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Abstract Drug-induced sleep fragmentation can cause sleep disturbances either

via their intended pharmacological action or as a side effect. Examples of distur-

bances include excessive daytime sleepiness, insomnia and nightmares. Developing

drugs without these side effects requires insight into the mechanisms leading to

sleep disturbance. The characterization of the circadian sleep pattern by EEG fol-

lowing drug exposure has improved our understanding of these mechanisms and

their translatability across species. The EEG shows frequent transitions between

specific sleep states leading to multiple correlated sojourns in these states.

We have developed a Markov model to consider the high correlation in the data

and quantitatively compared sleep disturbance in telemetered rats induced by
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methylphenidate, which is known to disturb sleep, and of a new chemical entity

(NCE). It was assumed that these drugs could either accelerate or decelerate the

transitions between the sleep states. The difference in sleep disturbance of meth-

ylphenidate and the NCE were quantitated and different mechanisms of action on

rebound sleep were identified. The estimated effect showed that both compounds

induce sleep fragmentation with methylphenidate being fivefold more potent

compared to the NCE.

Keywords Hidden Markov model � EEG � Sleep � Rats � Methylphenidate �
NONMEM

Introduction

Sleep is a highly regulated and dynamic physiologic process. Simplistically, the

regulation of sleep-wakefulness involves reciprocal interactions between two

opposing control systems: one that promotes wakefulness and one that promotes

sleep [1]. Normal vigilance is generally separated into three specific states: awake

(WAKE), non-rapid eye movement (NREM) and rapid eye movement (REM) sleep

[2]. Most mammals cycle or transition between the different vigilance states at

regular intervals throughout their resting phase and have been shown to respond to

drug in similar way (see Ivarsson et al. [3] for a review). It has been shown

repeatedly that sleep fragmentation (i.e. increased number of transitions between

sleep and wake states) in subjects suffering from sleep disorders or as a direct cause

of pharmaceutically active drugs, is strongly linked to increased daytime sleepiness

[4]. Therefore, the characterization of the time course of the transitions between

different vigilance states could be useful not only to identify mechanisms of action

and screen novel compounds for possible (side) effects, but also to reverse or restore

the physiological processes that are degraded by sleep problems.

The different vigilance states can be identified using changes in electroenceph-

alography (EEG) and electromyography (EMG) activity: WAKE is characterized by

desynchronized, low amplitude EEG activity and relatively high EMG activity;

NREM displays synchronized, high amplitude EEG activity accompanied by low

EMG activity; whereas REM shows desynchronized low amplitude EEG activity
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with low or absent EMG activity [5]. Note that the circadian sleep pattern shows

frequent transitions between the vigilance states (these frequencies are higher in rats

compared to human). Besides, the likelihood of next vigilance state is function of

the current vigilance state leading to multiple correlated states. As a result, the

analysis of data from such studies is complex. For instance, proportional odds

models are not suitable since they do not account for the within-individual

dependency in the data while any model aimed at inferring from these data should at

least account for the correlations between the different vigilance states. Markov

models have proved to be suitable for this type of highly correlated longitudinal data

[6]. Hence, most of the recent papers have adopted a Markovian approach to address

this problem [7, 8]. More elaborated models have been developed by Karlsson et al.
[9] and Kjellsson et al. [10, 11] who proposed Markov chain models using a mixed

effects approach by modeling the transition probabilities as binary logistic functions

of nighttime and stage time (duration of last contiguous time spent in a stage). More

recently, Bizzotto et al. [12, 13] has extended this approach by modeling the

transition probabilities using multinomial logistic functions.

The present manuscript differs in several respects from the above papers. Indeed,

all previous works were performed in a clinical drug development setting while in

this paper we describe the development of a continuous time Markov model to

assess sleep fragmentation in a pre-clinical setting. On the other hand, the transition

probabilities of the Markov model were directly derived from the so-called

Kolmogorov (forward–backward) equations that describe their time-evolutions [6].

Moreover, the sleep states were modeled as hidden states of the Markov model. We

applied this approach to compare the effects of methylphenidate, a powerful

stimulant which can significantly disturb sleep, and of a new chemical entity (NCE)

that potentially could affect sleep fragmentation. To the best of our knowledge, this

is the first manuscript using a hidden Markov model to model sleep fragmentation

and also the first to implement such a model in NONMEM.

Materials and methods

Study design

Methylphenidate (Ritalin�) is a psychomotor stimulant that is commonly used in the

treatment of Attention deficit/hyperactivity disorder (ADHD). The NCE is a lead

compound for an internal project that potentially could affect sleep fragmentation.

The effects of methylphenidate and the NCE on sleep were determined on two cohorts

of rats (n = 6–8 per group) in a placebo controlled cross-over design. Rats were orally

dosed with compound or vehicle at light onset in a Latin square design and receiving a

single dose of 3, 10 or 30 mg of methylphenidate or 2, 6.7, 20, 26.8 or 40 mg of the

NCE. The doses of methylphenidate were based on previously published data

showing effects on sleep and locomotor activity [14, 15, 16] and the doses of the NCE

were chosen to cover the range from approximately 0.3 to 10 times the 12 h average

free plasma multiples of the primary pharmacology (based on internal in vitro assays).

Recording of EEG and EMG signals began immediately after dosing and continued
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for at least 12 h. The sleep stage analysis was performed with an automatic sleep stage

discriminator based on similar logic described previously [5] to allocate every 12 s

epoch to one of the three vigilance states, WAKE, NREM (non-REM) and REM. The

scores were subsequently aggregated in 5 min epoch and the residence times in each

of the three vigilance states were reported.

Animals

Male Sprague–Dawley rats (Charles River, Margate, UK, approximately 300 g at

time of surgery) were singly housed under a 12 h light/dark cycle (lights on at 11:00

am) with food and water ad libitum. As described previously [5, 17], animals were

implanted with radiotelemetric transmitters (Data Sciences International, St. Paul,

MN, USA) intraperitoneally under isoflurane anaesthesia for the recording of the

EEG and EMG and were allowed to recover from the implantation of the device for

at least 2 weeks, and the experiment was started once the animals were certified fit

to continue by a veterinary surgeon. All experiments were performed in accordance

with the ethical guidelines for animal research and fully complied with Home Office

legislation.

Hidden Markov model

In this analysis only two vigilances states were considered: the WAKE and the

SLEEP state, with the latter obtained by merging the vigilance sleep stages REM and

NREM sleep. In every 5 min epoch, the time spent in each of the vigilance states

(residence time) was reported. A model that aims at inferring from these data should

not discard the dependency between these observations. While the analysis of such

dense and continuous data (in the rest of this paper by continuous data, we mean the

length of sojourn in a vigilance state), when taking into account the dependency

between observations, is theoretically feasible (using for example autoregressive

models such as in time series analysis) it can be computationally prohibitive.

Therefore, we decided to binarize the data (the length of sojourn is binarized) by

defining a cut-off point. The cut-off point was arbitrary chosen to be 2.5 min. When

the residence time in the WAKE state was less or equal to 2.5 min, the animal was

assumed to be in the SLEEP state and the observation was reset to 0. On the other

hand when the residence time in the WAKE state was greater than 2.5 min, the

animal was assumed to be in the WAKE state and the observation was reset to 1.

Under the additional assumption that at any given time the next vigilance state is fully
and only dependent on the present vigilance state, sleep fragmentation would possess

the Markov property (the Markov property is characterized by two main assump-

tions: the present depends on the past and given the present, the future is independent

from the past). Thus a Markov model could be used to model such data.

However, due to the arbitrarily selected cut-off point, the binarization could be

biased leading to misclassification of the observations. Determining the cut-off with

the least misclassification errors could be a way to overcome this problem but our

attempts to estimate this point were unsuccessful. Instead, we used a hidden Markov

model to account for misclassification errors.
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A hidden Markov model is a Markov model whose states are not observed

(hidden). In a regular Markov model, there is a one-to-one relationship between the

observations and the states. In our setting, for instance, the state SLEEP corresponds

to observing 0. In a hidden Markov process, the states are not anymore identifiable

from the observations. Hence, the observation might be set to 0, whereas the animal

is actually awake. Therefore the sleep status was modelled as a continuous time

two-state hidden Markov model (Fig. 1) which accounts for the misclassifications

induced by the binarization.

All inferences are conditional on the observation times. Let P01 and P10 (Fig. 1)

denote respectively the transition probabilities from the SLEEP state to the WAKE

state and vice versa. P00 and P11 (Fig. 1) are the probabilities of not moving from the

present state; SLEEP and WAKE respectively. Identification of the hidden Markov

model requires the present state, P01 and P10 and also the probability of

misclassification to be known. The probability of observing 1 when the true state is

SLEEP (i.e. misclassifying a 0 as a 1) and the probability of observing 1 when the true

state is WAKE (i.e. correct classification in the WAKE state) are denoted by P0 and P1

respectively. Ideally, the probability of misclassification should be low, resulting in a

P0 close to 0 and P1 close to 1. Hence P0 is conceptually analog to a type I error,

whereas P1 to the power of wrong classification of the observations. This also provides

an indication on whether the arbitrary selected cut-off point was appropriate or not.

A Markov model can, by definition, be parameterized by its intensities of

transition. This can be achieved by solving the system of Kolmogorov’s differential

equations [6]. Let u and v denote the intensities of transitioning from WAKE to

SLEEP and from SLEEP to WAKE respectively. For a two-state Markov process,

the transition probabilities over a time interval t are shown in Eqs. 1 and 2 for P01

and P10 respectively, in which u is the intensity of acquisition of sleep while v is the

intensity of clearance of sleep.

P01 tð Þ ¼ v

uþ v
1� e� uþvð Þt
� �

ð1Þ

P10 tð Þ ¼ u

uþ v
1� e� uþvð Þt
� �

ð2Þ

As mentioned above t is the length of a time interval. Since each individual is

observed at successive time points, the contribution of each subject to the likelihood

is function of these transitions probabilities where t is the time between two

consecutive observations.

Fig. 1 Two-state hidden Markov process
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Pharmacokinetic model

The pharmacokinetics of methylphenidate and the NCE were described with

compartmental models with first order absorption and elimination. The PK

parameters were estimated on internal Pfizer data from satellite PK experiments

in rats, using a population PK modelling approach (data not shown). The estimated

PK parameters for a typical rat were subsequently used to simulate the PK in the

PK-PD model. The typical estimated values for the maximum plasma concentration

and the time at which the peak concentration is reach are provided in Table 1 for

both compounds.

Placebo and drug effect models

The intensities are the rates of transitioning from one state to another. These rates

are the inverse of the residence times, which are known to be exponentially

distributed [6]. It was assumed that drugs can change these intensities. Several

models (linear, power and Emax) for the effects of drugs on these intensities were

explored. For sake of conciseness, only the results of the Emax model are reported

in this manuscript as that was the best model according to the Bayesian Information

Criterion (BIC). However the classical Emax model provided non-significant

estimates of the EC50. Hence we decided to use the (generally) more flexible

model, a version of the 4-parameter logistic model [18] to estimate the effect of the

drug on both intensities (note that the 4-parameter logistic model is a specific

parameterization of the sigmoidal model in which a baseline and a slope factor can

also be specified: here these two parameters are fixed to zero and one respectively

and only the remaining two parameters are estimated). The possible delay in the

onset of the drug effect relatively to drug exposure was tested on both intensities via

an effect-compartment. However, in the final model (selection based on the BIC and

the parameter precisions); this delay was included for the acquisition of sleep only.

In this placebo controlled experiment, it was assumed that the placebo treatment

could also change the transition intensities.

More specifically, the intensities u and v are given by Eqs. 3 and 4, in which u0

and v0 are the baseline intensities, Pmax the maximum placebo effect, which will

wash-out with an equilibrium half-life Teq,plac. The latter was assumed to be the

Table 1 PK parameter estimates

Parameter Compound 2 mg 6.7 mg 20 mg 26.8 mg 40 mg 3 mg 10 mg 30 mg

Tmax (min) NCE 1.05 1.1 1.2 1.25 1.3

Methyl-

phenidate

0.2 0.2 0.2

Cmax (nM) NCE 21 71 232 323 516

Methyl-

phenidate

44 146 438
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same for both intensities. The drug effects on the intensities u and v (Drgu and Drgv)
are described by Eqs. 5 and 6 respectively, in which Cp is the drug concentration in

plasma and Ce is the concentration in the hypothetical effect compartment, which is

derived from Eq. 7 describing the delay or hysteresis between the plasma and effect

concentration using the equilibrium constant ke0 and an equilibrium half-life Teq,drug

of ln(2)/ke0. Emax is the maximum drug effect while EC50 is the plasma or effect

compartment concentration corresponding to half of the maximum drug effect.

u ¼ exp u0 þ Pmaxu
e�ðlnð2Þ=Teq;placÞt þ Drgu

� �
ð3Þ

v ¼ exp v0 þ Pmaxv
e�ðlnð2Þ=Teq;placÞt þ Drgv

� �
ð4Þ

Drgu ¼ Emaxu
� Emaxu

1þ Ce

EC50u
exp Ce � EC50uð Þ

ð5Þ

Drgv ¼ Emaxv
� Emaxv

1þ Cp

EC50v
exp Cp � EC50v

� � ð6Þ

dCe

dt
¼ ke0 Cp � Ce

� �
ð7Þ

Note that in Eqs. 3 and 4, the time t is TAD.

It was assumed that the misclassification errors were highest around the cut-off

point and decrease exponentially as a function proportional to the distance from that

point (2.5 min). More specifically:

P0 ¼
1

1þ exp �d:h0ð Þ ð8Þ

P1 ¼
1

1þ exp �d:h1ð Þ ð9Þ

d ¼ exp � l� 2:5j jð Þ l is length of time in WAKE ð10Þ
The parameters h0 and h1 are to be estimated.

We set an additional constraint on both P0 and P1; if l is greater than 4 P0 is set to

0 and when l is less than 1 P1 is set to 0. The meaning of this latter constraint is that

the probability of misclassification is zero when and only when the length of

consecutive time in WAKE is less than 1 min or greater than 4 min during the

5 min epoch.

Software and model evaluation

The model parameters were estimated by maximizing the likelihood of the model

using the Laplacian method in the nonlinear mixed effect modelling package

NONMEM (version 7.1.2; Icon Development Solutions, Ellicott City, Maryland,

USA). At each time point the residual on frequency of the WAKE state (including

all subjects and all scenarios) divided by their variances were calculated to

provide for both compounds the time course of the weighted residuals in Fig. 3.
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The predictive performance of the model was assessed by simulations, using

S-Plus� for Windows (version 8.0 Professional, release 1, Insightful Corp.,

Seattle, USA). This was achieved by simulating 100 replicate datasets using the

final model (parameters and uncertainty). The hidden Markov property of the

model was then applied to each sample of parameters. This means that for a given

observation and a given sleep state at the present time, the next sleep status was

predicted by sampling from a Bernoulli distribution with the appropriate transition

probability. In this approach, all rats were assumed to be awake at the start of the

experiment. Subsequently, the observation corresponding to that time point was

predicted by sampling from a Bernoulli distribution with the appropriate

misclassification probability. These simulations were used to reconstruct for each

dose, the observed frequency over time of animals in the WAKE state (Fig. 4).

For both compounds, the predicted transition probability from awake to sleep over

time for a typical rat is depicted in Fig. 5. To evaluate the overall effect of

methylphenidate and the NCE respectively on sleep fragmentation, the difference

between log ratio of the intensity of acquisition of sleep over clearance of sleep

under active treatment and the same quantity when only placebo is given was

calculated. When this difference is zero the drug has no effect on sleep. A positive

difference shows induction of sleep, whereas wakefulness is promoted when the

difference is negative (Fig. 6). Further evaluations of the model were performed

using the theory of receiver operating characteristic (ROC) curves [19]. Basically,

the predictions are compared to the observations for each individual at each time

point. The ratio of true 1’s (true positive TP: correctly predicted 1 divided by the

total number of 1’s observed) as well as the ratio of false 1’s (false positive FP:

number of observed 0 predicted as 1 divided by the total number of 0’s observed)

are calculated for each time point. However, as the model is a probabilistic model,

we actually need to sample such a contingency table to proceed. This was done as

follows: a threshold is set between 0 and 1. At each time point, for each

individual, the predicted probability of the observation being 1 is compared to the

threshold. When the probability is greater than the threshold then the predicted

observation is set to 1 whereas if it is less than the threshold the prediction is set

to 0. The process is repeated for each threshold (note that this threshold has no

relationship with the cut-off point which was used for the binarization) of the 100

equally spaced points of [0, 1]. The ROC curve is hence obtained (Fig. 7) and its

AUC is an indicator of the predictive performance of the model. We want this

AUC as close as possible to 1. It is generally accepted that an AUC over 0.8

corresponds to a good predictive model.

Results

The observed time course of transitions between SLEEP and WAKE for the two

cohorts of rats receiving methylphenidate and the NCE is shown in Fig. 2. Both

compounds show different changes in the sleep pattern compared to placebo, since

methylphenidate increases the residence time, whereas the NCE increases the

frequency of the transitions.
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All model parameters (Table 2) could be estimated precisely, since their relative

standard errors were below 50% of the parameter estimates except the Emax for the

effect of methylphenidate on the transition from WAKE to SLEEP, which appears

not to be different from 0. The expected indicator of type I error was less than 0.05

while the expected indicator of power was greater than 0.92. This suggests that the

binarization method was appropriate since it has induced only a low probability of

misclassification.

The weighted residuals in Fig. 3 are approximately normally distributed and

were generally within the 95% confidence interval of the standard normal

distribution. This suggests that the model was not misspecified. The observed and

simulated number of animals in the WAKE state (Panel A vs. panel C and B vs.

panel D in Fig. 4 for methylphenidate and the NCE respectively) closely

resemble, indicating an adequate description of the sleep fragmentation by the

two-state continuous hidden Markov model. Figure 5 shows different patterns for

the transition probability of the NCE compared to methylphenidate. Both

compounds tend to promote wakefulness when compare to placebo, as shown

in Figs. 4 and 6.

Fig. 2 Time course of transitions from WAKE to SLEEP and vice versa for a placebo and
b methylphenidate in the methylphenidate cohort and c the placebo versus d NCE in the NCE cohort. At
the start of the experiment all rats are in the WAKE state. A value of 0 (horizontal line) means no
transition, whereas a positive values indicates a change from WAKE to SLEEP while the reverse is
indicated by a negative value
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Discussion

For both compounds, the estimated Emax value was higher for the intensity v than for

u (Table 2), suggesting a higher drug effect on the clearance of sleep compared to

the acquisition of sleep. Methylphenidate appears to inhibit the transitions from one

sleep status to another as shown by the negative Emax values, whereas the NCE

stimulates these transitions. As can be observed in Fig. 2b, inhibition of both

transitions by methylphenidate results in longer residence times. In contrast,

stimulating the intensities of the transitions by the NCE increases the number of

transitions between SLEEP and WAKE (Fig. 2d).

Figure 4a, c for methylphenidate and the NCE respectively show that the onset of

acquisition of sleep (i.e. transition from WAKE to SLEEP) is delayed whether the

animal received a placebo or an active treatment. Figure 5a shows that methylphe-

nidate delays the onset of sleep for low doses. There seems to be a dose dependence

decreasing this delay with increasing dose so that the placebo onset of sleep is

almost identical to the high dose onset. Figure 5b shows comparable onsets of sleep

for the placebo and the active doses. The NCE acts as a stimulator of both

intensities, which results in higher transition probabilities with respect to placebo.

This pattern is clearly different from the effects of methylphenidate showing that the
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Fig. 3 Weighted residuals on frequency of the WAKE state for the fit of the hidden Markov model to the
data of a the methylphenidate cohort and b the NCE cohort
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NCE and methylphenidate have clearly different mechanism of action on sleep

fragmentation.

Figure 6 shows the overall effect of methylphenidate and the NCE respectively

on sleep fragmentation. These were negative for both compounds; suggesting that
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both methylphenidate and the NCE tend to promote wakefulness when adminis-

trated to rats. However, the maximum effect of methylphenidate was -2.6 while

that of the NCE was fivefold less (-0.55). This suggests that methylphenidate was

much more potent than the NCE in inducing sleep fragmentation in rats.

The predictive performance of the model was evaluated using the ROC curves in

Fig. 7. This shows a higher predictive performance for methylphenidate than for the

NCE though the model performs well for both compounds since the AUC of these

curves were estimated to be 0.86 and 0.93 for the NCE and methylphenidate

respectively.

It has been shown repeatedly that fragmented sleep is less restorative than

consolidated sleep and causes reduced daytime functioning [4]. However, it is still

unclear how to best quantify the fragmentation of sleep and also which specific

changes in the sleep pattern are directly linked to impairments in daytime

function. Currently, there are unconvincing correlations between sleepiness and

the standard measures of arousals. Therefore, there is a clear need to identify more

sensitive approaches to measure sleep fragmentation and the approach described

here could address some of these questions, but more work and analysis is needed,

especially on clinical data, before any clear conclusions on the applicability can

be drawn.

In conclusion, this manuscript describes the development of a hidden Markov

model to assess drug-induced sleep disturbance across multiple drug classes on the

basis of EEG recordings in rats. Markov models can accommodate highly correlated

observations. Unlike previous papers in this field [9–13], the transition probabilities

were derived from the Kolmogorov (forward–backward) equations. This method-

ology can be used to explicitly model the ultradian regulation (REM vs. non-REM).

Here, the REM and NREM were merged into one vigilance stage. Our methodology

is applicable when all three vigilance states are considered as long as the

observations are discrete (using for instance the 12 s epoch instead of the

aggregated data in 5 min). However there may be computational issues with

NONMEM because of the size of the data and the rapidly increasing number of

parameters to estimate. Models such as those developed in [9–13] might then be

more suitable. By binarizing the original observations, the approach adopted in this

paper provides a far less computationally prohibitive method than a method based

on autoregressive models for instance. It should be acknowledged, however, that

binarization of data does, in principle, induce misclassification errors. However, the

developed hidden Markov model offers an elegant way of accounting for these

errors which were shown to be acceptable in this analysis. Indeed, it was shown that

the complex sleep pattern in rats was well described by a two-state continuous time

hidden Markov model, which was successfully applied to studies designed to assess

and compare the effects of methylphenidate and an NCE on sleep disturbance in

telemetered rats. This model can be used to quantify differences in sleep

fragmentation and provides insight into the nature of the underlying mechanism

of action of drug inducing sleep fragmentation. As a result, this approach can be

applied to screen NCEs early in development for their possible effects on sleep

fragmentation compared to an active control, such as methylphenidate. For the NCE

evaluated in this paper it was found that it induces sleep fragmentation in a dose-

710 J Pharmacokinet Pharmacodyn (2011) 38:697–711

123



dependent manner, but to a much less extent (i.e. five times less potent) and with a

different mechanism of action compared to methylphenidate.

Open Access This article is distributed under the terms of the Creative Commons Attribution

Noncommercial License which permits any noncommercial use, distribution, and reproduction in any

medium, provided the original author(s) and source are credited.
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