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The pharmacological use of the plant alkaloid berberine is based on its antibacterial and anti-inflammatory properties; recently,
anticancer activity has been attributed to this compound. To exploit this interesting feature, we synthesized three berberine
derivatives, namely, NAX012, NAX014, and NAX018, and we tested their effects on two human colon carcinoma cell lines, that
is, HCT116 and SW613-B3, which are characterized by wt and mutated p53, respectively. We observed that cell proliferation is more
affected by cell treatment with the derivatives than with the lead compound; moreover, the derivatives proved to induce cell cycle
arrest and cell death through apoptosis, thus suggesting that they could be promising anticancer drugs. Finally, we detected typical
signs of autophagy in cells treated with berberine derivatives.

1. Introduction

Berberine (BBR) is an isoquinoline quaternary alkaloid
present in many medicinal plants such as Hydrastis canaden-
sis, Berberis aristata, Coptis chinensis, C. rhizome, C. japonica,
Phellodendron amurense, P. chinense Schneid., and other
plant species used around the world in traditional medicine.
Plants containing BBR have been used for the prevention
and treatment of many diseases, including gastrointestinal
infections, abdominal pain and diarrhea, hyperglycemia,
hyperlipidemia, metabolic syndrome, polycystic ovary syn-
drome, obesity, fatty liver, and coronary artery disorders [1–
4].

It is well known that some alkaloids, such as the topoi-
somerase I inhibitors camptothecin and vinblastine (both
isolated from plants), which interact with tubulin, have
already been successfully used as chemotherapeutic drugs.
Accordingly, also BBR proved to have anticancer effects [3–
12] on different tumor cell lines.The nitrogen atom present at
the 7-position of the alkaloid skeleton of the BBR molecule

(Figure 1(a)) has a positive charge possibly responsible for
its ability to form strong complexes with either DNA or
RNA [6, 13, 14], thus inducing DNA damage and promoting
telomerase inhibition and topoisomerase poisoning [15, 16].
Moreover, BBR can suppress gene transcription by affecting
the association between the TATA-binding protein and the
TATA box in the gene promoters [17], and regulating the
expression of Bcl-2-family members, such as Bax, Bcl-2,
and Bcl-xL, which play crucial roles in apoptosis [18, 19].
Additionally, the general antioxidant and anti-inflammatory
properties of BBR has been correlated to the inhibition of
cyclooxygenase-2 (COX-2) [20, 21]. These events may lead
to cell cycle arrest, induce cell death via apoptosis, and also
activate autophagy [22].

The structure of BBR represents a biologically inter-
esting skeleton and also an attractive natural lead com-
pound for the introduction of various chemical modifica-
tions in appropriate positions, in search for more selec-
tive, discriminated, and narrowed medical applications [13].
Therefore, aiming at ameliorating the anticancer properties
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Figure 1: Molecular structure of berberine (a), NAX012 (b), NAX014 (c), and NAX018 (d).

of BBR, we have designed and synthesized BBR deriva-
tives: NAX012, NAX014, and NAX018 (Figures 1(b)–1(d))
which are characterized by the presence of aromatic groups
bonded to the 13-position of the parent alkaloid skeleton
through a hydrocarbon linker, to possibly create a geometric
propensity for additional stacking-type, noncovalent, aro-
matic interactions (intramolecular and/or molecule-cellular
target). Aromatic interactions are ubiquitous in nature,
and their geometry is relevant for the molecular interac-
tions within cell components possibly with nucleic acids
[23, 24].

To deeper investigate the biological effects of these com-
pounds, we performed several cellular and molecular assays
for evaluating cell proliferation, cell cycle distribution, apop-
tosis, and autophagy in cells treated with the BBR derivatives.
The analysis was performed on the colon carcinoma cell lines
HCT116 and SW613-B3, which present a different status of
the oncosuppressor p53, with HCT116 being wild type and
SW613-B3 mutated. As we previously reported [25], SW613-
B3 cells are characterized by a mutation leading to the CGT
to CAT transition at codon 273 of p53, resulting in the
substitution of the “hot spot” aa His with Arg within DNA

binding domain, thus blocking the transcriptional activity of
p53.

2. Materials and Methods

2.1. Berberine and Its 13-Arylalkyl Derivatives NAX012,
NAX014, and NAX018. The 13-arylalkyl berberine deriva-
tives were designed, synthesized, and characterized by Nax-
ospharma [US Pat. 8,188,109 B2 to Naxospharma srl, granted
on May 29, 2012, first published as US 2011/0015222 A1
on January 20, 2011, priority date July 20, 2009], start-
ing from commercial berberine chloride hydrate (ca. 17%
H
2
O), which was purchased from Shanghai Trust & We,

China (Figure 1(a)). The purity (>95%) of the derivatives
was assessed by HPLC on a Jasco system LC-2000 series
(Jasco, Europe) with an Agilent Eclipse XDB-C18 (4.6mm ×
150mm×3.5mm) column (Agilent Technologies, USA).The
flow rate of the mobile phase (50% water, 50% acetonitrile
plus 0.1% trifluoroacetic acid) was maintained at 1mL/min
and absorbance was measured at 235, 265, 340, and 420 nm.

NAX012 (Figure 1(b)). NMR (200MHz, DMSO-d
6
) 𝛿: 9.88 (s,

1H), 8.19 (d, 1H), 8.20 (d, 1H), 7.70 (m, 1H), 7.29 (s, 1H), 7.16



BioMed Research International 3

(s, 1H), 6.18 (s, 2H), 4.80 (m, 2H), 4.00 (s, 3H), 3.10 (t, 2H),
2.50 (m, 4H).

NAX014 (Figure 1(c)). NMR (200MHz,DMSO-d
6
) 𝛿: 10.02 (s,

1H), 9.87 (s, 1H), 9.86 (s, 1H), 8.33 (d, 1H), 8.24 (d, 1H), 7.95 (d,
1H), 7.38 (d, 2H), 7.22 (d, 2H), 7.05 (s, 2H), 6.16 (s, 2H), 4.12
(s, 3H), 4.11 (s, 3H), 4.02 (m, 2H), 3.29 (t, 2H), 2.88 (m, 4H).

NAX018 (Figure 1(d)). NMR (200MHz, DMSO-d
6
) 𝛿: 9.90 (s,

1H), 8.15 (d, 1H), 8.10 (d, 1H), 7.20 (m, 10H), 7.10 (s, 2H), 6.20
(s, 2H), 4.80 (m, 2H), 4.15 (s, 3H), 4.10 (s, 3H), 4.0 (d, 1H), 3.2
(t, 2H), 2.5 (m, 6H).

2.2. Cell Culture and Treatments. Human colon carcinoma
HCT116 and SW613-B3 cells and normal fibroblasts FO46
(the origin of which has been previously described [27]) were
grown at 37∘C and 5% CO

2
atmosphere, in Dulbecco’s mod-

ified Eagle’s medium (DMEM) for SW613-B3 and FO46 cells
or RPMI medium (HCT116 cells), supplemented with 10%
FBS, 0.1mg/mL penicillin, 100U/mL streptomycin, 2mM
glutamine, and 2% sodium pyruvate (all reagents were from
Euroclone, Milano, Italy). Twenty-four hours after seeding,
cells were treated for 24 h either with etoposide (Sigma
Aldrich, Milano, Italy, stock solution: 50mM in DMSO)
or HMA (5-(N,N-hexamethylene)amiloride; Sigma Aldrich,
stock solution: 80mM in DMSO), BBR, or BBR derivatives
NAX012, 014, and 018 (stock solutions: 10mM inDMSO), fol-
lowed by a 24 h recovery in drug freemedium. In some exper-
iments, cells were pretreated with 2.5mM 3-methyladenine
(3MA, Sigma Aldrich, stock solution: 100mM in DMSO)
for 4 h. In general the final concentration of DMSO in
culture medium was <0.2% (v/v) and did not affect the tested
activities. Under some experimental conditions, a fraction of
treated cells tended to detach; this population was analyzed
separately or in combination with attached cells, as specified
for each assay.

2.3. Morphological Analysis. For brightfield microscope
observation, cells grown in 3.5 cm diameter Petri dishes (5 ×
104/mL) were treated with 10 𝜇M BBR or BBR derivatives for
24 h. At the end of the treatment, cells were observed using
an Olympus IX71 microscope equipped with a 10x objective
and imageswere acquiredwith a digital cameraCool SNAPES
(PhotoMetrics, CA, USA), using theMetaMorph acquisition
software; Adobe Photoshop 9.0.2 was used as elaborating
software.

2.4. Viability Assays. The effect of drugs on cell proliferation
was evaluated by two different procedures, that is, the MTT
metabolic viability assay, which measures mitochondrial
activity, and the quantification of the amount of DNA
released from cells after alkaline lysis, that is, proportional to
the cell number [28]. For the MTT assay, cells were seeded
in 96-multiwell plates at the density of 103 in 100 𝜇L/well
and, 24 h later, treated with 1 𝜇M or 10 𝜇M BBR and BBR
derivatives for 24 h followed by a 24 h recovery in drug
free medium. In some experiments, cells were preincubated
with 2.5mM 3MA for 4 h. Parallel samples were incubated

with 0.1% DMSO to evaluate the possible effect of the
solvent. At the end of the incubation, 20𝜇L of Cell Titer 96
Aqueous One Solution cell proliferation reagent (Promega
Italia, Milano, Italy) were added to each well. The plates
were then maintained for 4 h at 37∘C; the absorbance of each
sample was measured with a microplate reader (EZ Read
400, Biochrom, Cambridge, UK) at wavelength of 492 nm.
Experiments were performed in quadruplicate and repeated
three times. Data obtained from untreated cells were used
as reference values (considered as 100%) to normalize the
absorbance of treated samples.

For the DNA release assay, cells were seeded in 6 cm
diameter Petri dishes at a density of 5 × 104 cells/mL and,
24 h later, treated for 24 h with 1 or 10 𝜇M BBR derivatives,
and further incubated for 24 h in drug free medium. In
addition, controls and samples incubated with 0.1% DMSO
were also processed, according to a published procedure [28].
Three independent experiments were carried out. Statistical
analysis was performed and data were presented as mean ±
S.D.

2.5. Clonogenic Assay. To evaluate colony forming ability,
2.5 × 102 cells/mL were seeded in 6 cm diameter Petri dishes
and, 24 h later, treated with BBR derivatives for 24 h and
further grown in complete medium for 10 days to allow
colony formation by surviving cells [28]. Colonies with more
than 50 cells were counted.The number of colonies of treated
cells was compared to that of control samples, and clonogenic
efficiency was expressed as the percentage with respect to
untreated cells. Experimentswere performed in duplicate and
repeated three times.

2.6. Cell Cycle Analysis. To evaluate cell cycle distribution
of the whole cell population, cells were seeded in 10 cm
diameter Petri dishes (106 cells/dish), grown in complete
medium for 24 h, and treated with 10 𝜇MBBR derivatives for
24 h. Samples were processed as described [29] and analyzed
using a Coulter Epics XLII flow cytometer (BeckmanCoulter,
Milano, Italy); for each sample, 104 cells were measured. The
fluorescence intensity was converted into histograms, and
the percentage of cells in each phase of the cell cycle was
calculated with XLII software. Experiments were repeated
three times.

2.7. Immunofluorescence Experiments. Cells were seeded on
coverslips (5 × 104 cells/mL), treated with drugs for 24 h
and then fixed with cold paraformaldehyde (2% in PBS)
for 20min, postfixed overnight with 70% ethanol at −20∘C,
and permeabilized with 0.1% Triton X-100 in PBS. Samples
were then incubated with the MAb to mtHSP70 (JG1, Alexis,
Vinci Biochem, Vinci, Italy, diluted 1 : 50) according to [28].
For poly(ADP-ribose) analysis, fixation and incubation with
the monoclonal antibody 10H (ALX-804-220, Alexis, diluted
1 : 100) and with the appropriate secondary antibody were
performed as previously described [26]. For p53 and p21
analysis, cells were lysed with hypotonic buffer (10mM
Tris-HCl, 2.5mM MgCl

2
, 10mM 𝛽-glycerophosphate, 0.1%

Igepal, 0.2mM PMSF, and 0.1mM Na
3
VO
4
) and washed
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Figure 2: Effect of BBR and its derivatives on cell morphology. Bright field images of untreated (C) HCT116 and SW613-B3 cells and of
samples treated with 10𝜇M BBR, NAX012, 014 and 018 for 24 h. Inset: magnification of cells with vesicles. Scale bar: 50 𝜇m.

withwashing buffer (10mMTris-HCl, 2.5mMMgCl
2
, 10mM

𝛽-glycerophosphate, 0.2mM PMSF, and 0.1mM Na
3
VO
4
).

Then, samples were processed as described; the visualization
of p53 and p21 proteins has been achieved using the MAb
DO7 (Dako, Glostrup, Germany) and the polyclonal N-20
(Santa Cruz), respectively [30]. Three independent experi-
ments were performed.

In situ conversion of LC3 form I to form II was visualized
by immunofluorescence after fixation of cells with cold
paraformaldehyde (4% in PBS) for 15min in ice and perme-
abilization with cold acetone for 5 min. After washings with
PBS, sampleswere incubatedwith bovine serumalbumin (4%
in PBS) for 10 min and with the polyclonal antibody 2775 to
LC3 (Cell Signaling, diluted 1 : 100) for 1 h at 37∘C followed
by the incubation with the appropriate secondary antibody
[26]. As a positive control of autophagy, cells were treated for
24 h with 20 𝜇MHMA [26]. Three independent experiments
were performed. Cells were observed using a fluorescence
microscope Olympus BX51, equipped with a 60x objective.
The images were acquired with a digital camera Camedia
C4040 (Olympus); the quantification of autophagic vacuole
punctuation has been performed; Adobe Photoshopwas used
as elaborating software.

2.8. Statistical Analysis. TheANOVA and Dunnett’s multiple
comparison tests have been applied. The statistical analysis
was performed using GraphPad Prism 5.0.

2.9. Western Blotting. Protein expression in HCT116 and
SW613-B3 cells treated for 24 h with BBR derivatives was
evaluated by western blotting according to a described
protocol [26]. After running and transferring of proteins onto
nitrocellulose, membranes were incubated overnight at 4∘C,
or 3 h at room temperature, with MAbs against the following
proteins: PARP-1 (C2-10 Alexis, diluted 1 : 1000); total caspase
3 (31A1067 Alexis, diluted 1 : 250); and 𝛾-tubulin (GTU-88
Sigma, diluted 1 : 10,000). A polyclonal antibody against total
caspase 8 (BioVision, Milpitas, USA, diluted 1 : 1000) was
used. Autophagy was monitored through the marker LC3
using the polyclonal antibody 2775 (Cell Signaling, diluted
1 : 1000 [31]). For p53 and p21 analysis, a previously described
procedure has been applied, based on the use of the same
MAb described in the immunofluorescence section [30].
The appropriate HRP-conjugated (anti-mouse or anti-rabbit)

secondary antibody (Jackson ImmunoResearch, Suffolk, UK,
diluted 1 : 10,000) was applied for 45min at room temper-
ature. All antibodies were diluted in TBS (140mM NaCl,
100mM Tris-HCl, pH 7.5) containing 5% skimmed milk and
0.1% Tween-20. Visualization of the immunoreactive bands
was achieved using a chemiluminescent substrate (Immun-
Star WesternC Chemiluminescent Kit, Bio Rad Laboratories,
Segrate, Italy). Three independent experiments were per-
formed.

2.10. Internucleosomal DNA Degradation. For DNA ladder
visualization, control and treated samples (2.5 × 106 cells)
were processed as reported [28]. Cells treated with 100 𝜇M
etoposide for 24 h were used as positive DNA ladder occur-
rence [31]. Pictures were taken with a photographic digital
camera Kodak DC290 (Rochester, NY, USA).

3. Results and Discussion

Within the frame of an active search for compounds with
cytotoxic effect on cancer cells, berberine (BBR) has been
described as a promising drug; thus, new 9-O-derivatives [32]
and 13-substituted BBR derivatives [33, 34] were designed
and synthesized. The present work aimed to evaluate the
biological effects of BBR and three derivatives (NAX012,
NAX014, and NAX018) characterized by aromatic moieties
bonded to the 13-position of BBR through a linker of variable
length. The experiments were carried out on human colon
cancer cell lines HCT116 and SW613-B3.

3.1. Berberine Derivatives Affect Cell Morphology. We mon-
itored the morphology of HCT116 and SW613-B3 cell lines
treated for 24 h with 10 𝜇M BBR, NAX012, 014 and 018
by microscopic observation in bright field. Both cell lines
treated with the lead compound BBR did not show relevant
alterations in cell morphology, whereas the administration
of BBR derivatives was generally accompanied by decreased
cell number, rounded morphology, and detachment from
the culture substrate (Figure 2). Moreover, the treatment
with NAX018 induced the formation of intracellular vesicles,
possibly reminiscent of autophagosomes (Inset).

3.2. Berberine Derivatives Inhibit Cell Viability. The MTT
assay was applied to tumoral HCT116, SW613-B3 cells, and
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normal FO46 normal fibroblasts treated for 24 h with 1 and
10 𝜇M BBR, NAX012, 014 and 018 and further grown for 24 h
in drug free medium. The proliferation of human normal
fibroblasts (FO46) exhibited a modest decrease only after
the treatment with 10 𝜇M NAX018 (Figure 3(a)). BBR was
ineffective on cancer cells, while a 24 h treatment with NAXs
impaired cell viability in a dose-dependent manner and in an
irreversible way (Figure 3(a)), with NAX018 being the most
effective compound (Figure 3(a)). SW613-B3 cells were more
resistant to BBR derivatives than HCT116 cells.

The evaluation of cell survival by a DNA release-based
assay revealed that both HCT116 and SW613-B3 cells were
not sensitive to 1 𝜇M BBR derivatives (Figure 3(b)). 10 𝜇M
NAX012 produced a strong inhibitory effect on HCT116 cell
survival (40%) enhanced during the recovery time (50%);
NAX014 caused a cell growth inhibition of approximately
30%, which increased to about 50% after the recovery time,
while NAX018 showed a cytotoxic effect after the treatment
(about 50%) that reached 70% with the recovery time. In
SW613-B3 cells, the incubation with 10 𝜇M NAX012 and
NAX014 had no inhibitory effect, while NAX018 affected cell
survival by 10% and 20% (at the end of the incubation and
after the recovery, resp.). Also this assay revealed thatHCT116
cells were more susceptible to BBR derivatives.

Accordingly with the previous data, colony forming
ability was affected mainly by NAX018 and the effect was
more pronounced for HCT116 than for SW613-B3 cells
(Figure 3(c)). Altogether, these results point out the dose-
and time-dependent cytotoxicity of the three BBR derivatives
(in particular NAX018) on HCT116 cells, which are more
sensitive than SW613-B3 cells.

3.3. BBR Derivatives Impair Cell Cycle Distribution. To inves-
tigate if the different effect of BBR derivatives on the two
cell lines could be ascribed to a diverse impact on cell
cycle, we monitored cell cycle distribution by flow cytometry.
Cytograms in Figure 4(a) show that BBR was not affecting
cell cycle in a significant manner, while HCT116 cells treated
with 10 𝜇M NAX012, 014 and 018 tended to arrest cell
cycle progression in the G

1
phase; this phenomenon was

accompanied by a decrease in the cell fraction with a DNA
content typical of the S phase.

The observed G
1
arrest could be modulated by p53; in

fact, we observed an increased immunofluorescent cellular
staining of p53 and p21 in HCT116 cells treated with BBR
derivatives compared to control (C) samples, as expected in a
cellular context with functional p53, where p21 is necessary
for the p53-mediated G

1
arrest (Figure 4(b)). A different

behaviour was recorded for SW613-B3 cells, which were
not heavily impaired in cell cycle distribution (Figure 4(a)),
possibly because of the nonfunctional status of p53, which
accumulated in untreated cells (C) and was not modulated
by the drug treatment, as expected for mutated p53 in cancer
cells [35]; a similar pattern was observed for the protein
p21 (Figure 4(b)). Remarkably, we observed that the labeling
of p53 in SW613-B3 cells was not only confined to the
nucleus but was also visible in the extranuclear compartment
(Figure 4(b)).

The immunofluorescence data were supported bywestern
blot analysis (Figure 4(c)), revealing that the levels of both p53
and p21 proteins increased in drug-treated HCT116 cells but
remained very low and unchanged in SW613-B3 cells.

Given that G
1
arrested HCT116 cells could promote DNA

damage, as proved by the data obtained with the comet
assay (not shown), we monitored the synthesis of poly(ADP-
ribose) (PAR), which is generally formed in response to DNA
damage [36].

In fact, by immunofluorescence experiments we observed
the accumulation of nuclear PAR inHCT116 cells treatedwith
BBR derivatives (Figure 4(d), red fluorescence). The analysis
of the same marker in SW613-B3 cells revealed that PAR
synthesis is not stimulated after the treatment with NAX018,
possibly because of a low level of DNA damage (Figure 4(d)).

3.4. BBR Derivatives Induce Apoptosis. Flow cytometry
experiments detected a fraction of HCT116 cells with hypod-
iploid DNA content, thus pointing out the occurrence of
apoptosis in cells treated with BBR derivatives. Thus, we
analyzed PARP-1 proteolysis, the best apoptotic marker, by
western blotting, revealing the expected band at 113 kDa
corresponding to the intact protein in both untreated samples
(C) and its proteolytic fragment of 89 kDa in drug-treated
HCT116 cells. The apoptotic marker was detectable only in
SW613-B3 cells treated with etoposide and not with NAX018
(Figure 5(a)), supporting the evidence that proteolytic cas-
cade leading to PARP-1 cleavage was not induced by NAX018
in these cells. Searching for the caspases responsible for
PARP-1 cleavage, we observed the presence of the initiator
procaspase 8 (33 kDa) in all samples, while the conversion
to the active forms (17 kDa and 12 kDa) was detected in
response to the treatment of HCT116 cells with NAX018
(Figure 5(b)). Accordingly, the executioner caspase 3 was
visible as procaspase (55 kDa) in untreated cells (C) and as
the active proteolytic form (43 kDa) in HCT116 cells treated
with NAX018. The typical DNA ladder was visualized in
HCT116 cells treated with NAX018 and etoposide; DNA
degradation occurred also at a lesser extent in SW613-B3 cells
(Figure 5(d)).

These biochemical hallmarks were accompanied by a
rearrangement in mitochondria distribution, monitored in
HCT116 cells by detecting the localization of the mitochon-
drial HSP70 protein by immunofluorescence experiments. In
fact, in untreated cells (C) mitochondria were uniformly dis-
tributed throughout the cytoplasm, while in NAX018 treated
cells they condensed and formed aggregates (Figure 5(e)).

Altogether, these observations suggest that the cytotoxic
effect of BBR derivatives onHCT116 cells ismediated not only
by cell cycle arrest but also by the activation of the apoptotic
process, possibly mediated by a central role of mitochondria.
Conversely, the modest effect recorded for SW613-B3 cells
could be ascribed to a low propensity to drive apoptosis.

3.5. BBR Derivatives Induce Autophagy. The appearance of
vesicles in treated cells (Figure 2) could be suggestive of the
possible activation of the autophagic process. To test this
hypothesis, we monitored a typical hallmark, that is, the
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Figure 3: Continued.
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Figure 3: BBR effect on cell survival. (a) MTT metabolic and (b) cytotoxicity assay performed on HCT116 and SW613-B3 cell lines and
normal FO46 fibroblasts treated with 1 and 10 𝜇M BBR and NAXs for 24 h (black columns) followed by a 24 h recovery in fresh medium
(white columns). (c) Colony forming ability of HCT116 and SW613-B3 cells treated with 0.5𝜇M (black columns) and 5𝜇M (white columns)
NAXs for 24 h and further grown for 10 days in drug free medium. ∗𝑃 < 0.05; ∗∗𝑃 < 0.01; and ∗∗∗𝑃 < 0.001.

conversion of the protein LC3I into its active form LC3II,
by immunofluorescence and western blot. As illustrated in
Figure 6(a), a brilliant fluorescent labeling was visible in both
cell lines treated with the autophagy inducer HMA [26],
while 10 𝜇M NAX018 promoted a very intense staining in
HCT116 cells and a faint labeling in SW613-B3 cells. The
quantification of cells with autophagic vacuole punctuation is
shown in Figure 6(b), where it is evident that SW613-B3 cells
are less prone to activate autophagy. This difference was also
confirmed by western blot, where the band corresponding
to LC3II was intense in NAX018 treated HCT116 cells while
undetectable in SW613-B3 cells (Figure 6(c)). The limited
ability of SW613-B3 cells to activate autophagy could be
correlated to the presence of a pool of p53 in their cytoplasm
(Figure 4(b)). It is well known from the literature that the
cytoplasmic localization and translocation of p53 to mito-
chondria, possibly mediated by ubiquitylation [37], could
influence a number of processes, including autophagy and
drug response [38].

To investigate whether cell death induced by BBR could
be autophagy-dependent, we pretreated the cells with the
autophagy inhibitor 3MA before the administration of the
drug. As revealed by MTT experiments (Figure 6(e)), 3MA
alone affected cell viability by about 60% and the further
addition of NAX018 was no more effective, thus indicating
that once the intrinsic autophagy propensity of HCT116 cells
is inhibited (as demonstrated by the visualization of LC3
shown in Figure 6(d)), the drug is unable to promote the same
amount of cell death as in the absence of 3MA.

In a nutshell, our results demonstrate that the BBR
derivatives we synthesized are able to induce cellular DNA
damage, in line with an in vitro evidence obtained with
other 13-substituted BBR [33], and support previous data on
their cytotoxicity on breast [34] and colon [39] cancer cells.
We describe here for the first time that the BBR derivatives

NAX012, 14, and 18 affect cell cycle distribution in a p53-
dependent manner, in agreement with published data for the
lead compound BBR [7, 40–42].

The reported stronger effect of BBR derivatives on
HCT116 cells compared to SW613-B3 cells could be attributed
to the different status of p53, that is, wt and mutated,
respectively. The mutation in the codon 273 we described
in SW613-B3 cells [25] impairs p53 ability to bind DNA
and to transactivate the main target, that is, p21 (Figure 4),
thus limiting the cytotoxicity of the drug on these cells. This
observation is in agreement with the comparison of two
prostate cancer cell lines, the one expressing wt p53 (LNCaP)
and the other lacking p53 (PC3), where BBR was more active
on the p53-proficient cells; accordingly, the silencing of p53
in PC3 cells decreased the sensitivity to BBR [18].The general
correlation between the absence of functional p53 and the low
responsiveness to BBR has been reported in neuroblastoma
[43], prostate [44], and lung cancer [45] cells.

The most effective compound NAX018 induces apop-
tosis mainly in HCT116 cells, as supported by caspase 3
activation, internucleosomal DNA degradation, and mito-
chondria redistribution. These observations are in line with
previous reports showing that BBR itself promotes the
activation of procaspase 9 and mitochondria deregulation,
typically observed in the intrinsic subroutine of apoptosis
[19], although in some experimental systems BBR proved
to activate the extrinsic pathway [46, 47]. The proapoptotic
effect of BBR on cancer cells was reported to be associ-
ated with the modulation of JNK/p38-redox/ROS process,
HER2/PI3K/AKT signaling, p53-regulated factors and NF-
𝜅B, AP-1, Wnt, and COX-2 proteins [3, 7, 22, 40, 42].

The evidence of PAR accumulation coupled to mitochon-
dria redistribution prompted us to investigate the occur-
rence of the caspase-independent cell death paradigm called
parthanatos [48] previously reported to be activated by BBR
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Figure 4: Cell cycle, p53 and p21 expression, and PAR accumulation in cells treated with 10 𝜇MNAXs for 24 h. (a) Cell cycle distribution. A
0
:

apoptotic cells with DNA content <2C. (b) Immunolocalization of p53 (red fluorescence) and p21 (green fluorescence) in cells treated with
NAXs. (c) Western blot analysis of p53 and p21 in cells treated with NAX018 and etoposide. (d) In situ detection of poly(ADP-ribose) (PAR,
red fluorescence). Nuclei were counterstained with Hoechst 33258 (blue fluorescence). Scale bar: 50 𝜇m.

[49]. However, by immunofluorescence experiments we did
not detect the translocation of AIF (apoptosis inducing
factor) from the mitochondria to the nucleus (not shown),
which is the typical hallmark of this type of death.

Finally, we added a piece of information to the recent field
of research aiming at investigating the proautophagic power
of BBR [22, 50, 51], having recorded for the first time that our
BBR derivatives can promote this “Janus” process [52]. The
impact of autophagy on the cellular response of cancer cells

to BBR derivatives (and on their cytotoxicity) is still under
investigation, in order to define if this process could ensure
cancer cell survival or act as a form of death, given that two
opposite roles have been attributed to it [52].

4. Conclusions

The results of the present study indicate that the 13-arylalkyl
BBR derivatives NAX012, 014 and 018 have multiple effects
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on colon cancer cells, extending previous observations on
the lead compound BBR [53]. In particular, we found that (i)
compared to the lead compound BBR, the NAX compounds
are very potent; (ii) they are cytotoxic for two human colon
cancer cell lines, being more effective on cells harboring
p53wt, where they promote cell cycle arrest and DNA dam-
age; and (iii) they trigger caspase-dependent apoptosis and
drive autophagy. The above results revealed that the cellular
response to NAXs is not univocal, being modulated by p53,
thus adding further complexity to the pathways governing
the effects of BBR (and derivatives) on cancer cells. In fact,
most cancers are characterized by a mutated p53, which
has lost its oncosuppressor function, thus conferring an
advantage to cancer cells [35]. Given that we observed that
the cell death induced in HCT116 cells by NAX018 is, at least
in part, autophagy-dependent, we cannot exclude that the
cytoplasmic pool of p53 visible in the SW613-B3 cell line
could be responsible for their drug resistance.

The evidence that the p53wt cancer cell line is susceptible
to BBR derivatives is intriguing and legitimates further
studies in order to identify the molecular targets of the

new NAXs we have developed and characterized. Moreover,
our data could help in depicting the molecular pathways
governing the beneficial effects of a variety of plant derivatives
used in traditional medicine [12, 54–56]. Finally, we have
to keep in mind that the global effect of BBR derivatives
is strictly dependent on the experimental conditions and
cell line tested; to generalize the observation made on colon
cancer cells, we aim to extend the analysis to cell lines derived
from other tumor types, expressing p53 either wt or mutated.
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