells. Such co-ordinated activity has

been demonstrated at least for somatotrophs. Large clusters of GH

cells, visualised by labelling them transgenically with GFP driven

by the GH promoter, can display simultaneous intracellular Ca2+

transients (675, 676).

Consistent with a function of FS cells in co-ordination of glandu-

lar cells is the observation in the mink, that the expression of the

gap junctional protein connexin-43 increases in parallel with

increased activity of the PRL cells in the breeding season (677).

Also in the rat, there is an obvious correlation between the

number of gap junctions and reproductive maturation (665). In the

immature pituitary, gap junctions are poorly developed, but there is

a steep rise at puberty. During the oestrous cycle, their number is

lowest at dioestrous. There is an increase at the end of pregnancy

and during lactation. GnRH and testosterone markedly increase the

number of gap junctions.

The role of follicles remains obscure but the structures are

thought to be involved in intercellular transport of metabolic

products and ions (82). FS cells also may have a role in phago-

cytosis as microscopic images showing phagocytised cell debris

are more conspicuous when certain hormonal cells regress after a

period of hyperplasia (82).
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Fig. 7. Tissue architecture of the anterior pituitary showing the epithelial cell cords with hormonal cells and folliculo-stellate (FS) cells, the capillaries (C) with

fenestrated endothelial cells (EC) and connective tissue (CT). The cell cords are a cluster of endocrine cells surrounding an aggregate of FS cells that make a

follicle (F). FS cells also make a meshwork between the hormonal cells, making junctions among each other (thick lines) and extending foot processes (f) end-

ing on the basal membrane (BM) in the periphery of the cord. The cords are surrounded by BM, which may have extensions between some cells. A second BM

surrounds the capillary vessels and between these two some connective tissue resides. Small and larger lacunae are present between hormonal cells. Paracrine

substances may circulate from cell-to-cell but also could be released in these lacunae and reach more remote places. FS cells make gap junctions mostly

among each other, but occasionally also with some hormonal cells. Hormonal cells can make interdigitations with FS cells (small arrows) to favour cell-to-cell

communication. Adapted from Vila-Porcile (664).
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FS cells mediate and modulate the neuroendocrine response
to immune stress and inflammation (Fig. 8)

The anterior pituitary drives the response to inflammatory
stress

It has been well established that during immune and inflammatory

stress, such as induced by bacterial endotoxin (lipopolysaccharide;

LPS), secretion of ACTH (678) and of GH and PRL (679) is

enhanced whereas pulsatile release of LH (680) and TSH (681) is

inhibited. Although this response is initiated in hypophysiotrophic

areas in the hypothalamus, which in turn affects pituitary hor-

mone release via the hypothalamic-releasing ⁄ inhibiting hormones

(682), actions of LPS also occur directly at the pituitary level.

Deafferentation of the hypothalamus or surgical removal of the

medial hypothalamus does not abolish the activation of the HPA

axis by endotoxin (683, 684). Activation of the HPA axis by signals

from immune-activated lymphocytes was suggested by Besedovsky

in 1981 (59, 685), who observed that cultured immune cells,

stimulated with mitogens or antigens in vitro, released sub-

stance(s) in the supernatant capable of eliciting an adrenal

response after intraperitoneal injection. At that time the factor(s)

was called ‘glucocorticoid-increasing factor’. Several more recent

observations support the essential role of the pituitary itself in

driving, at least in part, its response to inflammation. After abol-

ishing the hypothalamic drive of the stress response by transgenic

elimination of the CRH-R1 in mice, the activation of HPA axis by

local inflammation with turpentine remained pronounced (567). In

the latter mice, basal ACTH secretion and the stress response is

mediated by AVP but the rise in ACTH and corticosteroid secretion

was preserved even after immunoneutralisation of AVP in the

latter CRH-R1-null mice (567). CRH knockout mice also retain the
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capacity to increase adrenal corticosteroid output in response to

local inflammation but this no longer occurs after hypophy-

sectomy (686). Thus, it is clear that a direct effect at the pituitary

and ⁄ or adrenal level by molecules derived from immune cells or

microorganisms is essential.

FS cells belong to the dendritic cell meshwork of the body

FS cells have characteristics of immune cells. Part of the FS cells

expresses markers and functional molecules of monocytes and

dendritic cells of the immune system (650). FS cells are now

considered to be members of the dendritic cell meshwork

throughout the body, together with Langerhans cells in the skin

and lymphatic system, ‘veile’ cells, and lymphodendritic and

interdigitating cells in a number of tissues (687). All these cells

are antigen presenting cells and most of them express S-100,

CD1, CD45, CD54, F418, MHC class I and II antigens, Fc and

complement receptors (687).

FS cells are targets for inflammatory molecules

A potent stimulus for production of the pro-inflammatory cyto-

kines, IL-1, IL-6 and TNF-a by stimulated peripheral immune cells

is LPS (688). All these cytokines, including LPS itself, target FS

cells (95, 689). FS cells express CD14, which binds the LPS ⁄ LPS-

binding protein complex and Toll-like receptor type 4, which

transduces the LPS signal (689). LPS is known to rapidly activate

transcriptional activity of NF-jB, a transcription factor that regu-

lates the expression of many pro-inflammatory cytokines, and

this occurs in cells scattered throughout the anterior pituitary

(690). Through this action LPS induces expression of IL-1b, IL-1a
converting enzyme, IL-1 receptor antagonist and TNF-a (690,

691).

In pituitary monolayer cell cultures, IL-1 stimulates the release

of ACTH, LH, GH, and TSH, whereas it inhibits PRL release at con-

centrations within the range reported for IL-1 in serum (692,

693). However, except for ACTH and GH, the latter response is

not a replicate of what happens when LPS is administered in vivo.

Thus, there is an interplay between hypothalamic and pituitary

responses.

The anterior pituitary produces cytokines

Various pro- and anti-inflammatory cytokines are produced by the

anterior pituitary (e.g. by FS cells). The first cytokine to be identi-

fied in the pituitary was IL-6 (694, 695) and we have shown that

FS cells are the main cells producing this cytokine (696, 697).

Although IL-6 is released from the local inflammatory site (698)

and circulates in plasma, local IL-6 from FS cells is involved in

the activation of the HPA axis. Indeed, in CRH knockout mice that

are still capable of a partial HPA activation via AVP (567), an IL-6

immunoneutralising antibody abolishes this HPA activation (686,

699). An antibody blocking LPS action at CD14 abolished both

LPS-induced IL-6, as well as ACTH secretion in aggregate cultures,

and a neutralising anti-IL-6 antibody also blocked LPS-induced

ACTH secretion in pituitary cell aggregates (700). Interestingly, the

latter effect was not seen in monolayer cultures, indicating that

intimate intercellular contact is required as is the case in aggre-

gate cell cultures. IL-6 receptors are expressed in corticotrophs

and IL-6 can stimulate ACTH secretion directly at the pituitary

level (701). The production and release of IL-6 is stimulated by IL-

1 in rat anterior pituitary cells in vitro (702) and IL-1 and IL-6

act synergistically in stimulating ACTH secretion in vivo (703). Also

LPS directly stimulates IL-6 release from FS cells (701). Similar

local actions of FS cell cytokines appear to be involved as far as

the activation of pituitary POMC gene is concerned during inflam-

mation (704).

The paracrine action of IL-6 observed in vitro is relevant for the

in vivo situation because peripheral administration of a neutralising

IL-6 antibody or elimination of the IL-6 gene in transgenic mice

results in a significant blunting of the plasma corticosterone

response to local inflammation (698). Furthermore, also in mice

infected with murine cytomegalovirus, IL-6 is mediating the activa-

tion of the HPA axis as shown by IL-6 immunoneutralisation in

mice in which the central drive of the HPA axis is abolished by

CRH gene deletion (686). Remarkably, in mice deficient in either

CRH or IL-6, LPS activates the HPA axis less than in wild-type mice

but significantly more than in mice deficient in both CRH and IL-6

(705), suggesting the appearance of compensatory mechanisms

during severe depletion of stress mediators.

It should be noted that the action of IL-6 is downstream of IL-1,

as both induction of IL-6 and activation of HPA axis are inhibited

by transgenic inactivation of type I IL-1 receptor (698). Whether

this also is the case for the paracrine action of IL-6 in the pituitary

remains to be studied.

IL-10, an important anti-inflammatory cytokine, appears to be a

regulator in the activation of the HPA axis during immune stress.

IL-10 and its receptor are expressed in the anterior pituitary (706,

707). It stimulates ACTH production in vivo and in vitro (706, 708).

However, IL-10 knockout mice secrete more corticosterone during

immune stress than wild-type mice (709), suggesting negative con-

trol of the HPA axis by IL-10. In human and murine pituitary, IL-11

and IL-11-R mRNA expression has been demonstrated and, as far

as tested in corticotroph AtT-20 cells, IL-11 stimulates ACTH secre-

tion and POMC gene transcription (710). The exact pituitary action

of IL-10 and IL-11 and their site of production need to be explored

further.

Another important endotoxin-inducible cytokine in FS cells is LIF

(711). In vivo, LIF enhances POMC expression and ACTH secretion in

synergy with CRH. LIF is important in mediating the pituitary

response to inflammatory stress as transgenic disruption of the LIF

gene weakens ACTH secretion (712). However, although null muta-

tion of either CRH or LIF blunts the LPS-induced HPA activation,

mice in which both CRH and LIF genes were deleted show a normal

HPA axis response to LPS (713), showing that plasticity in the pitui-

tary can compensate for the lacking factors. The latter animals

show very high expression of TNF-a, IL-1b and IL-6 in the pituitary

(713).
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Immune stress also activates the GH and PRL axis and
inhibits the HPG and HPT axis

Also, in this respect, FS cells are contributing. IL-6 from FS cells

stimulates the release of PRL and gonadotrophins in pituitary cell

cultures (714), although other studies found it to stimulate LH but

inhibit FSH secretion (701, 715). Bilezikjian and colleagues have

shown that LPS enhances expression of follistatin and activin B in

the pituitary in vivo (716), that FS cells are targets for IL-1 (95) and

that IL-1 augments the production of follistatin both in vivo and

in vitro, thereby attenuating FSH output in response to activins

(716). Noteworthy, the latter effects were not mimicked by LPS or

IL-6 in vitro, although they were in vivo. After LPS treatment, IL-1

appears in rat thyrotrophs (717). IL-1 inhibits TSH secretion (718).

FS cells also contain and release macrophage migration inhibitory

protein (MIF) and MIF release is enhanced by endotoxin and gluco-

corticoids (719). As far as has been tested in the FS cell line TtT ⁄ GF,

recombinant MIF did not affect basal IL-6 release but antagonised

the inhibition of IL-6 release by glucocorticoids, a pro-inflammatory

action typical for MIF on classical immune cells (719). MIF has a

synergistic effect on LPS.

FS cells express several GPCRs possibly modulating the FS
cell responses to immune stress

FS cells express b1 and b2-adrenergic receptors (720), acetylcholine

(599), VIP and PACAP receptors (721), angiotensin II receptor-1

(722), adenosine A1 and A2B receptors (723) and the TSH receptor

(724). Ligands of some of these receptors are known to modulate

the function of immune cells. For example, in macrophages, VIP

and PACAP prevent iNOS transcription by inhibiting NF-jB and IFN

regulatory factor 1 activation. Thus, these GPCRs may function in a

feedback scenario to avoid overactivation of the HPA axis, which

would lead to immunosuppression by corticosteroid. In FS cells, VIP,

PACAP and agents that stimulate cAMP accumulation increase IL-6

production (701). Also, calcitonin was recently found to induce IL-6

production in FS cells (725), representing a putative feedforward

mechanism.

Inflammatory stress may also implicate the pituitary
tachykinin system (e.g. substance P, neurokinin A and B)

LPS was reported to decrease neurokinin A concentration in parallel

with PRL secretion in the anterior pituitary (726). Since Substance P

may have a paracrine PRL-releasing action (727), the decrease of

neurokinin A by LPS may be a mechanism to attenuate excessive

PRL secretion during immune stress. It remains unknown where the

LPS-induced neurokinin A production is located. Since LPS targets

FS cells, they are candidates but, to our knowledge, no data are

available to support this hypothesis, the main cell types producing

tachykinins in the pituitary being somatotrophs and thyrotrophs

(728).

It should be noted that the anterior pituitary also shows vagal

innervation from nodose ganglion (729), the nerve endings showing

expression of Substance P and CGRP and making close contacts

with lactotrophs, somatotrophs, corticotrophs and thyrotrophs

(730–734), but not with FS cells (735). Whether these nerve fibres

are activated by locally released cytokines and whether Substance P

and CGRP are involved in modulating these actions remains unex-

plored. The issue is important because a neural pathways exists in

the transmission of inflammatory signals to the brain via vagal

afferents activated by locally released IL-1 (736, 737).

The actions of cytokines at the pituitary level appear
important for the immune system itself

In a recent review (738), it was noted that GH, PRL and thyroid

hormones influence the functioning of the immune system but that

these hormones are not obligate for primary lymphopoiesis or for B

and T cell-mediated immune responses. Pituitary hormones most

likely have a protective action during chronic states of inflamma-

tion or other forms of natural prolonged stress. Under particular

circumstances, one or more of these hormones can stimulate

immune cell function. For example, during pregnancy and lactation,

which are physiological states of stress due to the many increased

metabolic demands, PRL, GH, thyroid hormones and glucocorticoids

are elevated. Glucocorticoids are needed to utilise more glucose

and to mobilise protein from mother to fetus. However, the

immune-suppressive effects of glucocorticoids might be detrimental

and it is thought that the rise of PRL output during pregnancy has

an adjuvant role in protecting the immune system from a too pro-

found suppression. Also, GH and thyroid hormone are found to be

protective during times of stress.

Direct feedback from pituitary hormones to FS cells?

In view of the fact that secretion of all pituitary hormones is

altered during immune stress, it has been explored whether FS cells

express receptors for pituitary hormones. The TtT ⁄ GF cell line indeed

expresses mRNA of GH-R, TSH-R and ACTH-R, but not of LH-R,

FSH-R and PRL-R (739). This would allow ultra-short feedback

actions of these hormones on FS cell signalling to the hormonal

cell types that are targeted during immune stress, although this

requires experimental verification.

FS cells may exert scavenger functions through generation
of NO (Fig. 8)

Prolonged pituitary activation during immune and other stresses

should not lead to excess glucocorticoid hormone production,

because this would lead to inhibition of reproduction and to

immune suppression, which would predispose to infection or even

tumour progression. It is therefore a homeostatic imperative that

internal negative feedback loops exist to avoid these digressions. FS

cells appear to operate as an interface in these homeostatic reac-

tions as they appear to blunt many stimulated activities of hormonal

cells. By making a meshwork with junctional complexes, FS cells cre-

ate functional cell groups and compartments in the pituitary (665,

Paracrinicity 37

ª 2008 The Author. Journal Compilation ª 2008 Blackwell Publishing Ltd, Journal of Neuroendocrinology, 20, 1–70



674) but they do not shield off cell groups by obliterating diffusion

of secreted material (668, 669). Scavenging by FS cells is based on

functional inhibition of hormonal cells by material released by them.

This was demonstrated by experiments in which hormonal cells were

mixed with cell populations enriched in FS cells. When a dispersed

cell preparation consisting of approximately 65% FS cells was coag-

gregated with a highly enriched populations of hormone-secreting

cells and the coaggregates, after 5 days in culture, were perifused

with various secretagogues, the stimulation of PRL release by TRH

or angiotensin II, of GH release by GHRH and adrenaline, and of LH

release by GnRH, was blunted, compared to aggregates consisting of

the hormonal cells only (94). Interestingly, addition of FS cells also

weakened the secretory response to inhibitory signals such as dopa-

mine and somatostatin on PRL and GH release, respectively (668).

Under what physiological or pathological conditions FS cells are

recruited to attenuate excesses in hormone responses remains to be

determined, but it is possible that cytokines, liberated during the

activation of the HPA, HPG and ⁄ or HPT axis during immune stress

may be such mediators or that the FS cells may exert a tonic inhibi-

tory tone. In support for this hypothesis are experiments with pitui-

tary cell aggregates treated with IFN-c and other cytokines.

Prolonged exposure of pituitary cell aggregates to IFN-c resulted in

an inhibition in the secretory response of ACTH, GH and PRL to vari-

ous secretagogues (740). Also TNF-a and IL-6, but not LPS or IL-1,

had an inhibitory action on CRH-induced ACTH release. This inhibi-

tion was only seen when FS cells were present in a sufficient num-

ber (741). The factor mediating this apparent scavenger effect is, at

least in part, NO (742). nNOS is expressed in FS cells and iNOS can

be induced in FS cells (but also in some non-identified nonhormonal

cells) by IFN-c (743).

Also, TNF-a may recruit FS cells to blunt other hormonal responses

during immune stress. TNF-a is one of the first molecules to appear

in blood during inflammation. It is also expressed in the anterior

pituitary (744), although the cell type of production remains

unknown. TNF-R1 and TNF-R2 mRNA are detectable in the FS cell-

derived TtT ⁄ GF cell line (745), suggesting that scavenging actions of

TNF-a are mediated by FS cells. Although TNF-a was found to stimu-

late basal ACTH, GH, and TSH, but not PRL secretion in hemipituitar-

ies and dispersed cells upon an acute exposure (746), prolonged

(> 4 h) treatment with TNF-a did not affect basal ACTH secretion

but depressed CRH- and AVP-stimulated ACTH production and abol-

ished the potentiation of CRH-induced ACTH release by AVP (747).

The protein also was ineffective on basal GH and LH secretion, but

did inhibit GHRH-stimulated GH and GnRH-stimulated LH release

(744, 747). TNF-a-induced inhibition of PRL secretion has been

shown to be mediated by NO (748). Of importance, TNF-a augmented

GHRH-stimulated GH release in sheep pituitary cell cultures, indicat-

ing that species-specific mechanism are to be examined (749).

FS cells mediate very rapid negative feedback of
glucocorticoids via annexin-1 (Fig. 8)

The latter function has been extensively studied by Buckingham

and colleagues. Annexin-1 (lipocortin 1) has originally been identi-

fied as a glucocorticoid-induced protein that mediates the anti-

inflammatory action of the latter hormone in the immune system.

Glucocorticoids have a negative feedback on pituitary ACTH secre-

tion and production at the level of the hypothalamus and the pitui-

tary via classic genomic interactions. Glucocorticoids, however,

exert also a much faster negative feedback, detectable within 0.5–

1.0 h after a rise in plasma glucocorticoid during acute stress and

this action appears to be mediated by annexin-1 (750). Annexin-1

is expressed in FS cells and glucocorticoids appear to mobilise

annexin-1 to the external cell surface. Addition of annexin-1 to cul-

tured pituitary cells inhibits CRH-stimulated ACTH secretion,

whereas the early inhibitory effects of the steroid on secretagogue-

stimulated ACTH release in vitro and in vivo are prevented by block-

ing synthesis of annexin-1 with antisense oligodeoxynucleotides or

by blocking the activity of annexin-1 with anti-annexin-1 antise-

rum. Interestingly, annexin-1 also appears to inhibit the secretion

of PRL, GH, LH and TSH in vitro (750). It remains to be investigated

whether the scavenging action of FS cells that we have observed

previously in coaggregation experiments with enriched FS cells (see

earlier in this section) also recruites the annexin-1 system in addi-

tion to the NO system. It should be noticed, however, that the

latter studies examined long-term presence of FS cells, whereas

glucocorticoid-induced annexin-1 actions are examined over a short

time interval.

FS cells may have a role in pituitary plasticity

During postnatal development and during adaptive changes in pitu-

itary hormone secretions, such as during the oestrous cycle, preg-

nancy and lactation, the pituitary shows remarkable fluctuations in

the expansion or involution of certain cell types or functional

subtypes. Several growth factors have been identified in FS cells,

such as FGF-2 (751), LIF (752), VEGF (44) and, as already mentioned,

various cytokines and follistatin. The production of these growth

factors is regulated, as indicated by data describing the effect of

TGF-b1 and TGF-b3 on VEGF (753) and FGF-2 content (372) and of

oestradiol on FGF-2 content (754). Also, PACAP and IL-6 stimulate

VEGF secretion whereas glucocorticoid is inhibitory (755). A func-

tional link between FGF-2 from FS cells and lactotroph cell prolifer-

ation has already been discussed above, as has the paracrine role

of follistatin in relation to the selective regulation of FSH output in

gonadotrophs. LIF appears to play an essential role in corticotroph

development during fetal life (756).

FS cells also appear to be permissive for the mitogenic effect of

oestradiol on lactotrophs and this is far more impressive in rats

showing high sensitivity for oestrogen-induced mitogenesis of lacto-

trophs (Fisher 344 rats) (372, 754). Fisher rats have a higher propor-

tion of FS cells than Sprague-Dawley (SD) rats. Oestradiol itself does

not affect the number of FS cells but, when pituitaries from SD rats

and Fisher rats are cotransplanted under the kidney capsule or when

FS cells derived from Fisher rats are cocultured with either SD or

Fisher 344-derived lactotrophs in vitro, FS cells from F344 rats

increase the mitogenic action of oestradiol, whereas SD-derived FS

cells do not (372, 754). FS cells exert their permissive action on
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oestradiol via FGF-2, the production and secretion of which (but not

the action itself) is enhanced by oestradiol to a higher extent in

Fisher 344-derived FS cells than in SD-derived FS cells (372, 754).

However, the lactotroph’s growth response to FGF-2 was similar in

both strains. Interestingly, in Fisher rats, but not SD rats, pituitary FS

cells show morphological signs of strong hyperactivity when treated

with oestrogen (they frequently contained phagosomes including

parts of secretory cells, mostly somatotrophs and lactotrophs) (757).

After gonadectomy, FS cells become more numerous and extend

cytoplasmic processes to gonadotrophs but, in thyroidectomised

rats, this was not observed for thyrotrophs (758), suggesting a par-

ticular relationship between gonadotrophs and FS cells. That associ-

ation is perhaps related to the production of follistatin by FS cells

that is well known to attenuate the autocrine action of activin on

FSH production. Of note, GH and PRL producing adenomas fre-

quently contain significant numbers of FS cells (759). Furthermore,

during lactation FS cells become hypertrophic, displaying an abun-

dant cytoplasm, enlarged Golgi complex, and dilation of the follicles

(760). In mice with a genetically induced copper deficiency, the GH

axis is dysfunctional and this appears to be due in part to an

excessive phagocytic activity of FS cells (761).

Taken together, all these data support a trophic action of FS cells

during phases of cell population adaptation to endocrine needs.

FS cells may be important for glutamate and GABA
signalling (Fig. 9)

Rat FS cells have been found to express glutamine synthase, a

key enzyme for glutamate metabolism in the central and periph-

eral nervous system (762). As in other systems, the enzyme is
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Fig. 9. Schematic representation of cholinergic and GABA-ergic paracrine loops thought to act between hormonal cell types and their relationship with

nonhormonal cells and adrenergic signals. fi , Stimulatory effect; ^, inhibitory effect; A, B, C, GABAA, GABAB and GABAC receptor subtypes, respectively; 2,

2-adrenergic receptor; 1, 1-adrenergic receptor; ?, unknown factor from unknown small cells, that potentiates the growth hormone response to epinephrine.

ACTH, adrenocorticotrophic hormone; CRH, corticotrophin-releasing hormone; FS, folliculo-stellate; GH, growth hormone; GHRH, growth hormone-releasing

hormone; GnRH, gonadotophin-releasing hormone; LH, luteinising hormone; PRL, prolactin; TRH, thyroid-releasing hormone; TSH, thyroid-stimulating hormone.

Paracrinicity 39

ª 2008 The Author. Journal Compilation ª 2008 Blackwell Publishing Ltd, Journal of Neuroendocrinology, 20, 1–70



glucocorticoid-dependent (762). As assessed by immunostaining,

FS cells also contain high levels of glutamine (763). Expression

of glutamine synthase is dramatically age-dependent. Whereas, at

30 days of age, only a small portion of the FS cells is positive

for the enzyme, 25% are positive at 60 days and 74% are

expressing at 2 years. In the brain, the role of glutamine

synthase is to convert glutamate + NH3 into glutamine, and is

thought to be a protective mechanism against excessive excita-

tion by the neurotransmitter glutamate (764). Glutamate appears

to be an intercellular messenger in the pituitary as well. Gluta-

mate or certain aspartate analogues have been found to stimu-

late PRL, GH and LH release and rat anterior pituitary cells

express mRNA of glutamate receptors GluR1, GluR2, GluR3,

GluR4, GluR5, GluR6, GluR7, KA1 and KA2 subunits (765). It is

therefore feasible that FS cells have a role in preserving optimal

levels of glutamate in the microenvironment as is the case for

glial cells in the brain. In brain and liver, glutamine synthase is

also important for detoxification of ammonium (766).

Putative control of glutamate availability by FS cells may also have

consequences for the availability of GABA in the pituitary. GABA is

delivered to the pituitary via nerve endings (intermediate lobe) and

portal blood, but GABA is also synthesised in rat and human somato-

trophs by the enzyme glutamate decarboxylase that uses glutamate

as substrate (767, 768). Human, rat and monkey somatotrophs

express the GABA transporter and GABAA, GABAB and GABAC recep-

tors are present in the anterior pituitary (769–771). GABA stimulates

GH production via a GABAB receptor, whereas blocking GABAB recep-

tors with phaclofen decreased GH levels in pituitary cell cultures,

demonstrating endogenous autocrine or paracrine GABA-ergic mod-

ulation of GH production (770). On the other hand, GABA inhibits

PRL secretion via GABAA receptor but stimulates it via a GABAC

receptor (768). Moreover, endogenous GABA exerts both an excitatory

and an inhibitory tone on basal PRL release as shown by the finding

that the GABAC receptor antagonist, (1,2,5,6-tetrahydropyridin-4-yl)

methylphosphinic acid, and the GABAA receptor antagonist, bicucul-

line, suppressed and enhanced basal PRL secretion, respectively (768).

The GABAB agonist baclofen also inhibited basal and TRH-stimulated

PRL secretion in anterior pituitary cells from pro-oestrous rats.

Baclofen caused inhibition of GnRH-stimulated LH release in anterior

pituitary cell cultures from immature rats (772). GABA also inhibits

TRH-stimulated TSH release, probably via the GABAA receptor (773).

The importance of GABAB receptors in the HPG and PRL axis is clearly

shown in the GABAB receptor-1 knockout mouse (774).

On the basis of all these data, FS cells likely have a local role in

glutamate and GABA homeostasis and the latter transmitters exert

delicate and balanced paracrine ⁄ autocrine effects on GH, PRL and

LH secretion, possibly related to basal and immune-stress homeo-

static mechanisms.

FS cells may also be linked to cholinergic and adrenergic
signalling in the anterior pituitary

FS cells express muscarinic and b-adrenergic receptors. As already

mentioned, acetylcholine is a paracrine factor stimulating GH and

PRL release but it becomes inhibitory in the presence of glucocor-

ticoids, an effect possibly mediated through a paracrine inhibitory

action of NO released from FS cells by acetylcholine. On the other

hand, we have shown that adrenaline stimulates GH release in

pituitary cell aggregates through b2- and a1-adrenergic receptors

and that this effect is dependent on glucocorticoids (775, 776).

Interestingly, the action of glucocorticoids is not a direct one but is

mediated by small cells of low density, as demonstrated by cocul-

ture experiments of enriched somatotrophs with low density cells

obtained after separation by sedimentation at unit gravity (775).

The latter cells are probably not gonadotrophs, corticotrophs or thy-

rotrophs but may be immature lactotrophs or nonhormonal cells or

even a subpopulation FS cells that expresses b2-adrenergic recep-

tors. It is tempting to consider that FS cells integrate a network

of glutamate, GABA, acetylcholine and adrenergic signals in the

anterior pituitary.

Can FS cells signal through agmatine?

As already discussed, FS cells express nNOS and iNOS, enzymes

converting arginine into NO. In neurones and glia, arginine can also

be converted to the diamine agmatine by mitochondrial arginine

decarboxylase and this substance fulfills most criteria to be a neu-

rotransmitter ⁄ neuromodulator (777). Agmatine can be released into

the synaptic space, where it can block several ligand-gated ion

channels (including NMDA, nicotinic acetylcholine or 5-HT3 recep-

tors, all expressed in the anterior pituitary), or bind to either I1 imi-

dazoline binding sites or a2-adrenoceptors. Agmatine inhibits all

isoforms of NOS by inhibiting catalytic activity, and reduces expres-

sion of iNOS in astrocytes (777). The agmatine system is widely but

unevenly distributed among tissues and tissue cell types (778).

Agmatine is present at a high level in the hypothalamus (779) and

has recently been detected in the anterior pituitary as well (780).

Since FS cells already have the machinery to use arginine for NO

signalling, it would be worthwhile to investigate whether FS cells

are also the site for agmatine formation in the anterior pituitary

and whether agmatine has effects on hormone secretion or cellular

differentiation, either directly or via its effects on the NO system.

FS cells can generate retinoic acid

Retinoic acid (RA) plays a critical role in stem cell differentiation

and development and is also a regulatory factor in the anterior pitu-

itary. The expression of the RA receptor isoform RXRc is develop-

mentally regulated in the pituitary and RA is known to activate the

GH gene through a RA-responsive element in the GH promoter and

in the Pit-1 promoter (781, 782) but to repress the THSb gene (783).

Moreover, RA converts somatotroph progenitor cells into GH-pro-

ducing cells in vitro (784). RA is synthesised from retinoids through

retinaldehyde dehydrogenases (RALDH). Recently, it was reported

that RALDH2 and RALDH3 are highly expressed in the embryonic rat

anterior pituitary (785). Expression was seen already at E12.5,

showed peak values at E15.5–17.5 and declined steeply thereafter to

disappear after postnatal day 5. The NIL only expresses RALDH3 and
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no expression was found in the pars tuberalis (aGSU-expressing

cells) (785). In the adult gland, RALDH1 is the expressed isoform

(786). By in situ hybridisation, RALDH1 mRNA was localised in a

subpopulation of lactotrophs, in FS cells and in some marginal cells

of the cleft. The cell type localisation in the embryonic pituitary was

not analysed but since expression was already found at E12.5 when

no hormones are expressed yet and in situ hybridisation signals

were punctuate, it has been proposed that RA is generated in

stem ⁄ progenitor cells. Taken together, RA from FS cells may be

involved in the development of cell lineages in the anterior pituitary.

Are FS cells related to stem cells?

An old proposal that FS cells are stem cells in the anterior pituitary

has still been supported by some investigators on the basis of indi-

rect evidence. Some information discussed in the previous sections,

when taken together, may prompt to reexamine that hypothesis.

First, FS cells have many characteristics in common with marginal

cells facing the pituitary cleft (664, 665). Second, marginal cells are

remnant cells of Rathke’s pouch, in which proliferation of progenitor

cells occurs during embryonic development (787). Third, most

recently, expression of retinoic acid forming enzymes has been iden-

tified in embryonic rat pituitary progenitor cells and in adult FS cells

but also in some marginal cells (785, 786); retinoic acid is important

in differentiation of GH progenitor cells (784). Fourth, the first FS

cells seem to develop in the postero-lateral region near the marginal

layer of the cleft (665). Fifth, cells ultrastructurally identified as FS

cells in 10-day-old rats are junction-poor columnar cells making

elongated follicles (intragladular extensions of the cleft?) that grad-

ually convert into the normal adult cellular architecture around

40 days of life (665). Sixth, the adult pituitary contains a small and

heterogeneous population of nonhormonal cells (side-population

cells), not expressing S-100 but showing morphological features

(stellate shape, agranular) common to FS cells, which express several

genes typical for stem ⁄ progenitor cells in other tissues (656, 657);

some of these cells also occur in the marginal zone of the cleft.

As already said above, a scenario uniting all proposed concepts

concerning the nature of ‘stellate’ cells in the pituitary, is that there

is a cell pool in the pituitary that remains primitive and of which

part can develop into hormonal cells during postnatal development

and part into FS cells. The remainder of these cells may play

primarily a trophic paracrine role in basal tissue homeostasis, a role

that could be extended to that of being effective progenitor cells

when the needs for hormonal output rise to a level that cannot be

met by increased cellular activity and cell proliferation alone.

Whether such needs exist under normal physiological conditions or

whether they arise only under pathological pressure, such as after

gonadectomy, adrenalectomy, oestrogen treatment or during

tumour development, remains to be seen.

What do FS cell lines teach us about FS cells?

Because of the extreme heterogeneity of the nonhormonal cell pop-

ulation in the anterior pituitary, significant efforts have been

devoted to generate FS cell lines. These are now available, such as

TtT ⁄ GF (mouse) (660), Tpit ⁄ F1 (mouse) (661), FS ⁄ D1 h (rat) (95) and

PDFS (human) (662). Similar to authentic FS cells, the TtT ⁄ GF cells

contain many lysosomes and intermediate filaments in the cyto-

plasm, display phagocytic activity, form follicles, and express GFAP

and S-100 (660). The cell line also expresses TGF-b1, TGF-b recep-

tor, IL-6, leptin, leptin receptor, PACAP and PACAP receptors (788).

TtT ⁄ GF cells express the same regulatory molecules as normal FS

cells, obtained by laser-capture microdissection (788). Like normal

FS cells, Tpit ⁄ F1 cells express nNOS and FGF-2 and respond to

PACAP (blunting of IL-6 secretion) and glucocorticoids stimulate

glutamine synthase expression (661). Interestingly, ATP stimulates

nNOS expression in the FS cell line via P2Y2-purinoceptors (661).

Since ATP is cosecreted with hormones, this cotransmitter may

provide a paracrine feedback from hormonal cells, activated during

immune stress, on FS cells, that, in turn, will dampen the activity of

hormone-secreting cells via NO (661).

FS cell lines have so far been studied in monolayer cultures and

data obtained in the latter in vitro condition may predict what nor-

mal FS cells do in monolayer culture. It should be reminded, how-

ever, that FS cells in monolayer culture rapidly proliferate (671, 672,

789), while in vivo or in a three-dimensional culture system they

do not. Thus, the monolayer configuration is artefactual for FS cells.

Moreover, it has been observed that, in monolayer cultures, various

biological responses in which FS cells might be involved do not

occur or are opposite of what is found in reaggregate cell cultures.

In the latter, dispersed cells reassociate into a three-dimensional

tissue-like structure with a typical FS cell distribution in a mesh-

work (668). It has been observed that ciliary neurotropic factor and

IL-11 have no effect on PRL and GH secretion in monolayer cell

cultures, but stimulate these secretions in aggregate cell culture

(790). The stimulation of ACTH secretion by LPS is also dependent

on a compact cellular organisation. Although LPS stimulates IL-6

secretion in monolayer as well as in mouse pituitary cell aggre-

gates, LPS can stimulate ACTH secretion only in aggregates (700).

Another example of differential responses in aggregate or whole

pituitary was made in studies on the effect of PACAP on PRL

release. In monolayers or in a reverse haemolytic plaque assay sys-

tem, PACAP inhibits PRL release and has no effect on GH release

but PACAP stimulates both GH and PRL release in pituitary tissue

blocks and in aggregates as well as in vivo in rats with hypotha-

lamic lesions (in which hypothalamic-releasing hormone influence

is abolished) (207). Since FS cells organise in an extensive network

in vivo and have intimate associations with glandular cells, and

since FS cells have been shown to co-ordinate cellular activities

throughout the pituitary, it is clear that such associations are much

better reformed in vitro when the cells are allowed to associate in

a three-dimensional space. The above experiments therefore clearly

suggest that cytokine actions during immune stress can be strongly

affected by intimate cell–cell contact between FS cells among each

other and with the hormonal cells. Thus, in designing studies on

paracrine and autocrine communication in in vitro models, the

three-dimensional configuration of the tested cells is of utmost

importance.
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Paracrine control by connective tissue cells, endothelial
cells and pericytes

As is the case for all other tissues, the pituitary contains connective

tissue cells and a vascular system. As in other endocrine organs,

the vascular system is richly developed. Vessels consist of endothe-

lial cells embedded in the basal membrane and associated with

each other by tight junctions. In addition, there are mural cells ana-

tomically and functionally associated with the endothelial cell ⁄ vas-

cular tube layer, called pericytes. Pericytes display long cytoplasmic

processes embracing the endothelial tube, an ideal position for

paracrine signalling (791). In addition, larger vessels are surrounded

by smooth muscle cells. The pericyte has a phenotype between

vascular smooth muscle cells and fibroblasts with the capacity to

differentiate into a myofibroblast.

Peculiarities of anterior pituitary vessels

The portal vessels of the pituitary lack smooth muscle fibres, but

are associated with many pericytes showing highly ramifying pro-

cesses. Importantly, as in all endocrine organs, the endothelium has

many fenestrations and channels, ensuring high permeability for

molecules traveling from the interstitial fluid to the blood and vice

versa (792). Thus, portal vessels are capillary sinusoids with

pericytes rather than typical portal veins. Another peculiarity of

pituitary vessels is the lack of von Willebrand factor. We detected

cells expressing CD31, a general marker of endothelial cells, in the

anterior pituitary of the adult rat, but we found no cells positive

for von Willebrand factor, consistent with the sinusoidal nature of

the pituitary portal vessels (656). Von Willebrand factor is promi-

nent in veins, but largely absent from sinusoidal endothelial cells

(793).

Plasticity in the anterior pituitary requires tight control of
angiogenesis

Once developed, the vascular system is quiescent but new vessels

can be made from existing ones by sprouting or intussusception,

either during certain physiological conditions where a higher

demand for blood supply is required or in pathological states such

as during tissue repair after injury or inflammation and tumouri-

genesis. Angiogenesis starts with basement membrane degradation

by activated endothelial cells, then the latter migrate and prolifer-

ate, which leads to the formation of endothelial cell sprouts. Subse-

quently, vascular loops and capillary tubes are formed with tight

junctions and, finally, there is new basement membrane deposition

(794).

In the pituitary gland, which is highly protected from injury due

to its location in the skull underneath the brain, neovascularisation

for tissue repair is probably of less importance. However, the pitui-

tary is a plastic tissue capable of remodelling blood supply accord-

ing to needs, such as during pregnancy and lactation when the

gland expands considerably. Thus, tight control of angiogenesis is

essential in the adult pituitary. Moreover, the pituitary is prone to

develop adenomas and, hence, angiogenesis may be most relevant

to their progression.

An important new mechanism recently advanced is that angio-

genesis and tissue growth go hand in hand. It appears that neuro-

nal guidance can be mediated by similar factors as vessel guidance

(795). Thus, growth factors that are involved in angiogenesis in the

pituitary may be relevant to pituitary plasticity as well.

Pro- and anti-angiogenic factors in the anterior pituitary

In general, angiogenesis depends on the balance of pro-angiogenic

and anti-angiogenic growth factors, which are produced by endo-

thelial and tissue cord cells, as well as on remodelling of the extra-

cellular matrix (ECM) to allow endothelial migration. The most

important pro-angiogenic factors are VEGF (and different VEGF-like

molecules), angiopoietins, FGFs, TGF-a, proliferin, platelet-derived

growth factor, IL-8, TGF-b1, and placenta growth factor (796, 797).

Anti-angiogenic factors are thrombospondin-1 (a matrix glycopro-

tein), angiostatin (a cleaved product of plasminogen), endostatin (a

cleaved part of collagen XVIII), cleaved PRL and GH fragments, and

cleaved perlecan (796). Some angiogenesis inhibitors are intrinsic to

endothelial cells such as soluble VEGFR-1, vascular endothelial

growth inhibitor (VEGI) and vasoinhibins (798). In addition, many

other substances have been found to exert angiogenic (erythropoie-

tin, angiotensin II, ETs, adrenomedullin, proadrenomedullin N-termi-

nal 20 peptide, urotensin II, leptin, adiponectin, resistin, NPY, VIP,

PACAP, and Substance P) and anti-angiogenic (somatostatin, natri-

uretic peptides and neurokinin B) activity (799, 800).

Many of the known angiogenic and anti-angiogenic substances

have been localised in the anterior pituitary, but their actual effec-

tiveness on vascularity and permeability in the gland has only been

documented for part of them.

FGF

Historically, FGF-1 and FGF-2 were the first characterised angio-

genic factors, but among the more than 20 members of the FGF

family, several other FGFs are angiogenic. FGFs are pleiotrophic:

they stimulate endothelial cell proliferation and migration, the plas-

min–plasminogen activator system, matrix metalloproteinase (MMP)

shedding, integrin and cadherin receptor expression, and intercellu-

lar gap-junction communication (801). MMPs degrade ECM and

release several growth factors sequestered in the ECM. FGFs partici-

pate in vessel assembly, sprouting and vessel branching. The pecu-

liarity of FGFs is that they interact with several binding partners,

either located on the endothelial cell surface, or in the ECM, or in

the extracellular space as freely moving molecules (801). These

molecules strongly affect the angiogenic potential of FGFs. Some of

the strongest partners are heparan sulfate proteoglycans (HSPGs),

without which FGFs are not active (802–804).

The association of FGF-2 with basal membrane in the anterior

pituitary has been clearly demonstrated. In the adult rat pituitary,

FGF-2 has been located mainly in FS cells and in a subpopulation

of marginal cells of the intermediate lobe facing the pituitary cleft
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(751). However, during embryonic development of the rat, FGF was

localised within all cells of the pituitary (805). Interestingly, FGF

from gonadotrophs appears to play a significant role. In 15–20-

day-old rat fetuses, dense foci of extracellular FGF were observed

at sites of capillary penetration, in the vicinity of partially disrupted

gonadotrophs (805). Also, in the adult pituitary, disrupted gonado-

trophs containing FGF-2 have been detected, particularly in the

postero-lateral zone, closely located near the meningeal mem-

branes, which could represent a site for invading vessels (see

below).

VEGF

This growth factor was originally identified in FS cell-conditioned

medium (44). It is a potent endothelial cell mitogen, stimulates

endothelial cell migration and increases fenestration of endothelial

cells and, in this way, capillary permeability. VEGF is also found in

all hormonal cell types of the pituitary, particularly GH and POMC

cells, as well as in various cell lines derived from these cell types

(806). The VEGF isoforms, VEGF164 and VEGF120, are expressed in

the anterior and neural lobes but not in the intermediate lobe

(807). The VEGF receptors flt-1, flk-1 and neuropilin-1 are also

expressed in the pituitary (806). Flt-1 was detected in endocrine

cells, whereas flk-1 and neuropilin-1 were found to be exclusively

expressed in endothelial cells (808).

It is remarkable that VEGF is probably not involved in the initial

development of the portal blood vessels to the pituitary, since the

formation of portal vessels begins at E13.5, which is 2 days earlier

that the first appearance of VEGF-A mRNA in the pars tuberalis

and the rostral region of the pars distalis (809). The appearance of

VEFG mRNA coincides with the penetration of portal vessels into

the pars distalis to connect with the secondary capillary plexus

there. In the pars tuberalis, VEGF is located in TSH and FS cells

whereas, in the pars distalis, VEGF is located initially in ACTH cells

and later also in subpopulations of all cell types (809).

Whereas hypoxia is a strong stimulus for VEGF up-regulation in

many tissues, in order to cope with hypoxia and ischemia, it

remains to be seen whether this stimulus is also operative in the

pituitary. The question seems relevant because the tissue is fed by

a portal system that is already less saturated with oxygen.

Oestrogens

Oestrogens strongly up-regulate VEGF expression in the anterior

pituitary (807). VEGF has therefore been studied in relation to neo-

vascularisation in oestrogen-induced pituitary tumourigenesis and

in human pituitary adenomas (807, 810). Oestrogen-induced rat

pituitary tumours and GH3 pituitary tumour cells express VEGF164

and coreceptor, neuropilin-1. VEGF164 and neuropilin-1 mRNA and

protein levels are significantly higher in tumours and in GH3

tumour cell line (807). VEGF and its receptor Flk-1 are expressed at

much higher levels than normal in human nonfunctioning pituitary

tumours (808). Also, FGF-2 expression is increased by oestrogen, at

least in rats susceptible to develop prolactinomas (e.g. Fisher 344

rats) (811). In the latter rats, oestrogen treatment rapidly leads to

lactotroph hyperplasia and causes high FGF-2 expression in the

cytosol of gonadotrophs, located in the postero-lateral zone near

the intermediate lobe, close to the meningeal blood vessels. The

postero-lateral zone is known to be home to many gonadotrophs

and lactotrophs and is also the area in which FS cells start to

develop during postnatal development (665). Oestrogen treatment

leads to neovascularisation growing into the anterior pituitary from

these meningeal vessels bordering the postero-lateral zone. ECM-

associated FGF was also revealed in foci at the postero-lateral edge.

These data clearly demonstrate FGF- and VEGF-mediated angiogen-

esis in oestrogen-induced tumourigenesis in rats predisposed to

tumour development.

EG-VEGF

An exciting question is whether the pituitary expresses the endo-

crine gland-derived vascular endothelial growth factors (EG-VEGF or

prokineticin), as has recently been discovered in steroid-producing

endocrine glands, the brain, gastrointestinal system and even

immune cells (812). These peptides have a wide range of functions

but stimulate the endothelial cells in various endocrine glands par-

ticularly well (813). However, no data are as yet available for sub-

stantial pituitary expression. EG-VEGF cooperates with VEGF in the

formation of capillary fenestrations, which, as in other endocrine

tissues, are well developed in the pituitary (814).

Angiopoietins

The anterior pituitary also expresses angiopoietins (Ang) and their

receptor Tie2 (815). These peptides act either as agonist (Ang-1

and Ang-4) or antagonist (Ang-3) in vascular expansion and sur-

vival. Ang-2 can stimulate or inhibit angiogenesis depending on

contexts. Ang-1 promotes endothelial cell survival (protection from

apoptosis) through the Akt pathway and stimulates endothelial

cell migration, sprouting and tube formation. The cells that pro-

duce Ang-1 and Ang-2 in the anterior pituitary are the gonado-

trophs, which is in striking contrast with the neural lobe where

strong expression is seen in endothelial cells (816). It is remark-

able that, in addition to angiopoietins, gonadotrophs produce

FGF-2 and VEGF, which may be relevant to the neovascularisation

from meningeal vessels into the postero-lateral zone of the ante-

rior pituitary, known to be rich in gonadotrophs and lactotrophs

(see earlier in this section).

Pituitary tumour transforming gene (PTTG)

PTTG, an oncogene of which the gene product is a cytoplasmic

and nuclear protein (806). It is expressed in low level in many tis-

sues but is strongly up-regulated in many tumours, including

pituitary adenomas. It displays a powerful angiogenic effect.

Important targets of PTTG are FGF-2 and VEGF, which are both

up-regulated. PTTG itself is up-regulated by FGF-2 and oestrogen

(817).
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TGF-b1

TGF-b1 is inhibitory or stimulatory on angiogenesis, depending on

the receptor types expressed on endothelial cells. TGF-b up-regu-

lates VEGF production in the pituitary (753).

Trombospondin-1 (TSP-1)

The anti-angiogenic factor trombospondin-1 (TSP-1) has been

detected in anterior pituitary endothelial cells. Levels go down

after oestrogen treatment in vivo and in purified pituitary endo-

thelial cells in culture (818). TSP-1 depresses proliferation and

migration of pituitary-derived endothelial cells in primary cultures.

These data suggest that oestrogen-induced tumour growth may

be promoted by down-regulation of locally produced anti-angio-

genic TSP-1.

Cleaved PRL and GH

Endothelial cells have been shown to produce PRL and GH that

exert an autocrine ⁄ paracrine angiogenic effects, although this

remains to be studied in the pituitary. Most interestingly, PRL and

GH can be cleaved by various proteases to smaller fragments of

14–17 kDa (819). Recently, still another cleaved derivative of PRL

and GH has been discovered that is specifically processed by the

metalloprotease bone morphogenetic protein-1 (BMP-1). The latter

cleaves PRL between Ala-159 and Asp-160, turning the molecule

from an angiogenic into an anti-angiogenic substance (820). The

latter PRL fragment is distinct from the cleaved PRL that we previ-

ously identified in the pituitary and is mitogenic for gonadotrophs

and thyrotrophs (see above).

Role of basement membrane and ECM

The basement membrane (BM) is a thin sheet consisting of a mesh-

work of type IV collagen, laminin, nidogen and HSPG, to which epi-

thelial, endothelial cells or stromal cells are attached. BM therefore

provides structural support for cells and makes a barrier between

different tissue compartments. Collagen type IV confers structural

stability, whereas HSPGs cross-link the collagen type IV and lami-

nins. Many isoforms of the different families that compose the BM

exist, so that BM can vary substantially from one tissue to another.

In addition, there are several minor components, such as osteonec-

tin, fibulins, collagen types VIII, XV and XVIII, and thrombospondin-

1 and -2 (821).

In the rat pituitary, laminin, the HSPG perlecan, and type IV col-

lagen. are found inside nonhormonal cells whereas laminin and, to

a lesser extent, type IV collagen are found in hormonal cells, sug-

gesting that hormonal cells participate to the elaboration of BM

(822). Laminin is detected in gonadotrophs, thyrotrophs and corti-

cotrophs, little is found in lactotrophs but it is absent in somato-

trophs, suggesting differential production according to cell type.

Laminin is found in Golgi and secretory vesicles, indicating export

of the protein. The pituitary expresses high levels of perlecan,

particularly in the subendothelial region of sinusoidal vessels (823)

and also shows sequestration of FGF-2 in BM (811, 824).

Increasing evidence suggests that BM has also an important

functional role in cell physiology, differentiation and homeostasis.

BM laminin can signal to cell surface adhesion receptors, such as

integrins, which can also function in concert with growth factors

(821). The highly glycosylated nature of BM and the heparin-bind-

ing feature of HSPGs make BM a high-affinity and high-capacity

binding place of growth factors, like VEGF and FGF-2 (821). Lami-

nins are the functionally active components, with different iso-

forms generating different signals in different tissues (821). In the

pituitary, laminin affects PRL and gonadotrophin secretion and

collagen IV has been reported to affect the release of prolactin

(825).

Assuming that the BM signals to the cord cells, it is clear

that regulatory mechanisms must exist that modulate this signal-

ling, particularly when the tissue has to remodel. MMP isoforms

play an essential role in remodelling BM. This is particularly

prominent in pituitary adenomas in which very high levels of

active MMP-2 and MMP-9 and low levels of tissue inhibitor of

metalloproteinases-1 have been reported (825). It has also been

shown that MMPs can release growth factors sequestered in the

ECM, that, in turn, stimulate pituitary cell proliferation and hor-

mone secretion (825). Another relevant proteases is BMP-1 (820).

It plays an important role in the deposition of fibrous ECM.

Moreover, it processes perlecan to produce a potent anti-angio-

genic factor. BMP-1 activates growth factors such as TGF-b1.

BMP1 mRNA is one of the most highly elevated transcripts in

endothelial cells of tumours.

ECM and MMPs and their inhibitors play also an important role in

angiogenesis (826), which again is prominent in pituitary tumours. In

aggressive prolactinomas, expression of the polysialylated neural cell

adhesion molecule is up-regulated whereas that of the E-cadherin ⁄
catenin complex is reduced (826), indicating altered cell adhesion and

cell migration. Chronic oestrogen treatment increases gelatinase

(pro-MMP-9) levels in the pituitary of tumour-susceptible Fischer 344

rats.

Another important protein expressed in the anterior pituitary

with a potential role in modifying paracrinicity by interaction

with the ECM is connective tissue growth factor (CTGF) (827). It

is a secreted protein with a main function of promoting cell

adhesion through an integrin binding domain, the type of inter-

acting integrin being tissue-specific. Importantly, cell surface

HSPG is a necessary coreceptor, interacting with the carboxyl-

terminal domain. The latter domain also promotes fibroblast

proliferation. A von Willebrand factor domain located more

N-terminally interacts with TGF-b and in this way assists in pre-

senting TGF-b to the TGF-b type II receptor. Thus, CTGF seems

to exert context- and cell-specific effects. As shown by gene

deletion studies, the molecule is essential in the development of

mesenchymal cell lineages, but it plays also an important role in

the adult, where it is expressed in endothelia and the cerebral

cortex, consistent with a role in promoting angiogenesis and

tissue integrity (828).
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The dynamics and the spatial dimensions of autocrine
and paracrine systems

Perhaps the most difficult aspects of autocrine and paracrine

systems are the spatial dimension over which autocrine and para-

crine factors work and the dynamics of the receptor–ligand inter-

actions. These aspects are very difficult to study as ligand and

receptor densities cannot directly be altered by the investigator,

since it is the cell itself that determines them. In the case that

the ligand of a receptor is a hormone or a drug, traveling to its

target via the bloodstream, receptor-ligand dynamics follow

Michaelis–Menten kinetics. By contrast, when the ligand is an

autocrine substance that is released by the cell in the vicinity of

the surface receptors, only the molecules present in a ‘thin secre-

tion layer’ surrounding the cell, are relevant for the dynamics of

the receptor interaction, because all other molecules that diffuse

further are indefinitely diluted and lost for receptor interaction

(829). One has to consider competition between the ligand cap-

ture avidity of the receptor and the diffuse rate into the bulk

environment to determine the efficacy of signalling, rather than

the KD of the receptor and ligand concentration. A situation lead-

ing to equilibrium between a receptor and its ligand solubilised in

the bulk environment, as is the case for pharmacological interac-

tions, is not existing in autocrine interactions, and, hence, the

kinetic model used to describe the interaction quantitatively must

be different. For the TGF-a–EGF-R autocrine system it has been

demonstrated by biocomputing modelling that the dynamics of

cellular responses are directly proportional to the ratio of the rate

of ligand production and the rate of receptor production (386).

Surprisingly, with a ratio of < 0.2, no ligand was found free in

the medium, but up to 20% of the EGF-Rs were occupied. Thus,

an EGF autocrine system functions by immediately capturing the

released ligand and hence the ligand does not reach neighbouring

cells and is often undetectable in the culture medium. When this

ratio was experimentally increased, the ligand could be found in

the medium. It was found, however, that various EGF autocrine

systems operate at a ratio of ligand : receptor production rates

much smaller than 0.2 (388), indicating that EGF-R autocrine

systems are regulated primarily through ligand availability and

capture and not through regulation of receptor number. The latter

is in clear contrast with what usually happens in classical hor-

monal or pharmacological systems.

Signalling in autocrine systems appears to be strongly influ-

enced by extracellular molecules that bind the released ligand. The

TGF-a–EGF-R loop, for example, was found to only transiently

stimulate the intracellular transduction pathway when TGF-a was

released and allowed to be bound by certain molecules in the

microenvironment, whereas the pathway was activated over a

prolonged period when EGF-R could recapture the released TGF-a
(830). Furthermore, if several ligands compete for binding to the

receptor, the type of ligand will be important for the magnitude

and duration of the response. For example, heparin-binding EGF

(HB-EGF) and TGF-a are both agonists at the EGF-R, but the for-

mer and not the latter binds to HSPG present in the extracellular

microenvironment; consequently, the dynamics of the same cell

through the same EGF-R will be different when stimulated with

TGF-a than with HB-EGF, even when both are shed at the same

rate.

Another important consequence of the peculiar dynamics of

autocrine systems is the fact that neutralisation of the ligand-

receptor signalling by the use of extracellular compounds

requires unexpectedly high doses of blocking agent of up to

eight orders of magnitude greater than the KD for ligand binding

to the receptors) (831) and that the efficacy of signalling disrup-

tion is much higher when compounds are used that bind the

receptor than when substances are used that bind the ligand

(831, 832). Complete annihilation of the autocrine response is

not obtainable until all bulk ligand has been bound by the

administered compound. Moreover, annihilation can only occur

when the association rate constant of the compound for binding

the ligand is much higher than the association rate constant of

the autocrine ligand for its cellular receptor (831). The latter

observations are of paramount importance for setting-up experi-

ments as well as strategies aimed to target autocrine systems in

the treatment of disease.

In a regular experimental set-up, it is very difficult to distin-

guish between a pure autocrine effect of a signal on a receptor

expressed on the same cell and a paracrine effect on similar

receptors on neighbouring cells. Neither is it possible to evaluate

whether both mechanisms are operating and what the conse-

quences are for cell physiology. As an autocrine agent, a signal

has an advantage compared with its action as paracrine signal:

it has a spatial proximity advantage (i.e. when examined in a

temporal sequence, the autocrine effects occur before the para-

crine effects due to a shorter distance between site of release

and site of primary action in case of the autocrine situation). In

addition, there is a concentration gradient from the autocrine

compartment (high concentration) towards the paracrine com-

partment (low concentration), which is important to consider if

exogenous molecules can interfere with this gradient. Recently, a

mathematical model was proposed that allowed to distinctions to

be made between auto- and paracrine actions by registering the

effect of increasing the volume distribution, in which the

secreted signal diffuses, on the auto ⁄ paracrine action under

study (a macrophage cholesterol efflux model in monolayer)

(833). It was found that only the paracrine contribution was

affected by an increase in distribution volume, presumably

because the autocrine action occurs too closely to the cell sur-

face and cannot be affected by increasing the bulk volume sur-

rounding the cells. Thus, the relative importance of autocrine

and paracrine mediation depends on the size of the local distri-

bution volume. These considerations have never been made in

the pituitary field and may have great repercussions on inter-

preting data obtained with monolayer cultures versus data

obtained with aggregate cell cultures. The above findings also

predict that tissue architecture, ECM elements and size of inter-

cellular spaces and lacunas may profoundly affect cell physiology

based on autocrine and paracrine mediators.
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Conclusions

When the first hypothalamic-releasing and inhibiting hormones

were discovered and their structure identified some 30 years ago,

no one realised that the hierarchy of one releasing hormone–one

pituitary hormone–one pituitary cell type was an over-simplification

of the hypothalamic hypophysiotrophic hormonal system. Although

the rigid boundaries between endocrine systems and neural systems

were already fading due to the growing impact of neuroendocrinol-

ogy, it was not realised that the correct release of each hormone is

an integrative phenomenon in which a plethora of signals partici-

pates. Many hormones from the hypothalamus, endocrine feedback

glands, fat tissue, the immune system and metabolic tissues have

been discovered to signal to the pituitary. An astonishing discovery

was the masses of regulatory signals that are generated within the

pituitary itself, influencing pituitary function either in an indepen-

dent fashion or by modulating the action of other intra- and extra-

pituitary signals.

Several autocrine loops have been discovered that operate in a

particular cell type. The best studied autocrine systems are: (i) the

stimulatory VIP and galanin, and the inhibitory ET and PRL loops in

the lactotrophs; (ii) the stimulatory activin and inhibitory inhibin

loops in gonadotrophs; (iii) the inhibitory NMB loop in thyrotrophs;

and (iv) cytokine loops in FS cells. Ghrelin in somatotrophs, and

CRH and urocortin II in corticotrophs may also form stimulatory

autocrine loops. Well explored paracrine systems are: (i) the

gonadotroph–lactotroph axis, of which the mediators remain

incompletely defined but could be in part angiotensin II, PACAP,

N-POMC and calcitonin; (ii) the gonadotroph–somatotroph axis,

which is particularly well developed in fish; (ii) a cholinergic system

in corticotrophs targeting somatotrophs, lactotrophs and FS cells;

(iii) a GABA-ergic system in somatotrophs; (iv) several inhibitory

systems targeting gonadotrophs (e.g. galanin and PRL from lacto-

trophs and b-endorphin from corticotrophs); and (v) several cyto-

kines, such as IL-6, LIF, MIF, follistatin and NO, produced in FS cells

and targeting several cell types, and annexin-1 from FS cells medi-

ating the rapid negative feedback of glucocorticoid on ACTH secre-

tion. Many other autocrine and paracrine interactions may exist on

the basis of the presence and pharmacology of bioactive substances

in particular cell types, but these still need to be characterised.

It is clear that the response to these different signals is not sim-

ply the sum of them but that there is integration of hypothalamic,

peripheral and local signals that can differ highly according to con-

text. Autocrine and paracrine systems associate in networks that

are recruited to establish functional changes. One of these networks

consists of VIP–galanin–TGF-b1–TGF-b3–bFGF that is activated by

oestrogen to establish its action on PRL release and lactotroph

expansion. Networking ensures the positive feedforwarding neces-

sary to elicit the required functional activity. Another integrative

system is based on EGF-R transactivation by various GPCR-medi-

ated signals. FS cells have their own cytokine network but can also

interact with other networks, such as with the paracrine cholinergic

and GABA-ergic systems and the endocrine adrenergic system. FS

cells also come in interplay with the oestrogen-dependent autocrine

systems in lactotrophs. Many examples demonstrate that autocrine

and paracrine systems enable context-dependent signalling and bio-

computational models have been presented (830). Responses seen

in the presence of adrenal steroids can reverse in the absence of

the latter, such as the GH response to acetylcholine and angioten-

sin II and the PRL response to acetylcholine. Other responses

depend on the presence of thyroid hormone, such as the PRL

response to acetylcholine. Still other responses, such as responses

to galanin, VIP, calcitonin, oxytocin and gastrin-releasing peptide,

require the presence of oestrogens. The direction of a response

(stimulation or inhibition) may depend on the concentration of oes-

trogen such as the response of lactotrophs to ETs. Certain receptor

subtypes mediate an inhibitory response to GABA, whereas others

mediate a stimulatory one.

Integration of signalling in the pituitary is also illustrated by the

fact that almost all autocrine and paracrine activities are up- or

down-regulated during the physiological change that has an impact

on the hormone output during that change, either by changing the

expression level of the ligand or by changing the expression level

of the receptors, or both. Moreover, the same paracrine factor can

be expressed in different cell types, but the change in its expression

occurs only in the cell type that is relevant for supporting the

changing pituitary function. An example is leptin, which is

expressed in all cell types except lactotrophs, but the change in

expression that occurs at pro-oestrous is only seen in somato-

trophs, consistent with the surge in GH release at that time. Also,

gender differences in hormone output are often based on gender

differences in the activity of the underlying paracrine system, such

as is the case of the galanin system in lactotrophs.

The multiplicity of paracrine factors can be viewed as a biological

system aimed at preserving stability in a complex integrating tissue

such as the pituitary. Maintaining a certain level of basal hormone

release, particularly in somatotrophs and lactotrophs, which are

both under substantial hypothalamic inhibitory tone, may also

profit from underlying paracrine mechanisms. However, the pitui-

tary is also a plastic tissue that needs to adapt to many life-essen-

tial changes such as during the reproductive cycle, stress, metabolic

needs, day–night rhythm and changes in energy stores and needs.

Changes in hormone output are imposed by the hypothalamic and

peripheral hormone signals but are executed in the pituitary. A cor-

rect response needs a microenvironment that is well stabilised

under basal conditions but can adapt and fine-tune activity when

necessary. The latter can occur when the system disposes of auto-

crine loops that together create a positive feedforward mechanism

as well as negative feedbacks.

Nevertheless, despite enormous progress, many questions remain

open. For example, although AVP is synthesised in corticotrophs

and the potentiation of the ACTH response to CRH by AVP has

been extensively studied, it is not known whether AVP from the

hypothalamus is the player here or whether it is (also) AVP from

corticotrophs. The pituitary displays the highest expression level of

various putative paracrine ⁄ autocrine factors such as NMU and CNP,

yet the function of these peptides in the pituitary remains elusive.

Certain peptides, such as the bombesin-like peptide gastrin-releas-
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ing peptide, do not show up the endogenous action that is pre-

dicted by their pharmacology (183). There are many pituitary pep-

tides that show various effects when added to test systems but for

which the endogenous action has not been convincingly demon-

strated yet, such as neurotensin, prodynorphin-derived peptides,

enkephalin, adrenomedullin, CGRP, NPY, natriuretic peptides, leptin,

neuropeptide B and W, calcitonin-receptor stimulating peptide,

orexins, and adipokines. Also, the role of local classical releas-

ing ⁄ inhibiting hormones TRH, GnRH, GHRH and somatostatin made

within the pituitary remains to be specified. Peptides for which an

autocrine role has been shown may also function as paracrine

factors because receptors for these peptides are not only expressed

by the cell of origin, but also by other cell types, although whether

this also occurs remains unexplored. In gonadotrophs, NPY, CNP,

PACAP and leptin are putative autocrine factors but such a role

remains to be demonstrated by direct experimental evidence.

The ultimate question is whether paracrinicity can lead to

pathology, particularly with respect to pituitary tumourigenesis. To

date, there is no evidence for a primary causal role of disturbed

paracrinicity in the pathogenesis of pituitary adenoma but there is

indirect evidence for a role in the progression of these tumours.

Pituitary adenomas may over-express certain growth factors or

their receptors such as FGF-2, EGF, TGF-a, EGF-R, Notch-3, FGF-R1,

and VEGF (834–838). Other growth factors, known to be antiprolif-

erative, are down-regulated, such as sonic hedgehog (839) and GFG

protein, which is encoded by a bFGF antisense gene (840). The clini-

cal observation of paradoxical hormone secretory responses may

also be explained by abnormal expression levels of certain peptide

receptors in the tumours (834). It therefore appears that pituitary

adenomas may be growing faster by both increased growth factor

stimulation and the decreased availability of endogenous antiprolif-

erative protection mechanisms.

It is hoped that the story of 30 years of cellular pituitary cross-

talk will inspire future approaches for medical treatment by realis-

ing that the basis of disease, and of medically altering its course, is

made by a multiplicity of agents and not by solitary or protagonist

factors alone. Biophilosophically spoken at least, we have learned

that cells determine their fate themselves by recruiting many

resources in the microenvironment rather than by obeying only

gods acting from remote places.
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Menschen. Wien: Maudrich, 1953.

19 Erspamer V, Asero B. Identification of enteramine, the specific hormone

of the enterochromaffin cell system, as 5-hydroxytryptamine. Nature

1952; 169: 800–801.

20 Pearse AG. Common cytochemical and ultrastructural characteristics

of cells producing polypeptide hormones (the APUD series) and their

relevance to thyroid and ultimobranchial C cells and calcitonin. Proc R

Soc Lond B Biol Sci 1968; 170: 71–80.

21 Oberndorfer S. Karzinoide Tumoren des Dunndarms. Frank Z Pathol

1907; 1: 426–429.

22 Modlin IM, Shapiro MD, Kidd M. Siegfried oberndorfer: origins and

perspectives of carcinoid tumors. Hum Pathol 2004; 35: 1440–1451.

23 Feyrter F, Klaus U. Uber den Nachweis eines blutdrucksteigernden Stof-

fes im Carcinoid. Virchows Arch 1936; V298: 187–194.

24 Selberg W. Beitrag zur Klinik und Pharmakologie der Darmcarcinoide.

J Mol Med 1941; V20: 1271–1273.

25 Modlin IM, Shapiro MD, Kidd M. Carcinoid tumors and fibrosis: an

association with no explanation. Am J Gastroenterol 2004; 99: 2466–

2478.

26 Hallen A. Fibrosis in the carcinoid syndrome. Lancet 1964; 15: 746–747.

27 Susanne VE, Johan G. Historical, current and future perspectives on

gastrointestinal and pancreatic endocrine tumors. Virchows Arch 2006;

448: 1–6.

28 Aloe L. Rita Levi-Montalcini: the discovery of nerve growth factor and

modern neurobiology. Trends Cell Biol 2004; 14: 395–399.

29 Hamburger V. The effects of wing bud extirpation on the development

of the central nervous system in chick embryos. J Exp Zool 1934; 68:

449–494.

Paracrinicity 47

ª 2008 The Author. Journal Compilation ª 2008 Blackwell Publishing Ltd, Journal of Neuroendocrinology, 20, 1–70



30 Cowan WM, Hamburger V, Levi-Montalcini R. The path to the discovery

of nerve growth factor. Ann Rev Neurosci 2001; 24: 551–600.

31 Bueker ED. Implantation of tumors in the limbfield of the embryonic

chick and developmental response in the lumbosacral nervous system.

Anat Rec 1948; 102: 369–375.

32 Levi-Montalcini R, Cohen S. In vitro and in vivo effects of a nerve

growth-stimulating agent isolated from snake VENOM. Proc Natl Acad

Sci USA 1956; 42: 695–699.

33 Cohen S. Purification and metabolic effects of a nerve growth-promot-

ing protein from snake venom. J Biol Chem 1959; 234: 1129–1137.

34 Angeletti RH, Bradshaw RA. Nerve growth factor from mouse submax-

illary gland: amino acid sequence. Proc Natl Acad Sci USA 1971; 68:

2417–2420.

35 Cohen S. Isolation of a mouse submaxillary gland protein accelerating

incisor eruption and eyelid opening in the new-born animal. J Biol

Chem 1962; 237: 1555–1562.

36 Savage CR Jr, Inagami T, Cohen S. The primary structure of epidermal

growth factor. J Biol Chem 1972; 247: 7612–7621.

37 Gregory H. Isolation and structure of urogastrone and its relationship

to epidermal growth factor. Nature 1975; 257: 325–327.

38 Starkey RH, Cohen S, Orth DN. Epidermal growth factor: identification

of a new hormone in human urine. Science 1975; 189: 800–802.

39 Cohen S, Carpenter G. Human epidermal growth factor: isolation and

chemical and biological properties. Proc Natl Acad Sci USA 1975; 72:

1317–1321.

40 Armelin HA. Pituitary extracts and steroid hormones in the control of

3T3 cell growth. Proc Natl Acad Sci USA 1973; 70: 2702–2706.

41 Gospodarowicz D, Moran JS. Mitogenic effect of fibroblast growth fac-

tor on early passage cultures of human and murine fibroblasts. J Cell

Biol 1975; 66: 451–457.

42 Bohlen P, Baird A, Esch F, Ling N, Gospodarowicz D. Isolation and par-

tial molecular characterization of pituitary fibroblast growth factor.

Proc Natl Acad Sci USA 1984; 81: 5364–5368.

43 Thomas KA, Rios-Candelore M, Gimenez-Gallego G, Disalvo J, Bennett

C, Rodkey J, Fitzpatrick S. Pure brain-derived acidic fibroblast growth

factor is a potent angiogenic vascular endothelial cell mitogen with

sequence homology to interleukin 1. Proc Natl Acad Sci USA 1985; 82:

6409–6413.

44 Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin-

binding growth factor specific for vascular endothelial cells. Biochem

Biophys Res Commun 1989; 161: 851–858.

45 Brazeau P, Vale W, Burgus R, Ling N, Butcher M, Rivier J, Guillemin R.

Hypothalamic polypeptide that inhibits the secretion of immunoreactive

pituitary growth hormone. Science 1973; 179: 77–79.

46 Hokfelt T, Johansson O, Efendic S, Luft R, Arimura A. Are there

somatostatin-containing nerves in the rat gut? Immunohistochemical

evidence for a new type of peripheral nerves. Experientia 1975; 31:

852–854.

47 Unger RH, Orci L. Possible roles of the pancreatic D-cell in the normal

and diabetic states. Diabetes 1977; 26: 241–244.

48 Larsson LI, Goltermann N, de Magistris L, Rehfeld JF, Schwartz TW.

Somatostatin cell processes as pathways for paracrine secretion. Sci-

ence 1979; 205: 1393–1395.

49 Rubin LL, de Sauvage FJ. Targeting the Hedgehog pathway in cancer.

Nat Rev Drug Discov 2006; 5: 1026–1033.

50 Isaacs A, Lindenmann J. Virus interference. I. The interferon. Proc R Soc

Lond B Biol Sci 1957; 147: 258–267.

51 Kishimoto T. Interleukin-6. From basic science to medicine: 40 years in

immunology. Ann Rev Immunol 2005; 23: 1–21.

52 Taniguchi T, Matsui H, Fujita T, Takaoka C, Kashima N, Yoshimoto R,

Hamuro J. Structure and expression of a cloned cDNA for human inter-

leukin-2. Nature 1983; 302: 305–310.

53 Hirano T, Yasukawa K, Harada H, Taga T, Watanabe Y, Matsuda T, Kash-

iwamura Si Nakajima K, Koyama K, Iwamatsu A, Tsunasawa S, Sakiy-

ama F, Matsui H, Takahara Y, Taniguchi T, Kishimoto T. Complementary

DNA for a novel human interleukin (BSF-2) that induces B lymphocytes

to produce immunoglobulin. Nature 1986; 324: 73–76.

54 Sachs L, Lotem J. The network of hematopoietic cytokines. Proc Soc

Exp Biol Med 1994; 206: 170–175.

55 Oppenheim JJ. Cytokines: past, present, and future. Int J Hematol

2001; 74: 3–8.

56 Sherry B, Cerami A. Cachectin ⁄ tumor necrosis factor exerts endocrine,

paracrine, and autocrine control of inflammatory responses. J Cell Biol

1988; 107: 1269–1277.

57 Dardenne M, Savino W. Interdependence of the endocrine and immune

systems. Adv Neuroimmunol 1996; 6: 297–307.

58 Spangelo BL, Judd AM, Call GB, Zumwalt J, Gorospe WC. Role of the

cytokines in the hypothalamic-pituitary-adrenal and gonadal axes.

Neuroimmunomodulation 1995; 2: 299–312.

59 Besedovsky HO, Rey Ad. Physiology of psychoneuroimmunology: a per-

sonal view. Brain Behav Immun 2007; 21: 34–44.

60 Kelley KW. From hormones to immunity: the physiology of immunol-

ogy. Brain Behav Immun 2004; 18: 95–113.

61 de Wied D. The Neuropeptide Story: Geoffrey Harris Lecture, Budapest,

Hungary, July 1994. Front Neuroendocrinol 1997; 18: 101–113.

62 Klavdieva MM. The history of neuropeptides. Front Neuroendocrinol

1995; 16: 293–321.

63 Hokfelt T, Pernow B, Wahren J. Substance P: a pioneer amongst neuro-

peptides. J Int Med 2001; 249: 27–40.

64 Rozengurt E. Neuropeptides as growth factors for normal and cancer-

ous cells. Trends Endocrinol Metab 2002; 13: 128–134.

65 Carmeliet P, Denef C. Immunocytochemical and pharmacological evi-

dence for an intrinsic cholinomimetic system modulating prolactin and

growth hormone release in rat pituitary. Endocrinology 1988; 123:

1128–1139.

66 Carmeliet P, Denef C. Synthesis and release of acetylcholine by normal

and tumoral pituitary corticotrophs. Endocrinology 1989; 124: 2218–

2227.

67 Kurzen H, Schallreuter KU. Novel aspects in cutaneous biology of ace-

tylcholine synthesis and acetylcholine receptors. Exp Dermatol 2004;

13: 27–30.

68 Mayerhofer A, Kunz L. A non-neuronal cholinergic system of the ovar-

ian follicle. Ann Anat 2005; 187: 521–528.

69 Kawashima K, Fujii T. Expression of non-neuronal acetylcholine in lym-

phocytes and its contribution to the regulation of immune function.

Front Biosci 2004; 9: 2063–2085.

70 Racke K, Matthiesen S. The airway cholinergic system: physiology and

pharmacology. Pulm Pharmacol Ther 2004; 17: 181–198.

71 Wessler I, Kirkpatrick CJ, Racke K. Non-neuronal acetylcholine, a locally

acting molecule, widely distributed in biological systems: expression

and function in humans. Pharmacol Ther 1998; 77: 59–79.

72 Delarue C, Contesse V, Lenglet S, Sicard F, Perraudin V, Lefebvre H,

Kodjo M, Leboulenger F, Yon L, Gallo-Payet N, Vaudry H. Role of neuro-

transmitters and neuropeptides in the regulation of the adrenal cortex.

Rev Endocr Metab Disord 2001; 2: 253–267.

73 Lauder JM. A role for serotonin in the mammary gland. Dev Cell 2004;

6: 165.

74 Matsuda M, Imaoka T, Vomachka AJ, Gudelsky GA, Hou Z, Mistry M,

Bailey JP, Nieport KM, Walther DJ, Bader M, Horseman ND. Serotonin

regulates mammary gland development via an autocrine-paracrine

loop. Dev Cell 2004; 6: 193–203.

75 Slominski A, Wortsman J, Tobin DJ. The cutaneous serotoninergic ⁄ mel-

atoninergic system: securing a place under the sun. FASEB J 2005; 19:

176–194.

48 C. Denef

ª 2008 The Author. Journal Compilation ª 2008 Blackwell Publishing Ltd, Journal of Neuroendocrinology, 20, 1–70



76 Williams M. Purine receptors in mammalian tissues: pharmacology and

functional significance. Ann Rev Pharmacol Toxicol 1987; 27: 315–345.

77 van SM, Trevisani M, Vellani V, De Petrocellis L, Schiano MA, Campi B,

McNaughton P, Di Geppetti PM, V. Anandamide acts as an intracellular

messenger amplifying Ca2+ influx via TRPV1 channels. EMBO J 2005;

24: 3026–3037.

78 Yetik-Anacak G, Catravas JD. Nitric oxide and the endothelium: history

and impact on cardiovascular disease. Vascular Pharmacol 2006; 45:

268–276.

79 Bosenberg MW, Massague J. Juxtacrine cell signaling molecules. Curr

Opin Cell Biol 1993; 5: 832–838.

80 Re RN. Toward a theory of intracrine hormone action. Regul Pept

2002; 106: 1–6.

81 Herlant M. The cells of the adenohypophysis and their functional sig-

nificance. Int Rev Cytol 1964; 17: 299–382.

82 Allaerts W, Carmeliet P, Denef C. New perspectives in the function of

pituitary folliculo-stellate cells. Mol Cell Endocrinol 1990; 71: 73–81.

83 Nakane PK. Classifications of anterior pituitary cell types with immuno-

enzyme histochemistry. J Histochem Cytochem 1970; 18: 9–20.

84 Hymer WC, Kraicer J, Bencosme SA, Haskill JS. Separation of somato-

trophs from the rat adenohypophysis by velocity and density gradient

centrifugation. Proc Soc Exp Biol Med 1972; 141: 966–973.

85 Hymer WC, Evans WH, Kraicer J, Mastro A, Davis J, Griswold E. Enrich-

ment of cell types from the rat adenohypophysis by sedimentation at

unit gravity. Endocrinology 1973; 92: 275–287.

86 Snyder G, Hymer WC, Snyder J. Functional heterogeneity in somato-

trophs isolated from the rat anterior pituitary. Endocrinology 1977;

101: 788–799.

87 Denef C, Hautekeete E, Rubin L. A specific population of gonadotrophs

purified from immature female rat pituitary. Science 1976; 194: 848–

851.

88 Siperstein E, Nichols CW Jr, Griesbach WE, Chaikoff IL. Cytological

changes in the rat anterior pituitary from birth to maturity. Anat Rec

1954; 118: 593–619.

89 Ojeda SR, Ramirez VD. Plasma level of LH and FSH in maturing rats:

response to hemigonadectomy. Endocrinology 1972; 90: 466–472.

90 Dohler KD, Wuttke W. Serum LH, FSH, prolactin and progesterone from

birth to puberty in female and male rats. Endocrinology 1974; 94:

1003–1008.

91 Denef C, Hautekeete E, De Wolf A, Vanderschueren B. Pituitary basoph-

ils from immature male and female rats: distribution of gonadotrophs

and thyrotrophs as studied by unit gravity sedimentation. Endocrinol-

ogy 1978; 103: 724–735.

92 Denef C, Hautekeete E, Dewals R. Monolayer cultures of gonadotrophs

separated by velocity sedimentation: heterogeneity in response to lutein-

izing hormone-releasing hormone. Endocrinology 1978; 103: 736–747.

93 Denef C. Functional heterogeneity of separated dispersed gonadotropic

cells. In: Jutisz M, McKerns KW, eds. Synthesis and Release of Adeno-

hypophyseal Hormones. New York, NY: Plenum Press, 1980.

94 Baes M, Allaerts W, Denef C. Evidence for functional communication

between folliculo-stellate cells and hormone-secreting cells in perifused

anterior pituitary cell aggregates. Endocrinology 1987; 120: 685–691.

95 Bilezikjian LM, Leal AMO, Blount AL, Corrigan AZ, Turnbull AV, Vale

WW. rat anterior pituitary folliculostellate cells are targets of interleu-

kin-1b and a major source of intrapituitary follistatin. Endocrinology

2003; 144: 732–740.

96 Van der Schueren B, Denef C, Cassiman JJ. Ultrastructural and func-

tional characteristics of rat pituitary cell aggregates. Endocrinology

1982; 110: 513–523.

97 Van SB, Cassiman JJ, Van Den BH. Aggregation-induced alterations in

fibroblast morphology. An ultrastructural study. Cell Tissue Res 1976;

174: 499–518.

98 Denef C, Maertens P, Allaerts W, Mignon A, Robberecht W, Swennen L,

Carmeliet P. Cell-to-cell communication in peptide target cells of ante-

rior pituitary. Methods Enzymol 1989; 168: 47–71.

99 Denef C, Andries M. Evidence for paracrine interaction between

gonadotrophs and lactotrophs in pituitary cell aggregates. Endocrinology

1983; 112: 813–822.

100 Robberecht W, Andries M, Denef C. Angiotensin II is retained in

gonadotrophs of pituitary cell aggregates cultured in serum-free

medium but does not mimic the effects of exogenous angiotensins

and luteinizing-hormone-releasing hormone on growth hormone

release. Neuroendocrinology 1992; 56: 550–560.

101 Andries M, Vande VV, Tilemans D, Bert C, Denef C. Interaction of alpha

T3-1 cells with lactotropes and somatotropes of normal pituitary

in vitro. Neuroendocrinology 1995; 61: 326–336.

102 Andries M, Denef C. Gonadotropin-releasing hormone influences the

release of prolactin and growth hormone from intact rat pituitary in

vitro during a limited period in neonatal life. Peptides 1995; 16: 527–

532.

103 Begeot M, Hemming FJ, Dubois PM, Combarnous Y, Dubois MP, Aubert

ML. Induction of pituitary lactotrope differentiation by luteinizing hor-

mone alpha subunit. Science 1984; 226: 566–568.

104 Aubert ML, Begeot M, Winiger BP, Morel G, Sizonenko PC, Dubois PM.

Ontogeny of hypothalamic luteinizing hormone-releasing hormone

(GnRH) and pituitary GnRH receptors in fetal and neonatal rats. Endo-

crinology 1985; 116: 1565–1576.

105 Jennes L. Prenatal development of gonadotropin-releasing hormone

receptors in the rat anterior pituitary. Endocrinology 1990; 126: 942–

947.

106 Van B, Seuntjens, Proesmans Denef. Presence of Gonadotropin-releas-

ing hormone (GnRH) mRNA in Rathke’s pouch and effect of the

GnRH-antagonist ORG 30276 on lactotroph development. J Neuroen-

docrinol 1998; 10: 437–445.

107 Lewis CE, Megson A, Morris JF, Charlton HM. Multiple injections of

LH-releasing hormone into hypogonadal (hpg) mice induce the appear-

ance of two morphologically distinct populations of gonadotrophs.

J Endocrinol 1986; 111: 483–493.

108 Begeot M, Morel G, Rivest RW, Aubert ML, Dubois MP, Dubois PM.

Influence of gonadoliberin on the differentiation of rat gonadotrophs:

an in vivo and in vitro study. Neuroendocrinology 1984; 38: 217–

225.

109 Kudo A, Park MK, Kawashima S. Effects of gonadotropin-releasing

hormone (GnRH) on the cytodifferentiation of gonadotropes in rat

adenohypophysial primordia in organ culture. Cell Tissue Res 1994;

276: 35–43.

110 Seuntjens E, Vankelecom H, Quaegebeur A, Vande Vijver V, Denef C.

Targeted ablation of gonadotrophs in transgenic mice affects embry-

onic development of lactotrophs. Mol Cell Endocrinol 1999; 150: 129–

139.

111 Vankelecom H, Seuntjens E, Hauspie A, Denef C. Targeted ablation of

gonadotrophs in transgenic mice depresses prolactin but not growth

hormone gene expression at birth as measured by quantitative mRNA

detection. J Biomed Sci 2003; 10: 805–812.

112 Kendall SK, Saunders TL, Jin L, Lloyd RV, Glode LM, Nett TM, Keri RA,

Nilson JH, Camper SA. Targeted ablation of pituitary gonadotropes in

transgenic mice. Mol Endocrinol 1991; 5: 2025–2036.

113 Burrows HL, Birkmeier TS, Seasholtz AF, Camper SA. Targeted ablation

of cells in the pituitary primordia of transgenic mice. Mol Endocrinol

1996; 10: 1467–1477.

114 Chabot V, Gauthier C, Combarnous Y, Taragnat C. Stimulating effect of

glycoprotein hormone free alpha-subunit and daily gonadotropin

releasing hormone treatment on prolactin release from 50-day ovine

foetal pituitary explants. J Neuroendocrinol 2001; 13: 199–208.

Paracrinicity 49

ª 2008 The Author. Journal Compilation ª 2008 Blackwell Publishing Ltd, Journal of Neuroendocrinology, 20, 1–70



115 Stanley HF, Curtis A, Sheward WJ, Roberts JL, Fink G. Prolactin messen-

ger ribonucleic acid levels in the normal and hypogonadal mouse pitui-

tary gland. Endocrinology 1986; 119: 2422–2426.

116 Tilemans D, Andries M, Denef C. Luteinizing hormone-releasing hor-

mone and neuropeptide Y influence deoxyribonucleic acid replication in

three anterior pituitary cell types. Evidence for mediation by growth

factors released from gonadotrophs. Endocrinology 1992; 130: 882–

894.

117 Van Bael A, Proesmans M, Tilemans D, Denef C. Interaction of LHRH

with growth hormone-releasing factor-dependent and -independent

postnatal development of somatotrophs in rat pituitary cell aggregates.

J Mol Endocrinol 1995; 14: 91–100.

118 Van Bael A, Huygen R, Himpens B, Denef C. In vitro evidence that

LHRH stimulates the recruitment of prolactin mRNA-expressing cells

during the postnatal period in the rat. J Mol Endocrinol 1994; 12:

107–118.

119 Hauspie A, Seuntjens E, Vankelecom H, Denef C. Stimulation of combi-

natorial expression of prolactin and glycoprotein hormone a-subunit

genes by gonadotropin-releasing hormone and estradiol-17b in single

rat pituitary cells during aggregate cell culture. Endocrinology 2003;

144: 388–399.

120 Van Bael A, Vande VV, Devreese B, Van Beeumen J, Denef C. N-terminal

10- and 12-kDa POMC fragments stimulate differentiation of lacto-

trophs. Peptides 1996; 17: 1219–1228.

121 Tilemans D, Andries M, Proost P, Devreese B, Van Beeumen J, Denef C.

In vitro evidence that an 11-kilodalton N-terminal fragment of pro-

opiomelanocortin is a growth factor specifically stimulating the devel-

opment of lactotrophs in rat pituitary during postnatal life.

Endocrinology 1994; 135: 168–174.

122 Asch RH, Rojas FJ, Bartke A, Schally AV, Tice TR, Klemcke HG, Siler-

Khodr TM, Bray RE, Hogan MP. Prolonged suppression of plasma LH

levels in male rats after a single injection of an LH-RH agonist in

poly (DL-lactide-co-glycolide) microcapsules. J Androl 1985; 6: 83–

88.

123 Steele MK, Myers LS. In vivo studies on paracrine actions of pituitary

angiotensin II in stimulating prolactin release in rats. Am J Physiol

Endocrinol Metab 1990; 258: E619–E624.

124 Sellers KJ, Smith MS, Rojas FJ, Asch RH, Schally AV, Bartke A. Effects

of a long-acting LHRH agonist preparation on plasma gonadotropin

and prolactin levels in castrated male rats and on the release of pro-

lactin from ectopic pituitaries. Regul Pept 1986; 15: 219–228.

125 Campbell GT, Horacek MJ, Blake CA. Effects of hypothalamic neurohor-

mones on prolactin release from pituitary allografts in the hamster.

Proc Soc Exp Biol Med 1987; 186: 344–347.

126 Gordon K, Williams RF, Danforth DR, Veldhuis JD, Hodgen GD. GnRH

antagonists suppress prolactin release in non-human primates. Contra-

ception 1992; 45: 369–378.

127 Cano A, Parrilla JJ, Abad L. Effect of exogenous and endogenous gona-

dotropin-releasing hormone on prolactin secretion in perimenopausal

women. Gynecol Obstet Invest 1988; 26: 308–312.

128 De Marinis L, Mancini A, D’Amico C, Calabro F, Zuppi P, Fiumara C,

Barini A. Periovulatory plasma prolactin response to gonadotropin-

releasing hormone: role of endogenous opiates. Neuroendocrinology

1990; 51: 717–720.

129 Barbarino A, De Marinis L, Mancini A, D’Amico C, Minnielli S. Estrogen

dependence of the periovulatory plasma prolactin response to gonado-

tropin-releasing hormone in normal women. Metabolism 1983; 32:

1059–1062.

130 Mais V, Melis GB, Paoletti AM, Strigini F, Antinori D, Fioretti P. Prolac-

tin-releasing action of a low dose of exogenous gonadotropin-releasing

hormone throughout the human menstrual cycle. Neuroendocrinology

1986; 44: 326–330.

131 Amsterdam JD, Winokur A, Lucki I, Snyder P. Neuroendocrine regulation

in depressed postmenopausal women and healthy subjects. Acta Psy-

chiatr Scand 1983; 67: 43–49.

132 Tan YM, Steele PA, Judd SJ. The effect of physiological changes in

ovarian steroids on the prolactin response to gonadotrophin releasing

factor. Clin Endocrinol (Oxf) 1986; 24: 71–78.

133 Braund W, Roeger DC, Judd SJ. Synchronous secretion of luteinizing

hormone and prolactin in the human luteal phase: neuroendocrine

mechanisms. J Clin Endocrinol Metab 1984; 58: 293–297.

134 Geisthoevel F, Arana JB, Balmaceda JP, Rojas FJ, Asch RH. Prolactin

and gonadotrophin dynamics in response to antagonists of LHRH and

dopamine in ovariectomized rhesus monkeys: a dissection of their

common secretion. Hum Reprod 1988; 3: 591–595.

135 Olive DL, Sabella V, Riehl RM, Schenken RS, Moreno A. Gonadotropin-

releasing hormone antagonists attenuate estrogen ⁄ progesterone-

induced hyperprolactinemia in monkeys. Fertil Steril 1989; 51:

1040–1045.

136 Kerdelhue B, Catin S, Kordon C, Justisz M. Delayed effects of in vivo

LHRH immunoneutralization on gonadotropins and prolactin secretion

in the female rat. Endocrinology 1976; 98: 1539–1549.

137 Serafini P, Paulson RJ, Francis MM, Lobo RA. Modulation of prolactin

responses to gonadotropin releasing hormone by acute testosterone

infusions in normal women. Gynecol Endocrinol 1987; 1: 247–253.

138 Mauras N, Rogol AD, Veldhuis JD. Estrogenic modulation of the

gonadotropin-releasing hormone-stimulated secretory activity of the

gonadotrope and lactotrope in prepubertal females with Turner’s

syndrome. J Clin Endocrinol Metab 1991; 73: 1202–1209.

139 Barbarino A, De Marinis L, Mancini A, Farabegoli C. Estrogen-dependent

plasma prolactin response to gonadotropin-releasing hormone in intact

and castrated men. J Clin Endocrinol Metab 1982; 55: 1212–1216.

140 Gooren LJ, Harmsen-Louman W, van Bergeyk L, Van Kessel H.

Studies on the prolactin-releasing capacity of luteinizing hormone

releasing hormone in male subjects. Exp Clin Endocrinol 1985; 86:

300–304.

141 Gooren LJ, Van der Veen EA, Van Kessel H, Harmsen-Louman W. The

effect of endogenous and exogenous gonadotrophin-releasing hormone

on the prolactin response to TRH. Clin Endocrinol (Oxf) 1984; 20: 281–

288.

142 Beumont PJ, Abraham SF, Turtle J. Paradoxical prolactin response to

gonadotropin-releasing hormone during weight gain in patients with

anorexia nervosa. J Clin Endocrinol Metab 1980; 51: 1283–1285.

143 Tamai H, Karibe C, Kiyohara K, Mori K, Takeno K, Kobayashi N, Nakaga-

wa T, Kumagai LF. Abnormal serum prolactin responses to luteinizing

hormone-releasing hormone (LHRH) in patients with anorexia nervosa

and bulimia. Psychoneuroendocrinology 1987; 12: 281–287.

144 Georgitis WJ, Treece GL, Hofeldt FD. Gonadotrophin releasing hormone

provokes prolactin release in hypergonadotrophic hypogonadal women:

a response not altered by dexamethasone. Clin Endocrinol (Oxf) 1983;

19: 319–324.

145 Mais V, Yen SS. Prolactin-releasing action of gonadotropin-releasing

hormone in hypogonadal women. J Clin Endocrinol Metab 1986; 62:

1089–1092.

146 Shoupe D, Lobo RA. Prolactin response after gonadotropin-releasing

hormone in the polycystic ovary syndrome. Fertil Steril 1985; 43: 549–

553.

147 De Marinis L, Mancini A, Calabro F, D’Amico C, Sambo P, Passeri M,

Tofani A, Barbarino A. Plasma prolactin response to gonadotropin-

releasing hormone during benzodiazepine treatment. Psychoneuroendo-

crinology 1988; 13: 325–331.

148 Blackwell RE, Rodgers-Neame NT, Bradley El Jr, Asch RH. Regulation of

human prolactin secretion by gonadotropin-releasing hormone in vitro.

Fertil Steril 1986; 46: 26–31.

50 C. Denef

ª 2008 The Author. Journal Compilation ª 2008 Blackwell Publishing Ltd, Journal of Neuroendocrinology, 20, 1–70



149 Morel G, Dubois PM. Immunocytochemical evidence for gonadoliberin

in rat anterior pituitary gland. Neuroendocrinology 1982; 34: 197–206.

150 Herbert DC, Rennels EG. Effect of synthetic luteinizing hormone releas-

ing hormone on prolactin secretion from clonal pituitary cells. Biochem

Biophys Res Commun 1977; 79: 133–138.

151 Weber GM, Powell JF, Park M, Fischer WH, Craig AG, Rivier JE, Nanak-

orn U, Parhar IS, Ngamvongchon S, Grau EG, Sherwood NM. Evidence

that gonadotropin-releasing hormone (GnRH) functions as a prolactin-

releasing factor in a teleost fish (Oreochromis mossambicus) and pri-

mary structures for three native GnRH molecules. J Endocrinol 1997;

155: 121–132.

152 Rossmanith WG, Boscher S, Ulrich U, Benz R. Chronobiology of

prolactin secretion in women: diurnal and sleep-related variations in

the pituitary lactotroph sensitivity. Neuroendocrinology 1993; 58:

263–271.

153 Torres-Aleman I, Fernandez M, Debeljuk L, Charro AL. Effect of

[D-Trp6]LHRH infusion on prolactin secretion by perifused rat pituitary

cells. Regul Pept 1987; 18: 19–28.

154 Torres-Aleman I, Debeljuk L, Schally AV. Effects of in vivo pretreatment

with D-Trp-6-LH-RH on prolactin and LH secretion by pituitary glands

in vitro. Peptides 1985; 6: 993–995.

155 Debeljuk L, Torres-Aleman I, Schally AV. D-Trp-6-luteinizing hormone-

releasing hormone inhibits hyperprolactinemia in female rats. Endocri-

nology 1985; 116: 2227–2231.

156 Rodriguez T, Bordiu E, Rubio JA, Duran A, Charro AL. Effect of pulse

frequency and amplitude of D-Trp6-luteinizing hormone-releasing hor-

mone on the pulsatile secretion of prolactin and LH. J Endocrinol Invest

1993; 16: 601–607.

157 Chabot V, Magallon T, Taragnat C, Combarnous Y. Two free isoforms of

ovine glycoprotein hormone alpha-subunit strongly differ in their abil-

ity to stimulate prolactin release from foetal pituitaries. J Endocrinol

2000; 164: 287–297.

158 Oguchi A, Tanaka S, Yamamoto K, Kikuyama S. Release of a-subunit of

glycoprotein hormones from the bullfrog pituitary: possible effect of

a-subunit on prolactin cell function. Gen Comp Endocrinol 1996; 102:

141–146.

159 Tanaka S, Mizutani F, Yamamoto K, Kikuyama S, Kurosumi K. The

alpha-subunit of glycoprotein hormones exists in the prolactin secre-

tory granules of the bullfrog (Rana catesbeiana) pituitary gland. Cell

Tissue Res 1992; 267: 223–231.

160 Lu J, Swinnen E, Proost P, De Vreese B, Vankelecom H, Denef C. Isola-

tion and structure-bioactivity characterization of glycosylated N-pro-

opiomelanocortin isoforms. J Neuroendocrinol 2002; 14: 869–879.

161 Pals K, Boussemaere M, Swinnen E, Vankelecom H, Denef C. A pituitary

cell type coexpressing messenger ribonucleic acid of proopiomelanocor-

tin and the glycoprotein hormone a-subunit in neonatal rat and

chicken: rapid decline with age and reappearance in vitro under regula-

tory pressure of corticotropin-releasing hormone in the rat. Endocrinol-

ogy 2006; 147: 4738–4752.

162 Roudbaraki M, Lorsignol A, Langouche L, Callewaert G, Vankelecom H,

Denef C. Target cells of c3-melanocyte-stimulating hormone detected

through intracellular Ca2+ responses in immature rat pituitary consti-

tute a fraction of all main pituitary cell types, but mostly express

multiple hormone phenotypes at the messenger ribonucleic acid

level. Refractoriness to melanocortin-3 receptor blockade in the lacto-

somatotroph lineage. Endocrinology 1999; 140: 4874–4885.

163 Bert C, Vande Vijver V, Andries M, Verhaert P, Proost P, De Vreese B,

Van Beeumen J, Vankelecom H, Denef C. Production of recombinant rat

proopiomelanocortin1-74 and characterization of its mitogenic action

on pituitary lactotrophs. Mol Cell Endocrinol 1999; 154: 111–122.

164 Tilemans D, Ramaekers D, Andries M, Denef C. Effect of POMC(1–76),

its C-terminal fragment gamma3-MSH and anti-POMC(1–76) antibodies

on DNA replication in lactotrophs in aggregate cell cultures of imma-

ture rat pituitary. J Neuroendocrinol 1997; 9: 627–637.

165 Aida T, Yamamoto K, Kikuyama S. Enhancement by proopiomelanocor-

tin-derived peptides of growth hormone and prolactin secretion by

bullfrog pituitary cells. Gen Comp Endocrinol 1999; 115: 101–109.

166 Yaswen L, Diehl N, Brennan MB, Hochgeschwender U. Obesity in the

mouse model of pro-opiomelanocortin deficiency responds to periph-

eral melanocortin. Nat Med 1999; 5: 1066–1070.

167 Martin NM, Small CJ, Sajedi A, Liao XH, Weiss RE, Gardiner JV, Ghatei

MA, Bloom SR. Abnormalities of the hypothalamo-pituitary-thyroid axis

in the pro-opiomelanocortin deficient mouse. Regul Pept 2004; 122:

169–172.

168 Karpac J, Ostwald D, Li GY, Bui S, Hunnewell P, Brennan MB,

Hochgeschwender U. Proopiomelanocortin heterozygous and homozy-

gous null mutant mice develop pituitary adenomas. Cell Mol Biol

(Noisy-le-Grand) 2006; 52: 47–52.

169 Allen RG, Carey C, Parker JD, Mortrud MT, Mellon SH, Low MJ. Targeted

ablation of pituitary pre-proopiomelanocortin cells by herpes simplex

virus-1 thymidine kinase differentially regulates mRNAs encoding the

adrenocorticotropin receptor and aldosterone synthase in the mouse

adrenal gland. Mol Endocrinol 1995; 9: 1005–1016.

170 Zhou Y, Unterwald EM, Ho A, Laforge KS, Yuferov VP, Kreuter J, Sir-

ianni MJ, Allen RG, Kreek MJ. Ablation of pituitary pro-opiomelano-

cortin (POMC) cells produces alterations in hypothalamic POMC

mRNA levels and midbrain u opioid receptor binding in a condi-

tional transgenic mouse model. J Neuroendocrinol 2001; 13: 808–

817.

171 Tilemans Damadc. Possible involvement of an EGF-like mitogen in the

postnatal development of lactotrophs in rat pituitary. Endocrine 1993;

1: 329–335.

172 Mueller SG, Kobrin MS, Paterson AJ, Kudlow JE. Transforming growth

factor-alpha expression in the anterior pituitary gland: regulation by

epidermal growth factor and phorbol ester in dispersed cells. Mol

Endocrinol 1989; 3: 976–983.

173 Sharma S, Oomizu S, Kakeya T, Masui T, Takeuchi S, Takahashi S. Gene

expression and the physiological role of transforming growth factor-

alpha in the mouse pituitary. Zool Sci 2003; 20: 83–89.

174 Finley EL, King JS, Ramsdell JS. Human pituitary somatotropes express

transforming growth factor-alpha and its receptor. J Endocrinol 1994;

141: 547–554.

175 Honda J, Oomizu S, Kiuchi Y, Komatsu N, Takeuchi S, Takahashi S.

Identification of epidermal growth factor mRNA-expressing cells

in the mouse anterior pituitary. Neuroendocrinology 2000; 71: 155–

162.

176 Fan X, Childs GV. Epidermal growth factor and transforming growth

factor-alpha messenger ribonucleic acids and their receptors in the rat

anterior pituitary: localization and regulation. Endocrinology 1995;

136: 2284–2293.

177 Oomizu S, Honda J, Takeuchi S, Kakeya T, Masui T, Takahashi S. Trans-

forming growth factor-alpha stimulates proliferation of mammotrophs

and corticotrophs in the mouse pituitary. J Endocrinol 2000; 165:

493–501.

178 Childs GV, Rougeau D, Unabia G. Corticotropin-releasing hormone and

epidermal growth factor: mitogens for anterior pituitary corticotropes.

Endocrinology 1995; 136: 1595–1602.

179 Berwaer M, Peers B, Nalda AM, Monget P, Davis JRE, Belayew A, Mar-

tial JA. Thyrotropin-releasing hormone and epidermal growth factor

induce human prolactin expression via identical multiple cis elements.

Mol Cell Endocrinol 1993; 92: 1–7.

180 Felix R, Meza U, Cota G. Induction of classical lactotropes by epidermal

growth factor in rat pituitary cell cultures. Endocrinology 1995; 136:

939–946.

Paracrinicity 51

ª 2008 The Author. Journal Compilation ª 2008 Blackwell Publishing Ltd, Journal of Neuroendocrinology, 20, 1–70



181 Hsieh M, Conti M. G-protein-coupled receptor signaling and the EGF

network in endocrine systems. Trends Endocrinol Metab 2005; 16:

320–326.

182 Mueller SG, Kudlow JE. Transforming growth factor-beta (TGF beta)

inhibits TGF alpha expression in bovine anterior pituitary-derived cells.

Mol Endocrinol 1991; 5: 1439–1446.

183 Houben H, Denef C. Bioactive peptides in anterior pituitary cells. Pep-

tides 1994; 15: 547–582.

184 Ganong WF. Blood, pituitary, and brain renin-angiotensin systems and

regulation of secretion of anterior pituitary gland. Front Neuroendocri-

nol 1993; 14: 233–249.

185 Bello AR, Reyes R, Hernandez G, Negrin I, Gonzalez M, Tramu G, Alonso

R. Developmental expression of neurotensin in thyrotropes and

gonadotropes of male and female rats. Neuroendocrinology 2004; 79:

90–99.

186 Bello, Hernandez Gonzalez Reyes Negrin Marrero Sanchez C, Tramu

Alonso. Immunoreactive neurotensin in gonadotrophs and thyrotrophs

is regulated by sex steroid hormones in the female rat. J Neuroendocri-

nol 1999; 11: 785–794.

187 Koves K, Kantor O, Scammell JG, Arimura A. PACAP colocalizes with

luteinizing and follicle-stimulating hormone immunoreactivities in the

anterior lobe of the pituitary gland. Peptides 1998; 19: 1069–1072.

188 Koves K, Kantor O, Molnar J, Heinzlmann A, Szabo E, Szabo F, Nemesk-

eri A, Horvath J, Arimura A. The role of PACAP in gonadotropic

hormone secretion at hypothalamic and pituitary levels. J Mol Neurosci

2003; 20: 141–152.

189 Ren Y, Chien J, Sun YP, Shah GV. Calcitonin is expressed in gonado-

tropes of the anterior pituitary gland: its possible role in paracrine

regulation of lactotrope function. J Endocrinol 2001; 171: 217–228.

190 Gon G, Giaid A, Steel JH, O’Halloran DJ, Van Noorden S, Ghatei MA,

Jones PM, Amara SG, Ishikawa H, Bloom SR. Localization of immuno-

reactivity for calcitonin gene-related peptide in the rat anterior pitui-

tary during ontogeny and gonadal steroid manipulations and

detection of its messenger ribonucleic acid. Endocrinology 1990; 127:

2618–2629.

191 Inagaki S, Kubota Y, Kito S, Kangawa K, Matsuo H. Atrial natriuretic

polypeptide-like immunoreactivity in the rat pituitary: light and elec-

tron microscopic studies. Regul Pept 1986; 14: 101–111.

192 McArdle CA, Olcese J, Schmidt C, Poch A, Kratzmeier M, Middendorff R.

C-type natriuretic peptide (CNP) in the pituitary: is CNP an autocrine

regulator of gonadotropes? Endocrinology 1994; 135: 2794–2801.

193 Knepel W, Schwaninger M, Dohler KD. Corelease of dynorphin-like

immunoreactivity, luteinizing hormone, and follicle-stimulating hor-

mone from rat adenohypophysis in vitro. Endocrinology 1985; 117:

481–487.

194 Panula P, Lindberg I. Enkephalins in the rat pituitary gland: immunohis-

tochemical and biochemical observations. Endocrinology 1987; 121:

48–58.

195 Khachaturian H, Sherman TG, Lloyd RV, Civelli O, Douglass J, Herbert E,

Akil H, Watson SJ. Pro-dynorphin is endogenous to the anterior pitui-

tary and is co-localized with LH and FSH in the gonadotrophs. Endocri-

nology 1986; 119: 1409–1411.

196 Kuriyama G, Takekoshi S, Tojo K, Nakai Y, Kuhar MJ, Osamura RY.

Cocaine- and amphetamine-regulated transcript peptide in the rat

anterior pituitary gland is localized in gonadotrophs and suppresses

prolactin secretion. Endocrinology 2004; 145: 2542–2550.

197 Chabot JG, Enjalbert A, Pelletier G, Dubois PM, Morel G. Evidence for a

direct action of neuropeptide Y in the rat pituitary gland. Neuroendo-

crinology 1988; 47: 511–517.

198 Suzuki H, Yamamoto T, Kikuyama S, Uemura H. Distribution of endo-

thelin 3-like immunoreactivity in gonadotrophs of the bullfrog (Rana

catesbeiana) pituitary. Gen Comp Endocrinol 1997; 107: 12–22.

199 Kanyicska B, Lerant A, Freeman ME. Endothelin-like immunoreactivity

in lactotrophs, gonadotrophs, and somatotrophs of rat anterior pitui-

tary gland are affected differentially by ovarian steroid hormones.

Endocrine 2001; 14: 263–268.

200 Jin L, Burguera BG, Couce ME, Scheithauer BW, Lamsan J, Eberhardt

NL, Kulig E, Lloyd RV. Leptin and leptin receptor expression in normal

and neoplastic human pituitary: evidence of a regulatory role for leptin

on pituitary cell proliferation. J Clin Endocrinol Metab 1999; 84: 2903–

2911.

201 Akhter N, Johnson BW, Crane C, Iruthayanathan M, Zhou YH, Kudo A,

Childs GV. Anterior pituitary leptin expression changes in different

reproductive states: in vitro stimulation by gonadotropin-releasing hor-

mone. J Histochem Cytochem 2007; 55: 151–166.

202 Childs GV, Cole DE, Kubek M, Tobin RB, Wilber JF. Endogenous thyrot-

ropin-releasing hormone in the anterior pituitary: sites of activity as

identified by immunocytochemical staining. J Histochem Cytochem

1978; 26: 901–908.

203 Canonico PL, Speciale C, Sortino MA, Scapagnini U. Involvement of ara-

chidonate metabolism in neurotensin-induced prolactin release in vitro.

Am J Physiol 1985; 249: E257–E263.

204 Ross PC, Judd AM, Macleod RM. The dynamics of arachidonic acid lib-

eration and prolactin release: a comparison of thyrotropin-releasing

hormone, angiotensin II, and neurotensin stimulation in perifused rat

anterior pituitary cells. Endocrinology 1988; 123: 2445–2453.

205 Enjalbert A, Arancibia S, Priam M, Bluet-Pajot MT, Kordon C. Neuroten-

sin stimulation of prolactin secretion in vitro. Neuroendocrinology

1982; 34: 95–98.

206 Vijayan E, McCann SM. In vivo and in vitro effects of substance P and

neurotensin on gonadotropin and prolactin release. Endocrinology

1979; 105: 64–68.

207 Jarry H, Leonhardt S, Schmidt WE, Creutzfeldt W, Wuttke W. Contrast-

ing effects of pituitary adenylate cyclase activating polypeptide

(PACAP) on in vivo and in vitro prolactin and growth hormone release

in male rats. Life Sci 1992; 51: 823–830.

208 Hart GR, Gowing H, Burrin JM. Effects of a novel hypothalamic peptide,

pituitary adenylate cyclase-activating polypeptide, on pituitary hormone

release in rats. J Endocrinol 1992; 134: 33–41.

209 Velkeniers B, Zheng L, Kazemzadeh M, Robberecht P, Vanhaelst L, Hoo-

ghe-Peters EL. Effect of pituitary adenylate cyclase-activating polypep-

tide 38 on growth hormone and prolactin expression. J Endocrinol

1994; 143: 1–11.

210 Propato-Mussafiri R, Kanse SM, Ghatei MA, Bloom SR. Pituitary adenyl-

ate cyclase-activating polypeptide releases 7B2, adrenocorticotrophin,

growth hormone and prolactin from the mouse and rat clonal pituitary

cell lines AtT-20 and GH3. J Endocrinol 1992; 132: 107–113.

211 Sawangjaroen K, Anderson ST, Curlewis JD. Effects of pituitary adenyl-

ate cyclase-activating polypeptide (PACAP) and vasoactive intestinal

polypeptide (VIP) on hormone secretion from sheep pituitary cells

in vitro. J Neuroendocrinol 1997; 9: 279–286.

212 Benter S, Leonhardt S, Wuttke W, Jarry H. Paracrine cell to cell interac-

tions determine the effects of pituitary adenylate cyclase activating

polypeptide (PACAP) on in vitro prolactin release from rat pituitary

cells. Exp Clin Endocrinol Diabetes 1995; 103: 386–390.

213 Rawlings SR, Hezareh M. Pituitary adenylate cyclase-activating poly-

peptide (PACAP) and PACAP ⁄ vasoactive intestinal polypeptide recep-

tors: actions on the anterior pituitary gland. Endocr Rev 1996; 17:

4–29.

214 Romano D, Magalon K, Ciampini A, Talet C, Enjalbert A, Gerard C.

Differential involvement of the Ras and Rap1 small GTPases in

vasoactive intestinal and pituitary adenylyl cyclase activating poly-

peptides control of the prolactin gene. J Biol Chem 2003; 278:

51386–51394.

52 C. Denef

ª 2008 The Author. Journal Compilation ª 2008 Blackwell Publishing Ltd, Journal of Neuroendocrinology, 20, 1–70



215 Coleman DT, Chen X, Sassaroli M, Bancroft C. Pituitary adenylate

cyclase-activating polypeptide regulates prolactin promoter activity via

a protein kinase A-mediated pathway that is independent of the tran-

scriptional pathway employed by thyrotropin-releasing hormone. Endo-

crinology 1996; 137: 1276–1285.

216 Horvath J, Ertl T, Schally AV. Effect of atrial natriuretic peptide on gon-

adotropin release in superfused rat pituitary cells. Proc Natl Acad Sci

USA 1986; 83: 3444–3446.

217 Fox BK, Naka T, Inoue K, Takei Y, Hirano T, Grau EG. In vitro effects of

homologous natriuretic peptides on growth hormone and prolactin

release in the tilapia, Oreochromis mossambicus. Gen Comp Endocrinol

2007; 150: 270–277.

218 Yu W, Kimura M, Walczewska A, Karanth S, McCann S. Role of leptin

in hypothalamic-pituitary function. Proc Natl Acad Sci USA 1997; 94:

1023–1028.

219 Wang J, Clofi P, Crowley WR. Neuropeptide Y suppresses prolactin

secretion from rat anterior pituitary cells: evidence for interactions

with dopamine through inhibitory coupling to calcium entry. Endocri-

nology 1996; 137: 587–594.

220 Baranowska B, Wolinska-Witort E, Chmielowska M, Martynska L, Bara-

nowska-Bik A. Direct effects of cocaine-amphetamine-regulated tran-

script (CART) on pituitary hormone release in pituitary cell culture.

Neuroendocrinol Lett 2003; 24: 224–226.

221 Sernia C, Zeng T, Kerr D, Wyse B. Novel perspectives on pituitary and

brain angiotensinogen. Front Neuroendocrinol 1997; 18: 174–208.

222 Robberecht W, Andries M, Denef C. Stimulation of prolactin secretion

from rat pituitary by luteinizing hormone-releasing hormone: evidence

against mediation by angiotensin II acting through a (Sar1-Ala8)-

angiotensin II-sensitive receptor. Neuroendocrinology 1992; 56: 185–

194.

223 Hinuma S, Habata Y, Fujii R, Kawamata Y, Hosoya N, Fukusumi S,

Kitada C, Masuo Y, Asano T, Matsumoto H, Sekiguchi M, Kurokawa T,

Nishimura O, Onda H, Fujino M. A prolactin-releasing peptide in the

brain. Nature 1998; 393: 272–276.

224 Swinnen E, Boussemaere M, Denef C. Stimulation and inhibition of pro-

lactin release by prolactin-releasing peptide in rat anterior pituitary cell

aggregates. J Neuroendocrinol 2005; 17: 379–386.

225 Murakami Y, Koshimura K, Yamauchi K, Nishiki M, Tanaka J, Kato Y.

Roles and mechanisms of action of pituitary adenylate cyclase-activat-

ing polypeptide (PACAP) in growth hormone and prolactin secretion.

Endocr J 2001; 48: 123–132.

226 Wong AOL, Leung MY, Shea WLC, Tse LY, Chang JP, Chow BKC. Hypo-

physiotropic action of pituitary adenylate cyclase-activating polypeptide

(PACAP) in the goldfish: immunohistochemical demonstration of PACAP

in the pituitary, PACAP Stimulation of growth hormone release from

pituitary cells, and molecular cloning of pituitary type I PACAP recep-

tor. Endocrinology 1998; 139: 3465–3479.

227 Shimekake Y, Ohta S, Nagata K. C-type natriuretic peptide stimulates

secretion of growth hormone from rat-pituitary-derived GH3 cells

via a cyclic-GMP-mediated pathway. Eur J Biochem 1994; 222:

645–650.

228 Shibasaki T, Naruse M, Yamauchi N, Masuda A, Imaki T, Naruse K, Dem-

ura H, Ling N, Inagami T, Shizume K. Rat atrial natriuretic factor sup-

presses proopiomelanocortinderived peptides secretion from both

anterior and intermediate lobe cells and growth hormone release from

anterior lobe cells of rat pituitary in vitro. Biochem Biophys Res Com-

mun 1986; 135: 1035–1041.

229 Robberecht W, Denef C. Stimulation and inhibition of pituitary growth

hormone release by angiotensin II in vitro. Endocrinology 1988; 122:

1496–1504.

230 Zivadinovic D, Van Goor F, Yuan D, Koshimizu Ta, Stojilkovic SS. Expres-

sion of Ca2+-mobilizing endothelin A receptors and their role in the

control of Ca2+ influx and growth hormone secretion in pituitary

somatotrophs. J Neurosci 1999; 19: 7721–7731.

231 Estienne MJ, Barb CR. The control of adenohypophysial hormone secre-

tion by amino acids and peptides in swine. Domest Anim Endocrinol

2005; 29: 34–42.

232 Lorsignol A, Taupignon A, Horvath G, Dufy B. Intracellular calcium con-

centration and hormone secretion are controlled differently by TRH in

rat neonatal lactotrophs and somatotrophs. J Endocrinol 1997; 154:

483–494.

233 Denef C, Schramme C, Baes M. Stimulation of growth hormone release

by vasoactive intestinal peptide and peptide PHI in rat anterior pitui-

tary reaggregates. Permissive action of a glucocorticoid and inhibition

by thyrotropin-releasing hormone. Neuroendocrinology 1985; 40: 88–

91.

234 Laverriere JN, Morin A, Tixier-Vidal A, Truong AT, Gourdji D, Martial JA.

Inverse control of prolactin and growth hormone gene expression:

effect of thyroliberin on transcription and RNA stabilization. EMBO J

1983; 2: 1493–1499.

235 Nakamura Y, Shimatsu A, Murabe H, Mizuta H, Ihara C, Nakao K. Calci-

tonin gene-related peptide as a GH secretagogue in human and rat

pituitary somatotrophs. Brain Res 1998; 807: 203–207.

236 Masayuki S, Robert YO. Leptin and the pituitary. Pituitary 2001; V4:

15–23.

237 McDonald JK, Lumpkin MD, Samson WK, McCann SM. Neuropeptide Y

affects secretion of luteinizing hormone and growth hormone in ovari-

ectomized rats. Proc Natl Acad Sci USA 1985; 82: 561–564.

238 Barb CR, Barrett JB. Neuropeptide Y modulates growth hormone but

not luteinizing hormone secretion from prepuberal gilt anterior pitui-

tary cells in culture. Domest Anim Endocrinol 2005; 29: 548–555.

239 Peng C, Chang JP, Yu KL, Wong AO, Van Goor F, Peter RE, Rivier JE.

Neuropeptide-Y stimulates growth hormone and gonadotropin-II secre-

tion in the goldfish pituitary: involvement of both presynaptic and

pituitary cell actions. Endocrinology 1993; 132: 1820–1829.

240 Deftos LJ, Burton DW, Watkins WB, Catherwood BD. Immunohistologi-

cal studies of artiodactyl and teleost pituitaries with antisera to calci-

tonin. Gen Comp Endocrinol 1980; 42: 9–18.

241 Shah GV, Deftos LJ, Crowley WR. Synthesis and release of calcitonin-

like immunoreactivity by anterior pituitary cells: evidence for a role in

paracrine regulation of prolactin secretion. Endocrinology 1993; 132:

1367–1372.

242 Maddineni SR, Krzysik-Walker SM, Ocon-Grove OM, Motch SM, Hen-

dricks GL, Ramachandran R. Calcitonin is expressed in the chicken pitu-

itary gland: influence of gonadal steroids and sexual maturation. Cell

Tiss Res 2007; 327: 521–528.

243 Hanna FW, Smith DM, Johnston CF, Akinsanya KO, Jackson ML, Morgan

DG, Bhogal R, Buchanan KD, Bloom SR. Expression of a novel receptor

for the calcitonin peptide family and a salmon calcitonin-like peptide

in the alpha-thyrotropin thyrotroph cell line. Endocrinology 1995; 136:

2377–2382.

244 Perry KJ, Quiza M, Myers DE, Morfis M, Christopoulos G, Sexton PM.

Characterization of amylin and calcitonin receptor binding in the

mouse a-thyroid-stimulating hormone thyrotroph cell line. Endocrinol-

ogy 1997; 138: 3486–3496.

245 Shah GV, Wang W, Grosvenor CE, Crowley WR. Calcitonin inhibits basal

and thyrotropin-releasing hormone-induced release of prolactin from

anterior pituitary cells: evidence for a selective action exerted proximal

to secretagogue-induced increases in cytosolic Ca2+. Endocrinology

1990; 127: 621–628.

246 Judd AM, Kubota T, Kuan SI, Jarvis WD, Spangelo BL, Macleod RM. Cal-

citonin decreases thyrotropin-releasing hormone-stimulated prolactin

release through a mechanism that involves inhibition of inositol phos-

phate production. Endocrinology 1990; 127: 191–199.

Paracrinicity 53

ª 2008 The Author. Journal Compilation ª 2008 Blackwell Publishing Ltd, Journal of Neuroendocrinology, 20, 1–70



247 Wang YQ, Yuan R, Sun YP, Lee TJ, Shah GV. Antiproliferative action of

calcitonin on lactotrophs of the rat anterior pituitary gland: evidence

for the involvement of transforming growth factor b1 in calcitonin

action. Endocrinology 2003; 144: 2164–2171.

248 Shah GV, Chien J, Sun YP, Puri S, Ravindra R. Calcitonin inhibits ante-

rior pituitary cell proliferation in the adult female rats. Endocrinology

1999; 140: 4281–4291.

249 Shah GV, Pedchenko V, Stanley S, Li Z, Samson WK. Calcitonin is a

physiological inhibitor of prolactin secretion in ovariectomized female

rats. Endocrinology 1996; 137: 1814–1822.

250 Yuan R, Kulkarni T, Wei F, Shah GV. Targeted overexpression of calcito-

nin in gonadotrophs of transgenic mice leads to chronic hypoprolactin-

emia. Mol Cell Endocrinol 2005; 229: 193–203.

251 Maddineni SR, Krzysik-Walker SM, Ocon-Grove OM, Motch SM, Hen-

dricks GL III, Ramachandran R. Calcitonin is expressed in the chicken

pituitary gland: influence of gonadal steroids and sexual maturation.

Cell Tissue Res 2007; 327: 521–528.

252 Sun YP, Lee TJ, Shah GV. Calcitonin expression in rat anterior pituitary

gland is regulated by ovarian steroid hormones. Endocrinology 2002;

143: 4056–4064.

253 Chronwall BM, Sands SA, Li Z, Shah GV. Calcitonin-like peptide con-

taining gonadotrophs are juxtaposed to cup-shaped lactotrophs. Endo-

crine 1996; 4: 27–33.

254 Katafuchi T, Kikumoto K, Hamano K, Kangawa K, Matsuo H, Minamino

N. Calcitonin receptor-stimulating peptide, a new member of the calci-

tonin gene-related peptide family: its isolation from porcine brain,

structure, tissue distribution, and biological activity. J Biol Chem 2003;

278: 12046–12054.

255 Burns G, Sarkar DK. Transforming growth factor beta 1-like immunore-

activity in the pituitary gland of the rat: effect of estrogen. Endocrinol-

ogy 1993; 133: 1444–1449.

256 Sarkar DK, Kim KH, Minami S. Transforming growth factor-beta 1 mes-

senger RNA and protein expression in the pituitary gland: its action on

prolactin secretion and lactotropic growth. Mol Endocrinol 1992; 6:

1825–1833.

257 Tan SK, Wang FF, Pu HF, Liu TC. Differential effect of age on transforming

growth factor-b1 inhibition of prolactin gene expression versus secretion

in rat anterior pituitary cells. Endocrinology 1997; 138: 878–885.

258 Murata T, Ying SY. Transforming growth factor-beta and activin inhibit

basal secretion of prolactin in a pituitary monolayer culture system.

Proc Soc Exp Biol Med 1991; 198: 599–605.

259 Abraham EJ, Faught WJ, Frawley LS. Transforming growth factor b1 is

a paracrine inhibitor of prolactin gene expression. Endocrinology 1998;

139: 5174–5181.

260 Carmeliet P, Maertens P, Denef C. Stimulation and inhibition of prolac-

tin release from rat pituitary lactotrophs by the cholinomimetic carba-

chol in vitro. Influence of hormonal environment and intercellular

contacts. Mol Cell Endocrinol 1989; 63: 121–131.

261 Matsumoto H, Suzuki N, Onda H, Fujino M. Abundance of endothelin-3

in rat intestine, pituitary gland and brain. Biochem Biophys Res Com-

mun 1989; 164: 74–80.

262 Matsumoto H, Suzuki N, Shiota K, Inoue K, Tsuda M, Fujino M. Insulin-

like growth factor-I stimulates endothelin-3 secretion from rat anterior

pituitary cells in primary culture. Biochem Biophys Res Commun 1990;

172: 661–668.

263 Samson WK, Skala KD, Alexander BD, Huang FL. Hypothalamic endo-

thelin: presence and effects related to fluid and electrolyte homeosta-

sis. J Cardiovasc Pharmacol 1991; 17 (Suppl. 7): S346–S349.

264 Naruse M, Naruse K, Nishikawa T, Yoshihara I, Ohsumi K, Suzuki N,

Demura R, Demura H. Endothelin-3 immunoreactivity in gonadotrophs

of the human anterior pituitary. J Clin Endocrinol Metab 1992; 74:

968–972.

265 Kanyicska B, Burris TP, Freeman ME. The effects of endothelins on the

secretion of prolactin, luteinizing hormone, and follicle-stimulating hor-

mone are mediated by different guanine nucleotide-binding proteins.

Endocrinology 1991; 129: 2607–2613.

266 Burris TP, Kanyicska B, Freeman ME. Inhibition of prolactin secretion by

endothelin-3 is pertussis toxin-sensitive. Eur J Pharmacol 1991; 198:

223–225.

267 Dymshitz J, Laudon M, Ben Jonathan N. Endothelin-induced biphasic

response of lactotrophs cultured under different conditions. Neuroen-

docrinology 1992; 55: 724–729.

268 Bertram R, Tabak J, Toporikova N, Freeman ME. Endothelin action on

pituitary lactotrophs: one receptor, many GTP-binding proteins. Sci

STKE 2006; 319: E4.

269 Samson WK. Adrenomedullin and the control of fluid and electrolyte

homeostasis. Annu Rev Physiol 1999; 61: 363–389.

270 Takahashi K, Satoh F, Sone M, Murakami O, Sasano H, Mouri T, Shiba-

hara S. Expression of Adrenomedullin mRNA in the human brain and

pituitary. Peptides 1997; 18: 1051–1053.

271 Montuenga LM, Burrell MA, Garayoa M, Llopiz D, Vos M, Moody T,

Garcia R, Martinez A, Villaro AC, Elsasser T, Cuttitta F. Expression of

proadrenomedullin derived peptides in the mammalian pituitary:

co-localization of follicle stimulating hormone and proadrenomedullin

N-20 terminal peptide-like peptide in the same secretory granules of

the gonadotropes. J Neuroendocrinol 2000; 12: 607–617.

272 Hisanori W, Yujiro A, Kazuo K, Yoshinari I, Seiichiro H, Yoshitaka Y,

Kenji K, Akinobu S, Tanenao E. Immunohistochemical identification of

adrenomedullin in human, rat, and porcine tissue. Histochem Cell Biol

1995; 103: 251–254.

273 Collantes M, Bodegas ME, Sesma MP, Villaro AC. Distribution of adre-

nomedullin and proadrenomedullin N-terminal 20 peptide immunoreac-

tivity in the pituitary gland of the frog Rana perezi. Gen Comp

Endocrinol 2003; 133: 50–60.

274 Gibbons C, Dackor R, Dunworth W, Fritz-Six K, Caron KM. Receptor

activity-modifying proteins: RAMPing up adrenomedullin signaling. Mol

Endocrinol 2007; 21: 783–796.

275 Guild SB, Cramb G. Characterisation of the effects of natriuretic pep-

tides upon ACTH secretion from the mouse pituitary. Mol Cell Endocri-

nol 1999; 152: 11–19.

276 Chatelain D, Lesage J, Montel V, Chatelain A, Deloof S. Effect of

natriuretic peptides on in vitro stimulated adrenocorticotropic hor-

mone release and pro-opiomelanocortin mRNA expression by the

fetal rat pituitary gland in late gestation. Horm Res 2003; 59: 142–

148.

277 Wilcox JN, Augustine A, Goeddel DV, Lowe DG. Differential regional

expression of three natriuretic peptide receptor genes within primate

tissues. Mol Cell Biol 1991; 11: 3454–3462.

278 Fink G, Dow RC, Casley D, Johnston CI, Lim AT, Copolov DL, Bennie J,

Carroll S, Dick H. Atrial natriuretic peptide is a physiological inhibitor

of ACTH release: evidence from immunoneutralization in vivo. J Endo-

crinol 1991; 131: R9–R12.

279 Hinson JP, Kapas S, Smith DM. Adrenomedullin, a multifunctional regu-

latory peptide. Endocr Rev 2000; 21: 138–167.

280 Chang CL, Roh J, Hsu SYT. Intermedin, a novel calcitonin family peptide

that exists in teleosts as well as in mammals: a comparison with other

calcitonin ⁄ intermedin family peptides in vertebrates. Peptides 2004;

25: 1633–1642.

281 Mimoto T, Nishioka T, Asaba K, Takao T, Hashimoto K. Effects of adre-

nomedullin on adrenocorticotropic hormone (ACTH) release in pituitary

cell cultures and on ACTH and oxytocin responses to shaker stress in

conscious rat. Brain Res 2001; 922: 261–266.

282 Samson WK, Murphy TC, Resch ZT. Proadrenomedullin N-terminal 20

peptide inhibits adrenocorticotropin secretion from cultured pituitary

54 C. Denef

ª 2008 The Author. Journal Compilation ª 2008 Blackwell Publishing Ltd, Journal of Neuroendocrinology, 20, 1–70



cells, possibly via activation of a potassium channel. Endocrine 1998;

9: 269–272.

283 Samson WK. Proadrenomedullin-derived peptides. Front Neuroendocri-

nol 1998; 19: 100–127.

284 Samson WK, Murphy T, Schell DA. A novel vasoactive peptide, adreno-

medullin, inhibits pituitary adrenocorticotropin release. Endocrinology

1995; 136: 2349–2352.

285 Parkes DG, May CN. ACTH-suppressive and vasodilator actions of adre-

nomedullin in conscious sheep. J Neuroendocrinol 1995; 7: 923–929.

286 Iino K, Oki Y, Tominaga T, Iwabuchi M, Ozawa M, Watanabe F, Yoshimi

T. Stimulatory effect of calcitonin gene-related peptide on adrenocorti-

cotropin release from rat anterior pituitary cells. J Neuroendocrinol

1998; 10: 325–329.

287 Fisher LA, Kikkawa DO, Rivier JE, Amara SG, Evans RM, Rosenfeld MG,

Vale WW, Brown MR. Stimulation of noradrenergic sympathetic out-

flow by calcitonin gene-related peptide. Nature 1983; 305: 534–536.

288 Wu JC, Su P, Safwat NW, Sebastian J, Miller WL. Rapid, efficient isola-

tion of murine gonadotropes and their use in revealing control of folli-

cle-stimulating hormone by paracrine pituitary factors. Endocrinology

2004; 145: 5832–5839.

289 Steel JH, Gon G, O’Halloran DJ, Jones PM, Yanaihara N, Ishikawa H,

Bloom SR, Polak JM. Galanin and vasoactive intestinal polypeptide are

colocalised with classical pituitary hormones and show plasticity of

expression. Histochemistry 1989; 93: 183–189.

290 Todd JF, Small CJ, Akinsanya KO, Stanley SA, Smith DM, Bloom SR. Gal-

anin is a paracrine inhibitor of gonadotroph function in the female rat.

Endocrinology 1998; 139: 4222–4229.

291 Elsaesser F. Stimulation of porcine pituitary luteinizing hormone release

by galanin: putative auto ⁄ paracrine regulation. Neuroendocrinology

2001; 74: 288–299.

292 Blank MS, Fabbri A, Catt KJ, Dufau ML. Inhibition of luteinizing hor-

mone release by morphine and endogenous opiates in cultured pitui-

tary cells. Endocrinology 1986; 118: 2097–2101.

293 Sanchez-Franco F, Cacicedo L. Inhibitory effect of beta-endorphin on

gonadotropin-releasing hormone and thyrotropin-releasing hormone

releasing activity in cultured rat anterior pituitary cells. Horm Res

1986; 24: 55–61.

294 Couceyro PR, Koylu EO, Kuhar MJ. Further studies on the anatomical

distribution of CART by in situ hybridization. J Chem Neuroanat 1997;

12: 229–241.

295 Kappeler L, Gautron L, Laye S, Dantzer R, Zizzari P, Epelbaum J, Bluet-

Pajot MT. Pituitary cocaine- and amphetamine-regulated transcript

expression depends on the strain, sex and oestrous cycle in the rat.

J Neuroendocrinol 2006; 18: 426–433.

296 Smith SM, Vaughan JM, Donaldson CJ, Fernandez RE, Li C, Chen A, Vale

WW. Cocaine- and amphetamine-regulated transcript is localized in

pituitary lactotropes and is regulated during lactation. Endocrinology

2006; 147: 1213–1223.

297 Stanley SA, Murphy KG, Bewick GA, Kong WM, Opacka-Juffry J, Gard-

iner JV, Ghatei M, Small CJ, Bloom SR. Regulation of rat pituitary

cocaine- and amphetamine-regulated transcript (CART) by CRH and

glucocorticoids. Am J Physiol Endocrinol Metab 2004; 287: E583–

E590.

298 McNeilly AS. Lactational control of reproduction. Reprod Fertil Dev

2001; 13: 583–590.

299 Royster M, Driscoll P, Kelly PA, Freemark M. The prolactin receptor in

the fetal rat: cellular localization of messenger ribonucleic acid, immu-

noreactive protein, and ligand-binding activity and induction of expres-

sion in late gestation. Endocrinology 1995; 136: 3892–3900.

300 Krown KA, Wang YF, Ho TW, Kelly PA, Walker AM. Prolactin isoform 2

as an autocrine growth factor for GH3 cells. Endocrinology 1992; 131:

595–602.

301 Tortonese DJ, Brooks J, Ingleton PM, McNeilly AS. Detection of prolactin

receptor gene expression in the sheep pituitary gland and visualization

of the specific translation of the signal in gonadotrophs. Endocrinology

1998; 139: 5215–5223.

302 Gregory SJ, Brooks J, McNeilly AS, Ingleton PM, Tortonese DJ. Gonado-

troph–lactotroph associations and expression of prolactin receptors in

the equine pituitary gland throughout the seasonal reproductive cycle.

Reproduction 2000; 119: 223–231.

303 Hetzel WD, Schneider PM, Pfeiffer EF. Further evidence that prolactin

does not affect gonadotropin release at pituitary level. Horm Metab

Res 1987; 19: 555–562.

304 Oguchi A, Tanaka S, Aida T, Yamamoto K, Kikuyama S. Enhancement by

prolactin of the GnRH-induced release of LH from dispersed anterior

pituitary cells of the bullfrog (Rana catesbeiana). Gen Comp Endocrinol

1997; 107: 128–135.

305 Cheung CY. Prolactin suppresses luteinizing hormone secretion and

pituitary responsiveness to luteinizing hormone-releasing hormone by

a direct action at the anterior pituitary. Endocrinology 1983; 113:

632–638.

306 Gregory SJ, Townsend J, McNeilly AS, Tortonese DJ. Effects of prolactin

on the luteinizing hormone response to gonadotropin-releasing hor-

mone in primary pituitary cell cultures during the ovine annual repro-

ductive cycle. Biol Reprod 2004; 70: 1299–1305.

307 Andries M, Tilemans D, Denef C. Isolation of cleaved prolactin variants

that stimulate DNA synthesis in specific cell types in rat pituitary cell

aggregates in culture. Biochem J 1992; 281: 393–400.

308 Andries M, Jacobs GF, Tilemans D, Denef C. In vitro immunoneutral-

ization of a cleaved prolactin variant: evidence for a local para-

crine action of cleaved prolactin in the development of gonadotrophs

and thyrotrophs in rat pituitary. J Neuroendocrinol 1996; 8: 123–

127.

309 Hilfiker-Kleiner D, Kaminski K, Podewski E, Bonda T, Schaefer A, Sliwa

K, Forster O, Quint A, Landmesser U, Doerries C, Luchtefeld M, Poli V,

Schneider MD, Balligand JL, Desjardins F, Ansari A, Struman I, Nguyen

NQN, Zschemisch NH, Klein G, Heusch G, Schulz R, Hilfiker A, Drexler

H. A cathepsin D-cleaved 16 kDa form of prolactin mediates postpar-

tum cardiomyopathy. Cell 2007; 128: 589–600.

310 Dave JR, Culp SG, Liu L, Tabakoff B, Hoffman PL. Regulation of vaso-

pressin and oxytocin synthesis in anterior pituitary and peripheral tis-

sues. Adv Alcohol Subst Abuse 1988; 7: 231–234.

311 Morel G, Chabot JG, Dubois PM. Ultrastructural evidence for oxytocin

in the rat anterior pituitary gland. Acta Endocrinol (Copenh) 1988;

117: 307–314.

312 Evans JJ, Pragg FL, Mason DR. Release of luteinizing hormone from the

anterior pituitary gland in vitro can be concurrently regulated by at

least three peptides: gonadotropin-releasing hormone, oxytocin and

neuropeptide Y. Neuroendocrinology 2001; 73: 408–416.

313 Evans JJ, Robinson G, Catt KJ. Luteinizing hormone response to oxyto-

cin is steroid-dependent. Neuroendocrinology 1992; 55: 538–543.

314 Evans JJ, Hurd SJ, Mason DR. Oxytocin modulates the luteinizing hor-

mone response of the rat anterior pituitary to gonadotrophin-releasing

hormone in vitro. J Endocrinol 1995; 145: 113–119.

315 Siperstein ER, Miller KJ. Further cytophysiologic evidence for the dentity

of the cells that produce adrenocorticotrophic hormone. Endocrinology

1970; 86: 451–486.

316 Yoshimura F, Nogami H. Fine structural criteria for identifying rat corti-

cotrophs. Cell Tissue Res 1981; 219: 221–228.

317 Nogami H, Yoshimura F. Fine structural criteria of prolactin cells identi-

fied immunohistochemically in the male rat. Anat Rec 1982; 202:

261–274.

318 Townsend J, Sneddon CL, Tortonese DJ. Gonadotroph heterogeneity,

density and distribution, and gonadotroph–lactotroph associations in

Paracrinicity 55

ª 2008 The Author. Journal Compilation ª 2008 Blackwell Publishing Ltd, Journal of Neuroendocrinology, 20, 1–70



the pars distalis of the male equine pituitary gland. J Neuroendocrinol

2004; 16: 432–440.

319 Gasc JM, Baulieu EE. Regulation by estradiol of the progesterone

receptor in the hypothalamus and pituitary: an immunohistochemical

study in the chicken. Endocrinology 1988; 122: 1357–1365.

320 Noda T, Kikuchi M, Kaidzu S, Yashiro T. Rat anterior pituitary cells

in vitro can partly reconstruct in vivo topographic affinities. Anat Rec

A Discov Mol Cell Evol Biol 2003; 272: 548–555.

321 Allaerts W, Mignon A, Denef C. Selectivity of juxtaposition between

cup-shaped lactotrophs and gonadotrophs from rat anterior pituitary

in culture. Cell Tissue Res 1991; 263: 217–225.

322 Dada MO, Campbell GT, Blake CA. The localization of gonadotrophs in

normal adult male and female rats. Endocrinology 1984; 114: 397–

406.

323 Meeran D, Urbanski HF, Gregory SJ, Townsend J, Tortonese DJ. Develop-

mental changes in the hormonal identity of gonadotroph cells in the

rhesus monkey pituitary gland. J Clin Endocrinol Metab 2003; 88:

2934–2942.

324 Wong AOL, Ng S, Lee EKY, Leung RCY, Ho WKK. Somatostatin inhibits

(-Arg6, Pro9-NEt) salmon gonadotropin-releasing hormone- and dopa-

mine D1-stimulated growth hormone release from perifused pituitary

cells of chinese grass carp, Ctenopharyngodon idellus. Gen Comp

Endocrinol 1998; 110: 29–45.

325 Weil C, Bougoussa-Houadec M, Gallais C, Itoh S, Sekine S, Valotaire

Y. Preliminary evidence suggesting variations of GtH 1 and GtH 2

mRNA levels at different stages of gonadal development in rainbow

trout, Oncorhynchus mykiss. Gen Comp Endocrinol 1995; 100: 327–

333.

326 Marchant TA, Peter RE. Seasonal variations in body growth rates and

circulating levels of growth hormone in the goldfish, Carassius auratus.

J Exp Zool 1986; 237: 231–239.

327 Legac F, Blaise O, Fostier A, Lebail P-Y, Loir M, Mourot B, Weil C.

Growth hormone (GH) and reproduction: a review. Fish Physiol Bio-

chem 1993; 11: 219–232.

328 Marchant TA, Chang JP, Nahorniak CS, Peter RE. Evidence that gonado-

tropin-releasing hormone also functions as a growth hormone-releas-

ing factor in the goldfish. Endocrinology 1989; 124: 2509–2518.

329 Weil C, Carre F, Blaise O, Breton B, Le Bail PY. Differential effect of

insulin-like growth factor I on in vitro gonadotropin (I and II) and

growth hormone secretions in rainbow trout (Oncorhynchus mykiss) at

different stages of the reprodtive cycle. Endocrinology 1999; 140:

2054–2062.

330 Melamed P, Eliahu N, Levavi-Sivan B, Ofir M, Farchi-Pisanty O, Rentier-

Delrue F, Smal J, Yaron Z, Naor Z. Hypothalamic and thyroidal regula-

tion of growth hormone in tilapia. Gen Comp Endocrinol 1995; 97:

13–30.

331 Zhou H, Wang X, Ko WKW, Wong AOL. Evidence for a novel intrapitu-

itary autocrine ⁄ paracrine feedback loop regulating growth hormone

synthesis and secretion in grass carp pituitary cells by functional inter-

actions between gonadotrophs and somatotrophs. Endocrinology 2004;

145: 5548–5559.

332 Hull KL, Harvey S. Growth hormone therapy and quality of life: possi-

bilities, pitfalls and mechanisms. J Endocrinol 2003; 179: 311–333.

333 Childs GV, Iruthayanathan M, Akhter N, Johnson BW. Estrogen medi-

ated cross talk between the ovary and pituitary somatotrope: Pre-ovu-

latory support for reproductive activity. Mol Cell Endocrinol 2006; 247:

60–63.

334 Bachelot A, Monget P, Imbert-Bollore P, Coshigano K, Kopchick JJ, Kelly

PA, Binart N. Growth hormone is required for ovarian follicular growth.

Endocrinology 2002; 143: 4104–4112.

335 Goffin V, Binart N, Touraine P, Kelly PA. Prolactin: the new biology of

an old hormone Ann Rev Physiol 2002; 64: 47–67.

336 Taniguchi Y, Satoru Y, Rieko K, Harumichi S. Proliferation and differen-

tiation of pituitary somatotrophs and mammotrophs during late fetal

and postnatal periods. Anat Embryol 2001; 204: 469–475.

337 Korytko AI, Zeitler P, Cuttler L. Developmental regulation of pituitary

growth hormone-releasing hormone receptor gene expression in the

rat. Endocrinology 1996; 137: 1326–1331.

338 Mastorakos G, Pavlatou MG, Mizamtsidi M. The hypothalamic-pituitary-

adrenal and the hypothalamic-pituitary-gonadal axes interplay. Pediatr

Endocrinol Rev 2006; 3 (Suppl. 1): 172–181.

339 Potter LR, Abbey-Hosch S, Dickey DM. Natriuretic peptides, their recep-

tors, and cyclic guanosine monophosphate-dependent signaling func-

tions. Endocr Rev 2006; 27: 47–72.

340 Tilbrook AJ, Clarke IJ. Neuroendocrine mechanisms of innate states of

attenuated responsiveness of the hypothalamo-pituitary adrenal axis to

stress. Front Neuroendocrinol 2006; 27: 285–307.

341 Hong M, Yan Q, Tao B, Boersma A, Han KK, Vantyghem MC, Racadot A,

Lefebvre J. Estradiol, progesterone and testosterone exposures affect

the atrial natriuretic peptide gene expression in vivo in rats. Biol Chem

Hoppe Seyler 1992; 373: 213–218.

342 Robberecht W, Denef C. Enhanced ANG II activity in anterior pituitary

cell aggregates from hypertensive rats. Am J Physiol Regul Integr Comp

Physiol 1988; 255: R407–R411.

343 Johren O, Golsch C, Dendorfer A, Qadri F, Hauser W, Dominiak P. Dif-

ferential expression of AT1 receptors in the pituitary and adrenal gland

of SHR and WKY. Hypertension 2003; 41: 984–990.

344 Plotsky PM, Sutton SW, Bruhn TO, Ferguson AV. Analysis of the role of

angiotensin II in mediation of adrenocorticotropin secretion. Endocri-

nology 1988; 122: 538–545.

345 Lawrence AC, Clark IJ, Campbell DJ. Increased angiotensin-(1–7) in

hypophysial-portal plasma of conscious sheep. Neuroendocrinology

1992; 55: 105–114.

346 Casanueva FF, Dieguez C. Neuroendocrine regulation and actions of

leptin. Front Neuroendocrinol 1999; 20: 317–363.

347 Cunningham MJ, Clifton DK, Steiner RA. Leptin’s actions on the repro-

ductive axis: perspectives and mechanisms. Biol Reprod 1999; 60:

216–222.

348 Barreiro ML, Tena-Sempere M. Ghrelin and reproduction: a novel signal

linking energy status and fertility? Mol Cell Endocrinol 2004; 226: 1–9.

349 Garcia MC, Lopez M, Gualillo O, Seoane LM, Dieguez C, Senaris RM.

Hypothalamic levels of NPY, MCH, and prepro-orexin mRNA during

pregnancy and lactation in the rat: role of prolactin. FASEB J 2003; 17:

1392–1400.

350 Blanco M, Gallego R, Garcia-Caballero T, Dieguez C, Berias A. Cellular

localization of orexins in human anterior pituitary. Histochem Cell Biol

2003; V120: 259–264.

351 Kok SW, Roelfsema F, Overeem S, Lammers GJ, Frolich M, Meinders AE,

Pijl H. Pulsatile LH release is diminished, whereas FSH secretion is nor-

mal, in hypocretin-deficient narcoleptic men. Am J Physiol Endocrinol

Metab 2004; 287: E630–E636.

352 Kok SW, Roelfsema F, Overeem S, Lammers GJ, Strijers RL, Frolich M,

Meinders AE, Pijl H. Dynamics of the pituitary-adrenal ensemble in

hypocretin-deficient narcoleptic humans: blunted basal adrenocortico-

tropin release and evidence for normal time-keeping by the master

pacemaker. J Clin Endocrinol Metab 2002; 87: 5085–5091.

353 Blanco M, Lopez M, Garcia-Caballero T, Gallego R, Vazquez-Boquete A,

Morel G, Senaris R, Casanueva F, Dieguez C, Beiras A. Cellular localiza-

tion of orexin receptors in human pituitary. J Clin Endocrinol Metab

2001; 86: 3444–3447.

354 Cai A, Bowers RC, Moore JP Jr, Hyde JF. Function of galanin in the

anterior pituitary of estrogen-treated Fischer 344 rats: autocrine and

paracrine regulation of prolactin secretion. Endocrinology 1998; 139:

2452–2458.

56 C. Denef

ª 2008 The Author. Journal Compilation ª 2008 Blackwell Publishing Ltd, Journal of Neuroendocrinology, 20, 1–70



355 Byrne JM, Jones PM, Hill SF, Bennet WM, Ghatei MA, Bloom SR.

Expression of messenger ribonucleic acids encoding neuropeptide-Y,

substance-P, and vasoactive intestinal polypeptide in human pituitary.

J Clin Endocrinol Metab 1992; 75: 983–987.

356 Riskind PN, Allen JM, Gabriel SM, Koenig JI, Audet-Arnold J. Sex

differences in vasoactive intestinal peptide (VIP) concentrations in the

anterior pituitary and hypothalamus of rats. Neurosci Lett 1989; 105:

215–220.

357 Carretero J, Sanchez F, Rubio M, Francos CM, Blanco J, Vazquez R. In

vitro and in vivo evidence for direct dopaminergic inhibition of

VIP-immunoreactive pituitary cells. Neuropeptides 1994; 27: 1–6.

358 Nagy G, Mulchahey JJ, Neill JD. Autocrine control of prolactin

secretion by vasoactive intestinal peptide. Endocrinology 1988; 122:

364–366.

359 Hagen TC, Arnaout MA, Scherzer WJ, Martinson DR, Garthwaite TL.

Antisera to vasoactive intestinal polypeptide inhibit basal prolactin

release from dispersed anterior pituitary cells. Neuroendocrinology

1986; 43: 641–645.

360 Lara JI, Lorenzo MJ, Cacicedo L, Tolon RM, Balsa JA, Lopez-Fernandez J,

Sanchez-Franco F. Induction of vasoactive intestinal peptide gene

expression and prolactin secretion by insulin-like growth factor I in rat

pituitary cells: evidence for an autoparacrine regulatory system. Endo-

crinology 1994; 135: 2526–2532.

361 Balsa JA, Cacicedo L, Lara JI, Lorenzo MJ, Pazos F, Sanchez-Franco F.

Autocrine and ⁄ or paracrine action of vasoactive intestinal peptide on

thyrotropin-releasing hormone induced prolactin release. Endocrinology

1996; 137: 144–150.

362 Gomez O, Balsa JA. Autocrine ⁄ paracrine action of pituitary vasoactive

intestinal peptide on lactotroph hyperplasia induced by estrogen. Endo-

crinology 2003; 144: 4403–4409.

363 Balsa JA, Sanchez-Franco F, Pazos F, Lara JI, Lorenzo MJ, Maldonado

G, Cacicedo L. Direct action of serotonin on prolactin, growth hor-

mone, corticotropin and luteinizing hormone release in cocultures of

anterior and posterior pituitary lobes: autocrine and ⁄ or paracrine

action of vasoactive intestinal peptide. Neuroendocrinology 1998; 68:

326–333.

364 Denef C, Baes M, Schramme C. Stimulation of prolactin secretion after

short term or pulsatile exposure to dopamine in superfused anterior

pituitary cell aggregates. Endocrinology 1984; 114: 1371–1378.

365 Balsa JA, Sanchez-Franco F, Lorenzo MJ, Pazos F, Lara JI, Cacicedo L.

Autoparacrine action of vasoactive intestinal peptide on dopaminergic

control of prolactin secretion. Endocrinology 1996; 137: 508–513.

366 Wynick D, Hammond PJ, Akinsanya KO, Bloom SR. Galanin regulates

basal and oestrogen-stimulated lactotroph function. Nature 1993; 364:

529–532.

367 Hyde JF, Moore JP, Cai Aihu. Galanin in normal and hyperplastic ante-

rior pituitary cells: from pituitary tumor cell lines to transgenic mice.

Ann NY Acad Sci 1998; 863: 48–55.

368 Ren J, Koenig JI, Hooi SC. Stimulation of anterior pituitary galanin and

prolactin gene expression in suckling rats. Endocrine 1999; 11: 251–

256.

369 Wynick D, Small CJ, Bacon A, Holmes FE, Norman M, Ormandy CJ, Kilic

E, Kerr NC, Ghatei M, Talamantes F, Bloom SR, Pachnis V. Galanin regu-

lates prolactin release and lactotroph proliferation. Proc Natl Acad Sci

USA 1998; 95: 12671–12676.

370 Cai A, Hayes JD, Patel N, Hyde JF. Targeted overexpression of galanin

in lactotrophs of transgenic mice induces hyperprolactinemia and pitui-

tary hyperplasia. Endocrinology 1999; 140: 4955–4964.

371 Borgundvaag B, Kudlow JE, Mueller SG, George SR. Dopamine receptor

activation inhibits estrogen-stimulated transforming growth factor-

alpha gene expression and growth in anterior pituitary, but not in

uterus. Endocrinology 1992; 130: 3453–3458.

372 Hentges S, Boyadjieva N, Sarkar DK. Transforming growth factor-b3

stimulates lactotrope cell growth by increasing basic fibroblast growth

factor from folliculo-stellate cells. Endocrinology 2000; 141: 859–867.

373 Hentges S, Pastorcic M, De A, Boyadjieva N, Sarkar DK. Opposing

actions of two transforming growth factor-b isoforms on pituitary lac-

totropic cell proliferation. Endocrinology 2000; 141: 1528–1535.

374 De A, Hentges S, Boyadjieva N, Sarkar DK. Effect of antisense suppres-

sion of transforming growth factor-beta3 gene on lactotropic cell pro-

liferation. J Neuroendocrinol 2001; 13: 324–327.

375 De A, Morgan TE, Speth RC, Boyadjieva N, Sarkar DK. Pituitary lacto-

trope expresses transforming growth factor beta (TGF beta) type II

receptor mRNA and protein and contains 125I-TGF beta 1 binding sites.

J Endocrinol 1996; 149: 19–27.

376 Minami S, Sarkar DK. Transforming growth factor-b1 inhibits prolactin

secretion and lactotropic cell proliferation in the pituitary of oestro-

gen-treated Fischer 344 rats. Eurochem Int 1997; 30: 499–506.

377 Coya, Alvarez Perez Gianzo Dieguez. Effects of TGF-beta1 on prolactin

synthesis and secretion: an in-vitro study. J Neuroendocrinol 1999; 11:

351–360.

378 McAndrew J, Paterson AJ, Asa SL, McCarthy KJ, Kudlow JE. Targeting of

transforming growth factor-alpha expression to pituitary lactotrophs in

transgenic mice results in selective lactotroph proliferation and adeno-

mas. Endocrinology 1995; 136: 4479–4488.

379 Roh M, Paterson AJ, Asa SL, Chin E, Kudlow JE. Stage-sensitive block-

ade of pituitary somatomammotrope development by targeted expres-

sion of a dominant negative epidermal growth factor receptor in

transgenic mice. Mol Endocrinol 2001; 15: 600–613.

380 Peschon JJ, Slack JL, Reddy P, Stocking KL, Sunnarborg SW, Lee DC,

Russell WE, Castner BJ, Johnson RS, Fitzner JN, Boyce RW, Nelson N,

Kozlosky CJ, Wolfson MF, Rauch CT, Cerretti DP, Paxton RJ, March CJ,

Black RA. An essential role for ectodomain shedding in mammalian

development. Science 1998; 282: 1281–1284.

381 Dong J, Opresko LK, Dempsey PJ, Lauffenburger DA, Coffey RJ, Wiley

HS. Metalloprotease-mediated ligand release regulates autocrine signal-

ing through the epidermal growth factor receptor. Proc Natl Acad Sci

USA 1999; 96: 6235–6240.

382 Takemura T, Hino S, Kuwajima H, Yanagida H, Okada M, Nagata M,

Sasaki S, Barasch J, Harris Rc Yoshioka K. Induction of collecting duct

morphogenesis in vitro by heparin-binding epidermal growth factor-like

growth factor. J Am Soc Nephrol 2001; 12: 964–972.

383 Dempsey PJ, Coffey RJ. Basolateral targeting and efficient consumption

of transforming growth factor-alpha when expressed in Madin-Darby

canine kidney cells. J Biol Chem 1994; 269: 16878–16889.

384 Lauffenburger DA, Oehrtman GT, Walker L, Wiley HS. Real-time quanti-

tative measurement of autocrine ligand binding indicates that auto-

crine loops are spatially localized. Proc Natl Acad Sci USA 1998; 95:

15368–15373.

385 Ezzat S, Walpola IA, Ramyar L, Smyth HS, Asa SL. Membrane-anchored

expression of transforming growth factor-alpha in human pituitary

adenoma cells. J Clin Endocrinol Metab 1995; 80: 534–539.

386 Dewitt AE, Dong JY, Wiley HS, Lauffenburger DA. Quantitative analysis

of the EGF receptor autocrine system reveals cryptic regulation of cell

response by ligand capture. J Cell Sci 2001; 114: 2301–2313.

387 Roh M, Paterson AJ, Liu K, McAndrew J, Chin E, Kudlow JE. Proteolytic

processing of TGFa redirects its mitogenic activity: the membrane-

anchored form is autocrine, the secreted form is paracrine. Biochim

Biophys Acta 2005; 1743: 231–242.

388 Billis WM, White BA. Effects of the protein tyrosine kinase inhibitor,

herbimycin A, on prolactin gene expression in GH3 and 235–1 pituitary

tumor cells. Biochim Biophys Acta 1997; 1358: 31–38.

389 Missale C, Boroni F, Sigala S, Buriani A, Fabris M, Leon A, Dal Toso R,

Spano P. Nerve growth factor in the anterior pituitary: localization in

Paracrinicity 57

ª 2008 The Author. Journal Compilation ª 2008 Blackwell Publishing Ltd, Journal of Neuroendocrinology, 20, 1–70



mammotroph cells and cosecretion with prolactin by a dopamine-regu-

lated mechanism. Proc Natl Acad Sci USA 1996; 93: 4240–4245.

390 Patterson JC, Childs GV. Nerve growth factor and its receptor in the

anterior pituitary. Endocrinology 1994; 135: 1689–1696.

391 Missale C, Boroni F, Frassine M, Caruso A, Spano P. Nerve growth fac-

tor promotes the differentiation of pituitary mammotroph cells in vitro.

Endocrinology 1995; 136: 1205–1213.

392 Lopez-Dominguez AM, Espinosa JL, Navarrete A, Avila G, Cota G. Nerve

growth factor affects Ca2+ currents via the p75 receptor to enhance

prolactin mRNA levels in GH3 rat pituitary cells. J Physiol (Lond) 2006;

574: 349–365.

393 Proesmans M, Van Bael A, Andries M, Denef C. Mitogenic effects of

nerve growth factor on different cell types in reaggregate cell cultures

of immature rat pituitary. Mol Cell Endocrinol 1997; 134: 119–127.

394 Patterson JC, Childs GV. Nerve growth factor in the anterior pituitary:

regulation of secretion. Endocrinology 1994; 135: 1697–1704.

395 Fiorentini C, Guerra N, Facchetti M, Finardi A, Tiberio L, Schiaffonati L,

Spano P, Missale C. Nerve growth factor regulates dopamine D2 recep-

tor expression in prolactinoma cell lines via p75NGFR-mediated activa-

tion of nuclear factor-jB. Mol Endocrinol 2002; 16: 353–366.

396 Kanyicska B, Freeman ME. Characterization of endothelin receptors in

the anterior pituitary gland. Am J Physiol Endocrinol Metab 1993; 265:

E601–E608.

397 Hori S, Komatsu Y, Shigemoto R, Mizuno N, Nakanishi S. Distinct tissue

distribution and cellular localization of two messenger ribonucleic acids

encoding different subtypes of rat endothelin receptors. Endocrinology

1992; 130: 1885–1895.

398 Kanyicska B, Lerant A, Freeman ME. Endothelin is an autocrine regula-

tor of prolactin secretion. Endocrinology 1998; 139: 5164–5173.

399 Samson WK, Skala KD, Alexander BD, Huang FL. Pituitary site of action

of endothelin: selective inhibition of prolactin release in vitro. Biochem

Biophys Res Commun 1990; 169: 737–743.

400 Domae M, Yamada K, Hanabusa Y, Furukawa T. Inhibitory effects of

endothelin-1 and endothelin-3 on prolactin release: possible involve-

ment of endogenous endothelin isopeptides in the rat anterior pitui-

tary. Life Sci 1992; 50: 715–722.

401 Kanyicska B, Burris TP, Freeman ME. Endothelin-3 inhibits prolactin and

stimulates LH, FSH and TSH secretion from pituitary cell culture. Bio-

chem Biophys Res Commun 1991; 174: 338–343.

402 Andric SA, Zivadinovic D, Gonzalez-Iglesias AE, Lachowicz A, Tomic M,

Stojilkovic SS. Endothelin-induced, long lasting, and Ca2+ influx-inde-

pendent blockade of intrinsic secretion in pituitary cells by Gz subunits.

J Biol Chem 2005; 280: 26896–26903.

403 Kanyicska B, Livingstone JD, Freeman ME. Long term exposure to dopa-

mine reverses the inhibitory effect of endothelin-1 on prolactin secre-

tion. Endocrinology 1995; 136: 990–994.

404 Kanyicska B, Sellix MT, Freeman ME. Autocrine regulation of prolactin

secretion by endothelins throughout the estrous cycle. Endocrine 2003;

20: 53–58.

405 Kanyicska B, Sellix MT, Freeman ME. Autocrine regulation of prolactin

secretion by endothelins: a permissive role for estradiol. Endocrine

2001; 16: 133–137.

406 Calvo JJ, Gonzalez R, De Carvalho LF, Takahashi K, Kanse SM, Hart GR,

Ghatei MA, Bloom SR. Release of substance P from rat hypothalamus

and pituitary by endothelin. Endocrinology 1990; 126: 2288–2295.

407 Broglio F, Prodam F, Riganti F, Muccioli G, Ghigo E. Ghrelin: from

somatotrope secretion to new perspectives in the regulation of peripheral

metabolic functions. Front Horm Res 2006; 35: 102–114.

408 Caminos JE, Nogueiras R, Blanco M, Seoane LM, Bravo S, Alvarez CV,

Garcia-Caballero T, Casanueva FF, Dieguez C. Cellular distribution and

regulation of ghrelin messenger ribonucleic acid in the rat pituitary

gland. Endocrinology 2003; 144: 5089–5097.

409 Nanzer AM, Khalaf S, Mozid AM, Fowkes RC, Patel MV, Burrin JM,

Grossman AB, Korbonits M. Ghrelin exerts a proliferative effect on a

rat pituitary somatotroph cell line via the mitogen-activated protein

kinase pathway. Eur J Endocrinol 2004; 151: 233–240.

410 Korbonits M, Bustin SA, Kojima M, Jordan S, Adams EF, Lowe DG,

Kangawa K, Grossman AB. The Expression of the growth hormone

secretagogue receptor ligand ghrelin in normal and abnormal human

pituitary and other neuroendocrine tumors. J Clin Endocrinol Metab

2001; 86: 881–887.

411 Kamegai J, Tamura H, Shimizu T, Ishii S, Tatsuguchi A, Sugihara H, Oik-

awa S, Kineman RD. The role of pituitary ghrelin in growth hormone

(GH) secretion. GH-releasing hormone-dependent regulation of pitui-

tary ghrelin gene expression and peptide content. Endocrinology 2004;

145: 3731–3738.

412 Kamegai J, Tamura H, Shimizu T, Ishii S, Sugihara H, Oikawa S.

Regulation of the ghrelin gene: growth hormone-releasing hormone

upregulates ghrelin mRNA in the pituitary. Endocrinology 2001; 142:

4154–4157.

413 Kamegai1, Wakabayashi Kineman Frohman. Growth hormone-releasing

hormone receptor (GNRH-R) and growth hormone secretagogue recep-

tor (GHS-R) mRNA levels during postnatal development in male and

female rats. J Neuroendocrinol 1999; 11: 299–306.

414 Ezzat S, Laks D, Oster J, Melmed S. Growth-hormone regulation in

primary fetal and neonatal rat pituitary cell-cultures ) the role of

thyroid-hormone. Endocrinology 1991; 128: 937–943.

415 Johke T, Hodate K, Ohashi S, Shiraki M, Sawano S. Growth hormone

response to human pancreatic growth hormone releasing factor in

cattle. Endocrinol Jpn 1984; 31: 55–61.

416 Shulman DI, Sweetland M, Duckett G, Root AW. Age-related differences

in the growth hormone secretory response to hGHRH 1-44 in male rats

from infancy through puberty. In vivo and in vitro studies. Acta Endo-

crinol (Copenh) 1987; 116: 138–144.

417 Szabo M, Cuttler L. Differential responsiveness of the somatotroph to

growth hormone-releasing factor during early neonatal development in

the rat. Endocrinology 1986; 118: 69–73.

418 Rieutort M. Pituitary content and plasma-levels of growth-hormone in

fetal and weanling rats. J Endocrinol 1974; 60: 261–268.

419 Strosser MT, Mialhe P. Growth-hormone secretion in rat as a function

of age. Horm Metab Res 1975; 7: 275–278.

420 Garcia A, Alvarez CV, Smith RG, Dieguez C. Regulation of PIT-1 expres-

sion by ghrelin and GHRP-6 through the GH secretagogue receptor.

Mol Endocrinol 2001; 15: 1484–1495.

421 Tamura H, Kamegai J, Sugihara H, Kineman RD, Frohman LA, Wakabay-

ashi I. Glucocorticoids regulate pituitary growth hormone secretagogue

receptor gene expression. J Neuroendocrinol 2000; 12: 481–485.

422 Van den Berghe G, Wouters P, Bowers CY, de Zegher F, Bouillon R, Vel-

dhuis JD. Growth hormone-releasing peptide-2 infusion synchronizes

growth hormone, thyrotrophin and prolactin release in prolonged criti-

cal illness. Eur J Endocrinol 1999; 140: 17–22.

423 Miljic D, Pekic S, Djurovic M, Doknic M, Milic N, Casanueva FF, Ghatei

M, Popovic V. Ghrelin has partial or no effect on appetite, growth hor-

mone, prolactin, and cortisol release in patients with anorexia nervosa.

J Clin Endocrinol Metab 2006; 91: 1491–1495.

424 Lechan RM, Fekete C. The TRH neuron: a hypothalamic integrator of

energy metabolism. Progr Brain Res 2006; 153: 209–235.

425 Bruhn TO, Rondeel JM, Bolduc TG, Jackson IM. Thyrotropin-releasing

hormone (TRH) gene expression in the anterior pituitary. I. Presence

of pro-TRH messenger ribonucleic acid and pro-TRH-derived peptide

in a subpopulation of somatotrophs. Endocrinology 1994; 134: 815–

820.

426 Bruhn TO, Rondeel JM, Bolduc TG, Jackson IM. Thyrotropin-releasing

hormone gene expression in the anterior pituitary. III. Stimulation by

58 C. Denef

ª 2008 The Author. Journal Compilation ª 2008 Blackwell Publishing Ltd, Journal of Neuroendocrinology, 20, 1–70



thyroid hormone: potentiation by glucocorticoids. Endocrinology 1994;

134: 826–830.

427 Bruhn TO, Bolduc TG, Rondeel JM, Jackson IM. Thyrotropin-releasing

hormone gene expression in the anterior pituitary. II. Stimulation by

glucocorticoids. Endocrinology 1994; 134: 821–825.

428 Bruhn TO, Rondeel JM, Bolduc TG, Jackson IM. Thyrotropin-releasing

hormone gene expression in cultured anterior pituitary cells: role of

gender. Neuroendocrinology 1995; 61: 77–84.

429 Yamada M, Monden T, Satoh T, Satoh N, Murakami M, Iriuchijima T,

Kakegawa T, Mori M. Pituitary adenomas of patients with acromegaly

express thyrotropin-releasing hormone receptor messenger RNA.

Cloning and functional expression of the human thyrotropin-releasing

hormone receptor gene. Biochem Biophys Res Commun 1993; 195:

737–745.

430 Sartorio A, Spada A, Bochicchio D, Atterrato A, Morabito F, Faglia G.

Effect of thyrotropin-releasing hormone on growth hormone release in

normal subjects pretreated with human pancreatic growth hormone-

releasing factor 1–44 pulsatile administration. Neuroendocrinology

1986; 44: 470–474.

431 Strbak V, Jurcovicova J, Vigas M. Thyroliberin (TRH) induced growth

hormone (GH) release: test of maturation of hypothalamo-pituitary axis

in postnatal rat. Endocrinol Exp 1981; 15: 245–249.

432 Szabo M, Stachura ME, Paleologos N, Bybee DE, Frohman LA. Thyrotro-

pin-releasing hormone stimulates growth hormone release from the

anterior pituitary of hypothyroid rats in vitro. Endocrinology 1984;

114: 1344–1351.

433 Borges JL, Uskavitch DR, Kaiser DL, Cronin MJ, Evans WS, Thorner MO.

Human pancreatic growth hormone-releasing factor-40 (hpGRF-40)

allows stimulation of GH release by TRH. Endocrinology 1983; 113:

1519–1521.

434 Konaka S, Yamada M, Satoh T, Ozawa H, Watanabe E, Takata K, Mori

M. Expression of thyrotropin-releasing hormone (TRH) receptor mRNA

in somatotrophs in the rat anterior pituitary. Endocrinology 1997; 138:

827–830.

435 Kuhn ER, Geelissen SME, Van der Geyten S, Darras VM. The release of

growth hormone (GH): relation to the thyrotropic- and corticotropic

axis in the chicken. Domest Anim Endocrinol 2005; 29: 43–51.

436 Perez FM, Malamed S, Scanes CG. Growth hormone secretion from

chicken adenohypophyseal cells in primary culture: effects of human

pancreatic growth hormone-releasing factor, thyrotropin-releasing hor-

mone, and somatostatin on growth hormone release. Gen Comp Endo-

crinol 1987; 65: 408–414.

437 Bruhn TO, Rondeel JM, Jackson IM. Thyrotropin-releasing hormone

gene expression in the anterior pituitary. IV. Evidence for paracrine and

autocrine regulation. Endocrinology 1998; 139: 3416–3422.

438 Ahima RS, Saper CB, Flier JS, Elmquist JK. Leptin regulation of neuroen-

docrine systems. Front Neuroendocrinol 2000; 21: 263–307.

439 Ricardo VL, Long J, Itaru T, Sergio V, Kalman K, Eva H, Bernd WS, Marta

E, Couce Bartolome B. Leptin and leptin receptor in anterior pituitary

function. Pituitary 2001; 4: 33–47.

440 Jin L, Zhang S, Burguera BG, Couce ME, Osamura RY, Kulig E, Lloyd RV.

Leptin and leptin receptor expression in rat and mouse pituitary cells.

Endocrinology 2000; 141: 333–339.

441 Morash B, Li A, Murphy PR, Wilkinson M, Ur E. Leptin gene expres-

sion in the brain and pituitary gland. Endocrinology 1999; 140:

5995–5998.

442 Shimon I, Yan X, Magoffin DA, Friedman TC, Melmed S. Intact leptin

receptor is selectively expressed in human fetal pituitary and pituitary

adenomas and signals human fetal pituitary growth hormone secretion.

J Clin Endocrinol Metab 1998; 83: 4059–4064.

443 Zamorano PL, Mahesh VB, De Sevilla LM, Chorich LP, Bhat GK, Brann

DW. Expression and localization of the leptin receptor in endocrine and

neuroendocrine tissues of the rat. Neuroendocrinology 1997; 65: 223–

228.

444 Spicer LJ. Leptin: a possible metabolic signal affecting reproduction.

Domest Anim Endocrinol 2001; 21: 251–270.

445 Masayuki S, Hidetaka N, Susumu T, Yoshiyuki RO. Expression and locali-

zation of leptin receptor in the normal rat pituitary gland. Cell Tissue

Res 2001; 305: 351–356.

446 Vidal S, Cohen SM, Horvath E, Kovacs K, Scheithauer BW, Burguera BG,

Lloyd RV. Subcellular localization of leptin in non-tumorous and adeno-

matous human pituitaries: an immuno-ultrastructural study. J Histo-

chem Cytochem 2000; 48: 1147–1152.

447 Nillni EA, Vaslet C, Harris M, Hollenberg A, Bjorbak C, Flier JS. Leptin

regulates prothyrotropin-releasing hormone biosynthesis. Evidence

for direct and indirect pathways. J Biol Chem 2000; 275: 36124–

36133.

448 Douyon L, Schteingart DE. Effect of obesity and starvation on thyroid

hormone, growth hormone, and cortisol secretion. Endocrinol Metab

Clin North Am 2002; 31: 173–189.

449 Roh SG, Nie GY, Loneragan K, Gertler A, Chen C. Direct modification

of somatotrope function by long-term leptin treatment of

primary cultured ovine pituitary cells. Endocrinology 2001; 142:

5167–5171.

450 Saleri R, Giustina A, Tamanini C, Valle D, Burattin A, Wehrenberg WB,

Baratta M. Leptin stimulates growth hormone secretion via a direct

pituitary effect combined with a decreased somatostatin tone in a

median eminence-pituitary perifusion study. Neuroendocrinology 2004;

79: 221–228.

451 Baratta M, Saleri R, Mainardi GL, Valle D, Giustina A, Tamanini C. Leptin

Regulates GH gene expression and secretion and nitric oxide produc-

tion in pig pituitary cells. Endocrinology 2002; 143: 551–557.

452 McDuffie IA, Akhter N, Childs GV. Regulation of leptin mRNA and pro-

tein expression in pituitary somatotropes. J Histochem Cytochem 2004;

52: 263–273.

453 Tena-Sempere M, Pinilla L, Gonzalez LC, Navarro J, Dieguez C, Casanu-

eva FF, Aguilar E. In vitro pituitary and testicular effects of the leptin-

related synthetic peptide leptin(116–130) amide involve actions both

similar to and distinct from those of the native leptin molecule in the

adult rat. Eur J Endocrinol 2000; 142: 406–410.

454 Weber E, Voigt KH, Martin R. Pituitary somatotrophs contain

[Met]enkephalin-like immunoreactivity. Proc Natl Acad Sci USA 1978;

75: 6134–6138.

455 Brown ER, Roth KA, Krause JE. Sexually dimorphic distribution of sub-

stance P in specific anterior pituitary cell populations. Proc Natl Acad

Sci USA 1991; 88: 1222–1226.

456 Cone RD. Anatomy and regulation of the central melanocortin system.

Nat Neurosci 2005; 8: 571–578.

457 Bitar KG, Bowers CY, Coy DH. Effect of substance P ⁄ bombesin antago-

nists on the release of growth hormone by GHRP and GHRH. Biochem

Biophys Res Commun 1991; 180: 156–161.

458 Houben H, Denef C. Unexpected effects of peptide and nonpeptide

substance P receptor antagonists on basal prolactin and growth hor-

mone release in vitro. Peptides 1993; 14: 109–115.

459 Lutz L, Dufourny L, Skinner DC. Effect of nutrient restriction on the so-

matotropes and substance P-immunoreactive cells in the pituitary of

the female ovine fetus. Growth Horm IGF Res 2006; 16: 108–118.

460 Debeljuk L, Wright JC, Phelps C, Bartke A. Transgenic mice overexpressing

the growth-hormone-releasing hormone gene have high concentrations

of tachykinins in the anterior pituitary gland. Neuroendocrinology 1999;

70: 107–116.

461 Arisawa M, Snyder GD, De Palatis L, Ho RH, Xu RK, Pan G, McCann

SM. Role of substance P in suppressing growth hormone release in the

rat. Proc Natl Acad Sci USA 1989; 86: 7290–7294.

Paracrinicity 59

ª 2008 The Author. Journal Compilation ª 2008 Blackwell Publishing Ltd, Journal of Neuroendocrinology, 20, 1–70



462 Bilezikjian LM, Blount AL, Donaldson CJ, Vale WW. Pituitary actions of

ligands of the TGF-b family: activins and inhibins. Reproduction 2006;

132: 207–215.

463 Bilezikjian LM, Blount AL, Leal AMO, Donaldson CJ, Fischer WH, Vale

WW. Autocrine ⁄ paracrine regulation of pituitary function by activin,

inhibin and follistatin. Mol Cell Endocrinol 2004; 225: 29–36.

464 Roberts V, Meunier H, Vaughan J, Rivier J, Rivier C, Vale W, Sawchenko

P. Production and regulation of inhibin subunits in pituitary gonado-

tropes. Endocrinology 1989; 124: 552–554.

465 Uchiyama H, Komazaki S, Asashima M, Kikuyama S. Occurrence of

immunoreactive activin ⁄ inhibin bB in gonadotrophs, thyrotrophs, and

somatotrophs of the Xenopus pituitary. Gen Comp Endocrinol 1996;

102: 1–10.

466 Uchiyama H, Koda A, Komazaki S, Oyama M, Kikuyama S. Occurrence

of immunoreactive activin ⁄ inhibin bB in thyrotropes and gonadotropes

in the bullfrog pituitary: possible paracrine ⁄ autocrine effects of activin

B on gonadotropin secretion. Gen Comp Endocrinol 2000; 118: 68–76.

467 Ge W, Peter RE. Activin-like peptides in somatotrophs and activin stim-

ulation of growth hormone release in goldfish. Gen Comp Endocrinol

1994; 95: 213–221.

468 Corrigan AZ, Bilezikjian LM, Carroll RS, Bald LN, Schmelzer CH, Fendly

BM, Mason AJ, Chin WW, Schwall RH, Vale W. Evidence for an auto-

crine role of activin B within rat anterior pituitary cultures. Endocrinol-

ogy 1991; 128: 1682–1684.

469 Coss D, Thackray VG, Deng CX, Mellon PL. Activin regulates luteinizing

hormone b-subunit gene expression through Smad-binding and

homeobox elements. Mol Endocrinol 2005; 19: 2610–2623.

470 Yam KM, Yoshiura Y, Kobayashi M, Ge W. Recombinant goldfish activin

B stimulates gonadotropin-Ib but inhibits gonadotropin-IIb expression

in the goldfish, Carassius auratus. Gen Comp Endocrinol 1999; 116:

81–89.

471 Chapman SC, Bernard DJ, Jelen J, Woodruff TK. Properties of inhibin

binding to betaglycan, InhBP ⁄ p120 and the activin type II receptors.

Mol Cell Endocrinol 2002; 196: 79–93.

472 Harrison CA, Gray PC, Vale WW, Robertson DM. Antagonists of activin

signaling: mechanisms and potential biological applications. Trends

Endocrinol Metab 2005; 16: 73–78.

473 Carroll RS, Corrigan AZ, Gharib SD, Vale W, Chin WW. Inhibin, activin,

and follistatin: regulation of follicle-stimulating hormone messenger

ribonucleic acid levels. Mol Endocrinol 1989; 3: 1969–1976.

474 Kumar TR, Agno J, Janovick JA, Conn PM, Matzuk MM. Regulation of

FSHb and GnRH receptor gene expression in activin receptor II knock-

out male mice. Mol Cell Endocrinol 2003; 212: 19–27.

475 Bohnsack BL, Szabo M, Kilen SM, Tam DHY, Schwartz NB. Follistatin

suppresses steroid-enhanced follicle-stimulating hormone release

in vitro in rats. Biol Reprod 2000; 62: 636–641.

476 Leal AM, Blount AL, Donaldson CJ, Bilezikjian LM, Vale WW. Regulation

of follicle-stimulating hormone secretion by the interactions of activin-

A, dexamethasone and testosterone in anterior pituitary cell cultures of

male rats. Neuroendocrinology 2003; 77: 298–304.

477 Spady TJ, Shayya R, Thackray VG, Ehrensberger L, Bailey JS, Mellon PL.

Androgen regulates follicle-stimulating hormone b gene expression in

an activin-dependent manner in immortalized gonadotropes. Mol Endo-

crinol 2004; 18: 925–940.

478 Burger LL, Haisenleder DJ, Wotton GM, Aylor KW, Dalkin AC, Marshall

JC. The regulation of FSHb transcription by gonadal steroids: testoster-

one and estradiol modulation of the activin intracellular signaling

pathway. Am J Physiol Endocrinol Metab 2007; 293: E277–E285.

479 Depaolo LV. Hypersecretion of follicle-stimulating hormone (FSH) after

ovariectomy of hypophysectomized, pituitary-grafted rats: implications

for local regulatory control of FSH. Endocrinology 1991; 128: 1731–

1740.

480 Depaolo LV, Bald LN, Fendly BM. Passive immunoneutralization with a

monoclonal antibody reveals a role for endogenous activin-B in medi-

ating FSH hypersecretion during estrus and following ovariectomy of

hypophysectomized, pituitary-grafted rats. Endocrinology 1992; 130:

1741–1743.

481 Depaolo LV, Mercado M, Guo Y, Ling N. Increased follistatin (activin-

binding protein) gene expression in rat anterior pituitary tissue after

ovariectomy may be mediated by pituitary activin. Endocrinology 1993;

132: 2221–2228.

482 Baratta M, West LA, Turzillo AM, Nett TM. Activin modulates differential

effects of estradiol on synthesis and secretion of follicle-stimulating

hormone in ovine pituitary cells. Biol Reprod 2001; 64: 714–719.

483 Miller CD, Miller WL. Transcriptional repression of the ovine follicle-

stimulating hormone-beta gene by 17 beta-estradiol. Endocrinology

1996; 137: 3437–3446.

484 Noguchi K, Arita J, Nagamoto A, Hosaka M, Kimura F. A quantitative

analysis of testosterone action on FSH secretion from individual pitui-

tary cells using the cell immunoblot assay. J Endocrinol 1996; 148:

427–433.

485 Rush ME. Effects of LH-releasing hormone antagonist or lesions of the

medial basal hypothalamus on periovulatory gonadotrophin release in

female rats. J Endocrinol 1985; 106: 361–366.

486 Schwartz NB, Rivier C, Rivier J, Vale WW. Effect of gonadotropin-

releasing hormone antagonists on serum follicle-stimulating hormone

and luteinizing hormone under conditions of singular follicle-stimulat-

ing hormone secretion. Biol Reprod 1985; 32: 391–398.

487 Elias KA, Blake CA. A detailed in vitro characterization of the basal

follicle-stimulating hormone and luteinizing hormone secretion rates

during the rat four-day estrous cycle. Endocrinology 1981; 109: 708–

713.

488 Weiss J, Harris PE, Halvorson LM, Crowley WF Jr, Jameson JL. Dynamic

regulation of follicle-stimulating hormone-beta messenger ribonucleic

acid levels by activin and gonadotropin-releasing hormone in perifused

rat pituitary cells. Endocrinology 1992; 131: 1403–1408.

489 Burger LL, Dalkin AC, Aylor KW, Haisenleder DJ, Marshall JC. GnRH

pulse frequency modulation of gonadotropin subunit gene transcription

in normal gonadotropes ) assessment by primary transcript assay pro-

vides evidence for roles of GnRH and follistatin. Endocrinology 2002;

143: 3243–3249.

490 Childs G, Ellison D, Foster L, Ramaley JA. Postnatal maturation of

gonadotropes in the male rat pituitary. Endocrinology 1981; 109:

1683–1692.

491 Wilson ME, Handa RJ. Activin subunit, follistatin, and activin receptor

gene expression in the prepubertal female rat pituitary. Biol Reprod

1998; 59: 278–283.

492 Wilson ME, Handa RJ. Direct actions of gonadal steroid hormones on

FSH secretion and expression in the infantile female rat. J Ster Biochem

Mol Biol 1998; 66: 71–78.

493 Herath CB, Yamashita M, Watanabe G, Jin W, Tangtrongsup S, Kojima

A, Groome NP, Suzuki AK, Taya K. Regulation of follicle-stimulating

hormone secretion by estradiol and dimeric inhibins in the infantile

female rat. Biol Reprod 2001; 65: 1623–1633.

494 Maclusky NJ, Chaptal C, McEwen BS. The development of estrogen

receptor systems in the rat brain and pituitary: postnatal development.

Brain Res 1979; 178: 143–160.

495 Wilson ME, Price RH Jr, Handa RJ. Estrogen receptor-b messenger ribo-

nucleic acid expression in the pituitary gland. Endocrinology 1998;

139: 5151–5156.

496 Nagamoto A, Noguchi K, Murai T, Kinoshita Y. Significant role of 5

alpha-reductase on feedback effects of androgen in rat anterior pitui-

tary cells demonstrated with a nonsteroidal 5 alpha-reductase inhibitor

ONO-3805. J Androl 1994; 15: 521–527.

60 C. Denef

ª 2008 The Author. Journal Compilation ª 2008 Blackwell Publishing Ltd, Journal of Neuroendocrinology, 20, 1–70



497 Denef C, Magnus C, McEwen BS. Sex differences and hormonal control

of testosterone metabolism in rat pituitary and brain. J Endocrinol

1973; 59: 605–621.

498 Denef C. Evidence that pituitary 5 alpha-dihydrotestosterone formation

is regulated through changes in the proportional number and size of

the gonadotrophic cells. Neuroendocrinology 1979; 29: 132–139.

499 Gospodarowicz D, Lau K. Pituitary follicular cells secrete both vascular

endothelial growth factor and follistatin. Biochem Biophys Res Com-

mun 1989; 165: 292–298.

500 Kogawa K, Nakamura T, Sugino K, Takio K, Titani K, Sugino H. Activin-

binding protein is present in pituitary. Endocrinology 1991; 128: 1434–

1440.

501 Kaiser UB, Lee BL, Carroll RS, Unabia G, Chin WW, Childs GV. Follistatin

gene expression in the pituitary: localization in gonadotropes and follicu-

lostellate cells in diestrous rats. Endocrinology 1992; 130: 3048–3056.

502 Bilezikjian LM, Corrigan AZ, Vaughan JM, Vale WM. Activin-A regulates

follistatin secretion from cultured rat anterior pituitary cells. Endocri-

nology 1993; 133: 2554–2560.

503 Lee BL, Unabia G, Childs G. Expression of follistatin mRNA by somato-

tropes and mammotropes early in the rat estrous cycle. J Histochem

Cytochem 1993; 41: 955–960.

504 Fischer WH, Park M, Donaldson C, Wiater E, Vaughan J, Bilezikjian LM,

Vale W. Residues in the C-terminal region of activin A determine speci-

ficity for follistatin and type II receptor binding. J Endocrinol 2003;

176: 61–68.

505 Besecke LM, Guendner MJ, Schneyer AL, Bauer-Dantoin AC, Jameson JL,

Weiss J. Gonadotropin-releasing hormone regulates follicle-stimulating

hormone-beta gene expression through an activin ⁄ follistatin autocrine

or paracrine loop. Endocrinology 1996; 137: 3667–3673.

506 Dalkin AC, Haisenleder DJ, Gilrain JT, Aylor K, Yasin M, Marshall JC.

Regulation of pituitary follistatin and inhibin ⁄ activin subunit messen-

ger ribonucleic acids (mRNAs) in male and female rats: evidence for

inhibin regulation of follistatin mRNA in females. Endocrinology 1998;

139: 2818–2823.

507 Kawakami S, Fujii Y, Okada Y, Winters SJ. Paracrine regulation of FSH

by follistatin in folliculostellate cell-enriched primate pituitary cell cul-

tures. Endocrinology 2002; 143: 2250–2258.

508 Kirk SE, Dalkin AC, Yasin M, Haisenleder DJ, Marshall JC. Gonadotropin-

releasing hormone pulse frequency regulates expression of pituitary

follistatin messenger ribonucleic acid: a mechanism for differential

gonadotrope function. Endocrinology 1994; 135: 876–880.

509 Ortolano GA, Haisenleder DJ, Dalkin AC, Iliff-Sizemore SA, Landefeld TD,

Maurer RA, Marshall JC. Follicle-stimulating hormone beta subunit

messenger ribonucleic acid concentrations during the rat estrous cycle.

Endocrinology 1988; 123: 2946–2948.

510 Halvorson LM, Weiss J, Bauer-Dantoin AC, Jameson JL. Dynamic regula-

tion of pituitary follistatin messenger ribonucleic acids during the rat

estrous cycle. Endocrinology 1994; 134: 1247–1253.

511 Woodruff TK, Besecke LM, Groome N, Draper LB, Schwartz NB, Weiss J.

Inhibin A and inhibin B are inversely correlated to follicle-stimulating

hormone, yet are discordant during the follicular phase of the rat

estrous cycle, and inhibin A is expressed in a sexually dimorphic man-

ner. Endocrinology 1996; 137: 5463–5467.

512 Besecke LM, Guendner MJ, Sluss PA, Polak AG, Woodruff TK, Jameson

JL, Bauer-Dantoin AC, Weiss J. Pituitary follistatin regulates activin-

mediated production of follicle-stimulating hormone during the rat

estrous cycle. Endocrinology 1997; 138: 2841–2848.

513 Brann DW, Bhat GK, Lamar CA, Mahesh VB. Gaseous transmitters and

neuroendocrine regulation. Neuroendocrinology 1997; 65: 385–395.

514 Kostic TS, Andric SA, Stojilkovic SS. Spontaneous and receptor-con-

trolled soluble guanylyl cyclase activity in anterior pituitary cells. Mol

Endocrinol 2001; 15: 1010–1022.

515 Lloyd RV, Jin L, Qian X, Zhang S, Scheithauer BW. Nitric oxide synthase

in the human pituitary gland. Am J Pathol 1995; 146: 86–94.

516 Ceccatelli S, Hulting A, Zhang X, Gustafsson L, Villar M, Hokfelt T. Nitric

oxide synthase in the rat anterior pituitary gland and the role of nitric

oxide in regulation of luteinizing hormone secretion. Proc Natl Acad

Sci USA 1993; 90: 11292–11296.

517 Ceccatelli S. Expression and plasticity of NO synthase in the neuroen-

docrine system. Brain Res Bull 1997; 44: 533–538.

518 Gonzalez-Hernandez T, Gonzalez MC. Gender differences and the effect

of different endocrine situations on the NOS expression pattern in the

anterior pituitary gland. J Histochem Cytochem 2000; 48: 1639–1648.

519 Garrel G, Lerrant Y, Siriostis C, Berault A, Magre S, Bouchaud C, Counis

R. Evidence that gonadotropin-releasing hormone stimulates gene

expression and levels of active nitric oxide synthase type i in pituitary

gonadotrophs, a process altered by desensitization and, indirectly, by

gonadal steroids. Endocrinology 1998; 139: 2163–2170.

520 Lozach A, Garrel G, Lerrant Y, Berault A, Counis R. GnRH-dependent

up-regulation of nitric oxide synthase I level in pituitary gonadotrophs

mediates cGMP elevation during rat proestrus. Mol Cell Endocrinol

1998; 143: 43–51.

521 Chatterjee S, Collins TJ, Yallampalli C. Inhibition of nitric oxide facili-

tates LH release from rat pituitaries. Life Sci 1997; 61: 45–50.

522 Barnes MJ, Lapanowski K, Rafols JA, Lawson DM, Dunbar JC. GnRH and

gonadotropin release is decreased in chronic nitric oxide deficiency.

Proc Soc Exp Biol Med 2001; 226: 701–706.

523 Friebe A, Koesling D. Regulation of nitric oxide-sensitive guanylyl

cyclase. Circ Res 2003; 93: 96–105.

524 Naor Z, Catt KJ. Independent actions of gonadotropin releasing hor-

mone upon cyclic GMP production and luteinizing hormone release.

J Biol Chem 1980; 255: 342–344.

525 Yamada K, Xu ZQ, Zhang X, Gustafsson L, Hulting AL, de Vente J, Stein-

busch HW, Hokfelt T. Nitric oxide synthase and cGMP in the anterior

pituitary gland: effect of a GnRH antagonist and nitric oxide donors.

Neuroendocrinology 1997; 65: 147–156.

526 Wei X, Sasaki M, Huang H, Dawson VL, Dawson TM. The orphan nuclear

receptor, steroidogenic factor 1, regulates neuronal nitric oxide syn-

thase gene expression in pituitary gonadotropes. Mol Endocrinol 2002;

16: 2828–2839.

527 Chiodera P, Volpi R, Manfredi G, Bortesi ML, Capretti L, Magotti MG,

Saccanijotti G, Coiro V. Effect of oxytocin on nitric oxide activity con-

trolling gonadotropin secretion in humans. Eur J Clin Invest 2003; 33:

402–405.

528 Gobbetti A, Zerani M. In vitro nitric oxide effects on basal and gonado-

tropin-releasing hormone-induced gonadotropin secretion by pituitary

gland of male crested newt (Triturus carnifex) during the annual repro-

ductive cycle. Biol Reprod 1999; 60: 1217–1223.

529 Uretsky AD, Weiss BL, Yunker WK, Chang JP. Nitric oxide produced by a

novel nitric oxide synthase isoform is necessary for gonadotropin-

releasing hormone-induced growth hormone secretion via a cGMP-

dependent mechanism. J Neuroendocrinol 2003; 15: 667–676.

530 Grandclement B, Brisson C, Bayard F, Tremblay J, Gossard F, Morel G.

Localization of mRNA coding for the three subtypes of atrial natriuretic

factor (ANF) receptors in rat anterior pituitary gland cells. J Neuroen-

docrinol 1995; 7: 939–948.

531 Fowkes RC, Forrest-Owen W, McArdle CA. C-type natriuretic peptide

(CNP) effects in anterior pituitary cell lines: evidence for homologous

desensitisation of CNP-stimulated cGMP accumulation in alpha T3-1

gonadotroph-derived cells. J Endocrinol 2000; 166: 195–203.

532 McArdle CA, Poch A, Kappler K. Cyclic guanosine monophosphate pro-

duction in the pituitary: stimulation by C-type natriuretic peptide and

inhibition by gonadotropin-releasing hormone in alpha T3-1 cells.

Endocrinology 1993; 132: 2065–2072.

Paracrinicity 61

ª 2008 The Author. Journal Compilation ª 2008 Blackwell Publishing Ltd, Journal of Neuroendocrinology, 20, 1–70



533 Tezuka M, Irahara M, Ogura K, Kiyokawa M, Tamura T, Matsuzaki T,

Yasui T, Aono T. Effects of leptin on gonadotropin secretion in juvenile

female rat pituitary cells. Eur J Endocrinol 2002; 146: 261–266.

534 Ogura K, Irahara M, Kiyokawa M, Tezuka M, Matsuzaki T, Yasui T,

Kamada M, Aono T. Effects of leptin on secretion of LH and FSH from

primary cultured female rat pituitary cells. Eur J Endocrinol 2001; 144:

653–658.

535 Kosior-Korzecka U, Bobowiec R. Leptin effect on nitric oxide and

GnRH-induced FSH secretion from ovine pituitary cells in vitro. J Phys-

iol Pharmacol 2006; 57: 637–647.

536 Iqbal J, Pompolo S, Considine RV, Clarke IJ. Localization of leptin recep-

tor-like immunoreactivity in the corticotropes, somatotropes, and

gonadotropes in the ovine anterior pituitary. Endocrinology 2000; 141:

1515–1520.

537 YuWH, Walczewska A, Karanth S, McCann SM. Nitric oxide mediates

leptin-induced luteinizing hormone-releasing hormone (LHRH) and

LHRH and leptin-induced LH release from the pituitary gland. Endocri-

nology 1997; 138: 5055–5058.

538 De Biasi SN, Apfelbaum LI, Apfelbaum ME. In vitro effect of leptin on

LH release by anterior pituitary glands from female rats at the time of

spontaneous and steroid-induced LH surge. Eur J Endocrinol 2001;

145: 659–665.

539 Sutton SW, Toyama TT, Otto S, Plotsky PM. Evidence that neuropeptide

Y (NPY) released into the hypophysial-portal circulation participates in

priming gonadotropes to the effects of gonadotropin releasing hor-

mone (GnRH). Endocrinology 1988; 123: 1208–1210.

540 Bauer-Dantoin AC, Urban JH, Levine JE. Neuropeptide Y gene expres-

sion in the arcuate nucleus is increased during preovulatory luteinizing

hormone surges. Endocrinology 1992; 131: 2953–2958.

541 Hill JW, Urban JH, Xu M, Levine JE. Estrogen induces neuropeptide Y

(NPY) Y1 receptor gene expression and responsiveness to NPY in

gonadotrope-enriched pituitary cell cultures. Endocrinology 2004; 145:

2283–2290.

542 Bauer-Dantoin AC, Knox KL, Schwartz NB, Levine JE. Estrous cycle

stage-dependent effects of neuropeptide-Y on luteinizing hormone

(LH)-releasing hormone-stimulated LH and follicle-stimulating hormone

secretion from anterior pituitary fragments in vitro. Endocrinology

1993; 133: 2413–2417.

543 Xu M, Hill JW, Levine JE. Attenuation of luteinizing hormone surges in

neuropeptide Y knockout mice. Neuroendocrinology 2000; 72: 263–

271.

544 Bauer-Dantoin AC, McDonald JK, Levine JE. Neuropeptide Y potentiates

luteinizing hormone (LH)-releasing hormone-stimulated LH surges in

pentobarbital-blocked proestrous rats. Endocrinology 1991; 129: 402–

408.

545 Leupen SM, Besecke LM, Levine JE. Neuropeptide Y Y1-receptor

stimulation is required for physiological amplification of preovula-

tory luteinizing hormone surges. Endocrinology 1997; 138: 2735–

2739.

546 Minami S, Frautschy SA, Plotsky PM, Sutton SW, Sarkar DK. Facilitatory

role of neuropeptide Y on the onset of puberty: effect of immunoneu-

tralization of neuropeptide Y on the release of luteinizing hormone and

luteinizing-hormone-releasing hormone. Neuroendocrinology 1990; 52:

112–115.

547 Moore JP Jr, Burger LL, Dalkin AC, Winters SJ. Pituitary adenylate

cyclase activating polypeptide messenger RNA in the paraventricular

nucleus and anterior pituitary during the rat estrous cycle. Biol Reprod

2005; 73: 491–499.

548 Szabo E, Nemeskeri A, Arimura A, Koves K. Effect of PACAP on LH

release studied by cell immunoblot assay depends on the gender, on

the time of day and in female rats on the day of the estrous cycle.

Regul Pept 2004; 123: 139–145.

549 Ortmann O, Asmus W, Diedrich K, Schulz KD, Emons G. Interactions of

ovarian steroids with pituitary adenylate cyclase-activating polypeptide

and GnRH in anterior pituitary cells. Eur J Endocrinol 1999; 140: 207–

214.

550 Tsujii T, Ishizaka K, Winters SJ. Effects of pituitary adenylate cyclase-

activating polypeptide on gonadotropin secretion and subunit messen-

ger ribonucleic acids in perifused rat pituitary cells. Endocrinology

1994; 135: 826–833.

551 Winters SJ, Dalkin AC, Tsujii T. Evidence that pituitary adenylate cyclase

activating polypeptide suppresses follicle-stimulating hormone-b mes-

senger ribonucleic acid levels by stimulating follistatin gene transcrip-

tion. Endocrinology 1997; 138: 4324–4329.

552 Garrel G, Lozach A, Bachir LK, Laverriere JN, Counis R. Pituitary adenyl-

ate cyclase-activating polypeptide stimulates nitric-oxide synthase type

I expression and potentiates the cGMP response to gonadotropin-

releasing hormone of rat pituitary gonadotrophs. J Biol Chem 2002;

277: 46391–46401.

553 Stojilkovic SS, Merelli F, Iida T, Krsmanovic LZ, Catt KJ. Endothelin stim-

ulation of cytosolic calcium and gonadotropin secretion in anterior

pituitary cells. Science 1990; 248: 1663–1666.

554 Harden TK, Boyer JL, Nicholas RA. P-2-purinergic receptors ) subtype-

associated signaling responses and structure. Ann Rev Pharmacol Toxi-

col 1995; 35: 541–579.

555 Tomic M, Jobin RM, Vergara LA, Stojilkovic SS. Expression of purinergic

receptor channels and their role in calcium signaling and hormone

release in pituitary gonadotrophs. Integration of P2 channels in plasma

membrane- and endoplasmic reticulum-derived calcium oscillations.

J Biol Chem 1996; 271: 21200–21208.

556 Chen Z, Kratzmeier M, Levy A, McArdle CA, Poch A, Day A, Mukhopad-

hyay AK, Lightman SL. Evidence for a role of pituitary ATP receptors in

the regulation of pituitary function. Proc Natl Acad Sci USA 1995; 92:

5219–5223.

557 Rees DA, Scanlon MF, Ham J. Novel insights into how purines regulate

pituitary cell function. Clin Sci 2003; 104: 467–481.

558 Stojilkovic SS, Koshimizu Ta. Signaling by extracellular nucleotides in

anterior pituitary cells. Trends Endocrinol Metab 2001; 12: 218–225.

559 Mu-Lan H, Arturo E, Gonzalez-Iglesias Melanija T, Stanko S, Stojilkovic

SS. Release and extracellular metabolism of ATP by ecto-nucleotidase
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