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Abstract

Polypeptides exiting the ribosome must fold and assemble in the crowded environment of the cell. Chaperones and other
protein homeostasis factors interact with newly translated polypeptides to facilitate their folding and correct localization.
Despite the extensive efforts, little is known about the specificity of the chaperones and other factors that bind nascent
polypeptides. To address this question we present an approach that systematically identifies cotranslational chaperone
substrates through the mRNAs associated with ribosome-nascent chain-chaperone complexes. We here focused on two
Saccharomyces cerevisiae chaperones: the Signal Recognition Particle (SRP), which acts cotranslationally to target proteins to
the ER, and the Nascent chain Associated Complex (NAC), whose function has been elusive. Our results provide new insights
into SRP selectivity and reveal that NAC is a general cotranslational chaperone. We found surprising differential substrate
specificity for the three subunits of NAC, which appear to recognize distinct features within nascent chains. Our results also
revealed a partial overlap between the sets of nascent polypeptides that interact with NAC and SRP, respectively, and
showed that NAC modulates SRP specificity and fidelity in vivo. These findings give us new insight into the dynamic
interplay of chaperones acting on nascent chains. The strategy we used should be generally applicable to mapping the
specificity, interplay, and dynamics of the cotranslational protein homeostasis network.
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Introduction

Ribosomes translate the linear genetic code into polypeptide

chains that must fold into a specific three-dimensional structure

and often assemble with other polypeptides to be born as

functional proteins. During this process, as nascent proteins

emerge from the ribosome, they lack information to complete their

folding and are susceptible to misfolding and aggregation. A

diverse set of molecular chaperones act as midwives to stabilize

and facilitate the folding of newly translated polypeptides into

functional proteins. Among these, Chaperones Linked to Protein

Synthesis (CLIPS) [1] interact physically with ribosomes and

associate cotranslationally with nascent polypeptides. In addition

to folding within the cytosol, many polypeptides must be directed

to various membrane-bound organelles, such as the ER and

mitochondria. A number of specific targeting factors recognize

nascent polypeptides before they have a chance to fold in the

cytosol and deliver them to specific cellular membranes. One of

the best understood mechanisms involves the cotranslational

recognition of characteristic hydrophobic nascent chain segments

by the Signal Recognition Particle (SRP), which facilitates proper

delivery of the entire ribosome-nascent chain complex (RNC) to

the ER membrane for cotranslational translocation.

The multiplicity of fates and possible interactions available to a

polypeptide as it emerges from the ribosome in the eukaryotic

cytosol raises a number of intriguing questions. Do all nascent

chains interact with chaperones? Is there any specificity in the

recognition of nascent chains by chaperones? How do cytosolic

chaperones and targeting factors such as SRP discriminate among

their respective substrates, and how is the fidelity of this process

achieved? These questions are fundamental to understanding the

mechanisms governing polypeptide fate as it emerges from the

ribosome.

Much of our understanding of nascent chain interactions with

chaperones or other targeting factors comes from the study of

model proteins, chosen for a convenient enzymatic or structural
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assay for folding or translocation. As a result, the overall logic and

organization of the system that mediates the critical events in

delivery and birth of a nascent polypeptide as a functional protein

is still a mystery. To begin to fill this gap, we developed a

systematic approach to define the principles underlying the

specificity of cotranslational chaperones. In the present work, we

apply it to study the specificity and interplay of two important

nascent-chain interacting factors: SRP and the Nascent Chain

Associated Complex (NAC).

Eukaryotic SRP was initially identified as a factor for targeting

proteins to the ER. SRP is a ribonucleoprotein complex

comprising six proteins (in yeast Srp72, Srp68, Srp54, Sec65,

Srp21, Srp14) and a non-coding RNA (scR1) [2]. SRP binds

weakly to all ribosomes, even those that do not translate ER-

destined proteins, by virtue of its contacts with multiple ribosomal

sites. One of the contact sites, the ribosomal protein Rpl25, is also

a proposed binding site for NAC [3,4]. SRP recognizes

characteristic hydrophobic sequences such as the N-terminal

signal sequence (SS) and transmembrane domains (TM) in nascent

polypeptides as they emerge from the ribosome. The dual

recognition of ribosome and nascent chain by SRP ensures high

affinity for cognate RNCs. SRP-bound RNCs are targeted to the

membrane through interaction with the membrane bound SRP

receptor (SR), where nascent chains bearing SS or TM domains

are translocated across the ER membrane by a protein complex

called the Sec61 translocon. Interestingly, the Sec61 translocon

itself can also interact directly with ribosomes [5], preferentially

recognizing RNCs bearing hydrophobic SS or TM regions; this

might provide an SRP independent route to the ER or a

proofreading mechanism for ER import. SRP-independent co-

and post-translational ER targeting pathways also exist, including

post-translational chaperone-assisted translocation [6] and direct

ER targeting of mRNA through RNA-binding proteins (reviewed

in [7]). The respective contributions of the various targeting

pathways to ER import in vivo and the determinants that channel

an ER-bound protein through either SRP-dependent or SRP-

independent pathways are not entirely understood.

Very little is known about the function of the abundant and

ubiquitous NAC complex. NAC is phylogenetically conserved

across eukaryotes and archaea but is absent from prokaryotes [8].

Structural characterization of archaeal NAC indicates that its

subunits must assemble in tightly folded dimers [9]. Most NAC

complexes are heterodimers of two subunits, a and b, but

homodimers have also been reported [10]. Yeast contains a single

alpha subunit gene, EGD2, and two b subunit genes, EGD1 and

BTT1. NAC contacts Rpl25 [3] and Rpl31 [11] in close proximity

to the ribosomal exit site and can crosslink to very short nascent

chains [12], suggesting an early role in the birth of nascent

proteins. NAC deletion causes embryonic lethality in mice, flies,

and nematodes [13–15] but only minor growth defects in yeast

[16]. Despite its abundance and conservation, the specificity and

function of NAC are obscure and controversial. NAC does not

associate with proteins after release from the ribosome and has no

apparent chaperone activity. From in vitro experiments, NAC was

initially proposed to be essential for faithful SRP-targeting of

proteins to the ER [12] and preventing inappropriate association

of RNCs lacking SS or TM with the translocon Sec61 [17]. This

hypothesis was not supported, however, by subsequent in vitro and

in vivo studies, which did not reveal aberrant translocation

phenotypes in NAC-deleted strains [16,18]. A regulatory role for

NAC in mitochondrial protein import, suggested by in vitro

experiments [19,20], was not corroborated by in vivo studies [16].

Given the robustness of protein homeostasis pathways, loss of

NAC could be compensated by other systems. Indeed, NAC

deletions exacerbate the effect of deleting the yeast Hsp70

homolog SSB, leading to higher levels of ribosomal protein

aggregation [21].

A number of experimental challenges have hindered progress

towards understanding the robust network of chaperones and

cofactors acting cotranslationally on nascent chains. Because

nascent chains comprise a small, transient, and heterogeneous

cellular pool of chaperone substrates, proteomic analyses are

currently impractical. The high degree of redundancy within the

cellular chaperone network often masks obvious loss-of-function

phenotypes. Our understanding of the specificity and mechanism

of cotranslationally acting chaperones comes from in vitro

translation experiments using individual model proteins, and thus

the generality of such experiments is hard to ascertain. To

circumvent these difficulties, we developed a sensitive, systematic

method for defining the substrate specificity and interplay of

cotranslationally acting chaperones and other nascent chain

binding and modifying factors (e.g., acetylation enzymes) in vivo.

Here we used this approach to characterize the specificity of the

interactions of SRP and NAC with nascent polypeptides and how

the interplay between these two factors serves to modulate that

specificity.

Results

Experimental Strategy
Cotranslationally acting chaperones recognize substrates as they

emerge from ribosomes; the identity of the polypeptide substrate is

determined by the mRNA programming its translation. We

reasoned that we could leverage the specificity, sensitivity, and

comprehensiveness of RNA identification to systematically identify

the substrates of factors that associate cotranslationally with

nascent polypeptides.

Our basic experimental strategy was to isolate specific

chaperone-bound ribosome-nascent chain complexes (RNCs) from

Author Summary

In every cell, ribosomes translate the genetic instructions
carried by messenger RNAs into the proteins they encode.
Molecular midwives called chaperones often bind to
nascent protein chains as they emerge from the ribosome
to help them fold. Very little is known about this process.
Do all proteins need chaperone assistance as they exit the
ribosome? Do different chaperones recognize different
polypeptide chains and, if so, how? Answering these
questions has been hard because most studies have
examined only a handful of model proteins and their
interactions with a specific chaperone. Here, we used a
systematic approach to investigate the challenging ques-
tion of chaperone specificity in living cells. We isolated
specific chaperones that interact with nascent proteins
during translation along with the ribosomes and associat-
ed mRNAs encoding the emerging proteins. We then used
DNA microarrays to identify the full suite of mRNAs and
thus the encoded proteins that interact cotranslationally
with each of these factors. We learned from these studies
that individual chaperones interact with a specific set of
nascent proteins. Furthermore, overlapping specificity
enables one chaperone to modulate the specificity and
fidelity of another. The picture that emerges suggests that
these molecular midwives are an important part of the
intricate systems that maintain specificity, precision, and
efficiency in expressing the genome’s instructions.

Global Specificity of Cotranslational Chaperones
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cells and identify the polypeptide substrates through their

encoding mRNAs (Figure 1A). The isolation exploits Tandem-

Affinity-Purification (TAP) tagged chaperones expressed from

their endogenous chromosomal locations to ensure their expres-

sion at physiological levels. Following isolation of a specific tagged

chaperone and associated RNCs complexes, we can identify the

mRNAs encoding the polypeptide substrates selectively bound by

that chaperone, by DNA microarray hybridization (Figure 1A).

In this study, we applied this approach to define the substrate

specificity of two ribosome-associated factors from the yeast S.

cerevisiae: SRP and NAC. The multicomponent SRP complex was

isolated using SRP54-TAP. To purify NAC we used TAP-tagged

variants of each of the NAC subunits: Egd1/b, Egd2/a, and Btt1/

b’. A similar strategy relying on C-terminal TAP-tags of two

different solvent exposed ribosomal proteins, Rpl16 and Rpl17,

was used to purify ribosomes directly. Sucrose gradient fraction-

ation confirmed that the TAP-tagged Srp54, all three NAC

subunits, and Rpl16 and Rpl17 all associated with polysomes

(Figure S1A and Figure S6B). We initially examined the TAP-

purified complexes by SDS-PAGE followed by silver staining

(Figure 1Bi). Whereas the untagged purification control

(Figure 1Bi, lane 1) revealed only background bands correspond-

ing to the TEV protease preparation, all other lanes showed

characteristic associated proteins (Figure 1Bi, lanes 2–7). Shared

among all purifications were a set of low molecular weight proteins

identified as ribosomal proteins by mass spectrometry (Figure 1Bi;

unpublished data). The presence of the 40S ribosomal subunits in

the TAP immunopurifications (IPs) was confirmed by RT-PCR

detection of the 18S rRNA (Figure 1Bii) while immunoblot

analysis for ribosomal protein Rpl3 confirmed the presence of the

60S subunit (Figure 1Biii). Importantly, neither 18S rRNA nor

Rpl3 were detected in purifications carried out from untagged

control cells (Figure 1Bi, lane 1). These results show that the TAP-

tag does not disrupt ribosomal binding of either SRP or NAC and

that our isolation procedure efficiently recovers their ribosome-

associated complexes. We subsequently employed the TAP-tag

isolation approach to systematically identify all mRNAs associated

with SRP and the three subunits of NAC, as well as those engaged

with translating ribosomes in actively growing cells.

The TAP-tags in ribosomal proteins Rpl16 or Rpl17 were used

to purify all translating ribosomes irrespective of their association

with chaperones (Figure 1Bi, lanes 2,3) and the associated mRNA

was analyzed using DNA microarrays with the total mRNA from

the same cells serving as a comparative standard (Figure 1C). The

experiments were carried out as three independent biological

replicates for each ribosomal protein. As shown in the clustering

analysis in Figure 1C, the results of these experiments were highly

reproducible (Rpl16, r = 0.96; between Rpl16 and Rpl17, r = 0.93).

In principle, the relative occupancy of each mRNA with Rpl16

and Rpl17 provides a measure of that mRNA’s association with

translating ribosomes. At a stringent 1% false discovery rate (FDR)

[22], we identified that 1,673 mRNAs are highly enriched in both

Rpl16 and Rpl17 datasets. As expected, a disproportionate

number of these mRNAs encode ribosomal proteins (GO

‘‘ribosome’’, n = 212 genes, p,1610256), metabolic enzymes

(GO ‘‘carboxylic acid metabolic process’’, n = 199 genes,

p = 1610210), and mitochondria (GO ‘‘mitochondrion’’, n = 450,

p = 161024), which correspond to the mRNAs with the highest

translation rates in actively growing cells. In contrast, the least

enriched mRNAs encoded proteins likely not translated at

appreciable rates in mid-log phase, including meiosis and

transposition. Similar conclusions were obtained when translation

was assessed in the same yeast cells by isolation of actively

translated mRNAs from the polysome fractions of sucrose

gradients (Figure S1); our results are also consistent with previous

findings [23,24].

Global Identification of Cellular SRP Substrates
To identify the cellular substrates of SRP in vivo, we used

immunoaffinity isolation of Srp54-TAP along with its cotransla-

tional associated RNC-mRNAs complexes to isolate mRNAs

encoding nascent proteins specifically recognized by SRP

(Figure 1B, lane 7; Figure 2A). Using DNA microarrays we

identified approximately 924 mRNAs reproducibly enriched at a

stringent statistical threshold in Srp54 IPs (Figure 2A, note high

reproducibility of three independent Srp54 replicates). Disrupting

the translating 80S ribosomes with EDTA, which releases the

translated mRNAs, prevented the recovery of mRNAs but not the

SRP RNA scR1 in the SRP isolations (unpublished data). This

indicates that the association of mRNAs with SRP was mediated

through translating ribosomes, supporting our premise that

analysis of the mRNAs associated with RNC-SRP complexes

provides information on the specificity of SRP interaction with the

translating polypeptides.

Hierarchical clustering based on quantitative enrichment of

mRNAs in association with Rpl16/17 and Srp54 respectively

indicated clear selectivity of SRP-associated complexes for a distinct

subset of translated mRNAs (Figure 2B), consistent with the SRP

specificity for a distinct subset of nascent polypeptides (Figure 2B,

yellow highlight). Secretory pathway proteins (Figure 2C, yellow

bars) were disproportionately represented among SRP-associated

mRNAs, whereas the mRNAs encoding cytosolic and mitochon-

drial proteins (Figure 2C, cyan bars) were significantly under-

represented among SRP-associated mRNAs. The consistency of

these results with the known function of SRP suggests that this

procedure can selectively identify the mRNAs encoding nascent

polypeptides that are in vivo substrates of specific cotranslational

chaperones.

The recognition code for SRP derived from in vitro studies

provided a basis for several algorithms that predict SS and TM

domains from sequence information; these are used to identify

putative secretory pathway proteins (reviewed in [25]). The

systematic identification of SRP substrates provides an unprece-

dented opportunity to benchmark these predictive algorithms

against the experimentally determined SRP substrates from yeast.

We used published algorithms (SignalIP, RPSP, TMHMM,

HMMT, and the curated Uniprot database) to identify putative

SS or TM regions encoded by mRNAs that were associated with

SRP with high confidence (1% FDR) (Figure 2D and Figure S2A)

as well as in the mRNAs least enriched in our SRP IPs (herein the

‘‘non-SRP interactors’’) (Figure S2Bi and S2Bii). All these

programs predicted, with good agreement, TM domains in

,60%–75% of the SRP interactors (Figures 2D and S2Aii,

hairline denotes consensus among programs) and an SS in 15%–

35% of the SRP interactors (Figure S2Aii). Notably, however, the

algorithms found no SS or TM domains in about a quarter of the

proteins encoded by SRP-associated mRNAs (Figure 2D, 102

targets when using SignalIP and TMHMM). These could

represent bona fide SRP substrates that are recognized by novel,

yet-to-be-determined features. Indeed, 12% of these proteins are

annotated as membrane or secretory pathways (Figure 2E;

Table 1). For instance, Sed4, a known integral ER membrane

protein, and Sec20, a v-SNARE membrane glycoprotein involved

in Golgi to the ER retrograde transport, are both encoded by

mRNAs that we found to be enriched in association with SRP,

though both lack predicted TM or SS regions. Despite the overall

consistency of our results, some of the apparent interactions might

be stochastic or spurious: For instance, 48% of proteins encoded

Global Specificity of Cotranslational Chaperones
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by SRP-associated mRNAs that lack predicted TM or SS domains

localize to the nucleus or mitochondrion (Table 1; Figure 2E).

Future studies on the mechanistic and physiological significance of

these potential non-canonical SRP interactors may reveal novel

aspects of SRP function.

As expected, applying the same algorithms to the proteins

encoded by mRNAs not associated with SRP yielded few proteins

with predicted SS or TM regions (Figure S2B; ‘‘non-SRP

interactome’’). Approximately 6% of these proteins had a

predicted SS and ,6% had a predicted TM domain (Figure

S2B, note slight variations among algorithms). Interestingly, some

of these proteins are annotated as localizing to the plasma

membrane (Fus1p) or ER (Ost4p) and might therefore represent

weakly SRP-bound or SRP-independent secretory proteins.

Others correspond to mitochondrial proteins, which are generally

not recognized by SRP; although dual targeting of some

polypeptides to the mitochondria and the ER has been reported

[26]. Still others, such as ribosomal protein Rpl45, contain a

predicted SS yet are clearly cytoplasmic proteins.

Messenger RNAs encoding proteins with predicted TM regions

were generally more highly enriched by our SRP affinity isolation

procedure than proteins with predicted SS (Figure 2F), suggesting

that the interaction of the correspondent nascent polypeptide with

SRP was stronger or more sustained. Since TM regions are

generally more hydrophobic than SS, this is consistent with

previous biochemical experiments indicating that proteins with

more hydrophobic sequences have a higher dependency on SRP

for efficient ER translocation [27]. SRP-binding substrates lacking

predicted SS or TM domains were typically less enriched than

those containing either predicted TM or SS domains, suggesting

that their SRP-binding sequences may be weaker and thus not

recognized by algorithms designed to find sequences that bind

strongly to SRP. While the hydrophobicity of the SS or TM

regions is clearly important for SRP interaction, we only found a

very weak correlation between this parameter alone and SRP

enrichment (Figure S3 and unpublished data).

The presence of canonical SRP-binding, ER-targeting sequenc-

es in proteins that did not appear cotranslationally associated with

SRP and the apparent enrichment of nascent proteins with no SS

or TM regions in association with SRP suggest that our

understanding of SRP specificity in vivo is still incomplete and

that SRP-binding might be influenced by additional cis- and

transacting factors.

Contribution of SRP to Overall mRNA Membrane
Targeting

A number of important questions surround the mechanisms and

functions of mRNA association with membranes (reviewed in

[28]). SRP inactivation is not lethal to yeast [29–31], indicating

that SRP is not the only route to membrane association. mRNA

binding proteins known to localize to cellular membranes could

provide additional mechanisms for targeting selected mRNAs to

the ER [32]. Experimental evidence that many mRNAs encoding

cytosolic proteins associate with membranes has led to a suggestion

that a substantial fraction of all translation in eukaryotic cells

occurs in association with membranes [33].

To examine the contribution of the SRP-mediated route to

overall mRNA targeting to membranes, we empirically defined the

global complement of mRNAs associated with yeast membranes.

We used a previously established differential centrifugation

procedure [34,35] to isolate membrane-associated mRNAs as well

as the cytosolic, membrane-free mRNAs (Figure 3A). At a stringent

statistical threshold (1% FDR), we identified 1,168 membrane-

associated mRNAs (,45% of the translatome, Figure 3B). Hierar-

chical clustering of SRP-bound and membrane-associated mRNAs

demonstrated extensive overlap, as expected (Figure 3B; r = 0.6). A

large fraction of membrane-bound mRNAs encoded proteins

localized to ER, Golgi, or plasma membrane (Figure 3C i versus

ii; red, pink, and orange, respectively), consistent with previous

findings [35]. SRP-associated (Figure 3Ci) and membrane-associ-

ated (Figure 3Cii) fractions showed comparable enrichment for

mRNAs encoding ER, Golgi, and Plasma membrane proteins. For

instance, 60% of all mRNAs annotated as corresponding to ER

proteins were enriched in the SRP-associated dataset (log2 ratio

greater than 0) (Figure 3Ci, red line) and 70% were enriched in the

membrane-bound dataset (log2 ratio greater than 0) (Figure 3Cii,

red line). In contrast more than 90% of mRNAs encoding cyto-

solic proteins were included in neither the SRP-associated nor

membrane-associated fractions (Figure 3C green). This result

suggests that cellular membranes are not the major site of cytosolic

protein synthesis, at least in yeast.

The enrichment for mRNAs encoding mitochondrial proteins

was clearly higher in the membrane-associated than in the SRP-

associated fractions (Figure 3C ii, blue line; Figure S4A and

Table 2). This likely reflects the presence of mitochondria in our

membrane preparation and supports the idea that a fraction of

mitochondrial proteins are imported cotranslationally into mito-

chondria (reviewed in [36]).

Joint analysis of the quantitative enrichment of each mRNA in

association with SRP and membrane respectively gave further

insight into modes of mRNA localization (Figure 3D–F and Figure

S4). Comparison of both SRP and membrane-associated RNCs

(significantly enriched targets at 1% FDR) reveals that most

mRNAs that were both SRP-associated and membrane-associated

(SRP+/Mem+) encoded proteins annotated as belonging to the

secretory pathway (Figure 3D,E for ER; Figure S4B–D for Plasma

Figure 1. Global strategy to define specificity of ribosome-associated factors. (A) Experimental approach. Nascent polypeptides emerging
from the ribosome during biogenesis can interact with many chaperones and protein homeostasis factors. The high sensitivity of RNA identification
can be used to identify substrates of specific cotranslationally acting chaperones. Protein A-tagged (TAP-tag) chaperones associated with translating
ribosomes were immunopurified by binding to magnetic IgG beads, washed, and chaperone complexes were eluted with TEV protease treatment.
Immunopurified RNAs and total cell extract RNAs were isolated, reverse transcribed, coupled to Cy5 and Cy3 dyes, respectively, and comparatively
hybridized to DNA microarrays. (B) Validation of affinity purification approach of ribosomes and ribosome-associated factors. (i) Protein profiles of
affinity purified complexes. Affinity purified complexes from tagged ribosomal proteins and ribosome-associated factors were separated by SDS-
PAGE and visualized by silver staining. Lane 1 corresponds to a control purification from untagged yeast cells. Main band on the negative control
corresponds to the TEV protease used to elute immunopurified proteins. (ii) RT-PCR for rRNA corresponding to the 18S ribosomal subunit. Equal
amounts of total RNA isolated from yeast extracts and immunopurifications proteins were reverse-transcribed with random oligonucleotides and
obtained cDNA was amplified by PCR using gene-specific primers for 18S rRNA. Strains used in each lane were: 1, untagged-WT; 2, Rpl16-TAP; 3,
Rpl17-TAP; 4, Egd2-TAP; 5, Egd1-TAP; 6, Btt1-TAP; 7, Srp54-TAP. (iii) Immunoblot analysis of a component of 60S ribosomal subunit. Immunopurified
complexes were transferred to nitrocellulose and the Rpl3 protein was detected with a monoclonal antibody. (C) Translational profile of yeast strains
derived by affinity purification of ribosomes. Hierarchically clustered heat map of the translation profiles obtained from three different
immunopurifications made of both TAP-tagged Rpl16 and Rpl17 ribosomal proteins. Each column represents an experiment and each row represents
a gene. Pearson correlation coefficients between experiments are indicated on the tree. Significantly enriched GO terms (p,0.01) are indicated.
doi:10.1371/journal.pbio.1001100.g001

Global Specificity of Cotranslational Chaperones

PLoS Biology | www.plosbiology.org 5 July 2011 | Volume 9 | Issue 7 | e1001100



Global Specificity of Cotranslational Chaperones

PLoS Biology | www.plosbiology.org 6 July 2011 | Volume 9 | Issue 7 | e1001100



membrane and Golgi). Interestingly, 24% of the SRP-associated

RNCs in which the nascent polypeptide lacks either predicted SS

or TM regions were also membrane-associated (Table S1); thus,

these nascent chains are likely bona fide SRP targets despite their

lack of a canonical SRP binding site. Virtually no transcripts

encoding cytosolic proteins (Figure 3D, green) and few encoding

mitochondrial proteins (Figure S3A; Figure S4C) were SRP+/

Mem+. As expected, these mRNAs were overwhelmingly SRP2/

Mem2. Notably, a number of mRNAs encoding secretory

pathway proteins also fell into this class. We reasoned that these

might represent proteins imported into the ER post-translation-

ally. Indeed, known substrates of post-translational translocation

pathways were SRP2/Mem2 (Figure 3E). These include tail-

anchored proteins (Figure 3E, TA, highlighted in black), which use

the post-translational GET pathway [37] and pre-pro-alpha-factor

(Mfa1, Figure 3E), which uses cytosolic chaperones to reach the

ER membrane [38,39]. Further analysis of this dataset may reveal

additional substrates of these pathways.

Of particular interest were secretory pathway proteins whose

mRNAs were membrane-associated but not SRP-associated

(SRP2/Mem+; Figure 3F and Table 2), such as the chaperone

EPS1, the plasma membrane protein IST2, and Golgi protease

KEX1. These may represent translocation substrates whose

mRNAs are targeted to membranes in an SRP-independent

mechanism. Interestingly, IST2 mRNA is known to localize to the

bud tip by an actomyosin-driven process and is associated with

cortical ER via an SRP-independent mechanism [40]. One

possible mechanism for this process could be direct localization

through specific membrane-associated RNA-binding proteins

(RBPs) [32,41]. However, we could not detect significant overlap

between the SRP2/Mem+ mRNAs and the mRNA targets of

previously described membrane-associated RBPs (unpublished

data). Thus, novel yet-to-be-determined pathways and factors may

function to localize these mRNAs to membranes.

Defining Cotranslational NAC Specificity by Analysis of
Associated Ribosome-Nascent Polypeptide Complexes

To gain insight into the cotranslational specificity of NAC, we

systematically identified mRNAs cotranslationally associated with

NAC complexes, using DNA microarrays to profile the mRNAs

associated with each of the three NAC subunits, Egd2, Egd1, and

Btt1 (Figure 4A). Importantly, dissociation of the ribosome-

Figure 2. Identification and properties of polypeptides cotranslationally associated with SRP in yeast. (A) Strategy to identify SRP
interactors. SRP has been described to recognize signal sequences (SS) and transmembrane regions (TM) on nascent preproteins as they emerge from
the ribosome. To identify the SRP cotranslational interactome, SRP-bound ribosome-nascent chain complexes (RNC) were affinity purified and
identified associated-mRNA by means of microarrays. Importantly, our procedure releases SRP from the membrane, as no ER membrane markers
copurify with the SRP-RNC complexes (unpublished). (B) Translational profile of SRP-bound RNC. Hierarchically clustered heat map of the translation
profiles obtained from three different immunopurifications using TAP-tagged Srp54, Rpl16, and Rpl17. Each column represents a single experiment
for Srp54-TAP and the average of three independent experiments for Rpl16 and Rpl17. Pearson correlation coefficients between experiments are
indicated on the tree. Genes enriched or depleted in Srp54 immunopurifications are indicated. (C) Over-represented (yellow) and under-represented
(cyan) GO annotations (component) for polypeptides cotranslationally associated with SRP. The extent of the enrichment for each GO term is
indicated as fold enrichment over genome. GO terms above or below the dashed line correspond to ontology categories over-represented or under-
represented among SRP interacting proteins. (D) Enrichment of mRNAs encoding proteins with predicted signal sequences (SS), transmembrane
regions (TM), or both in association with SRP. (E) Distribution of subcellular localization of SRP targets without canonical SS/TM. (F) Relationship
between SRP binding and N-terminal features in the nascent chains. The box plot represents the distribution of the enrichment (as SAM score)
obtained on the microarrays analysis for mRNAs encoding proteins with predicted signal sequences, transmembrane regions, or lacking any of these
two features. The line indicates the median and the whiskers of 25%–75% of the total dataset. For details, see Material and Methods, ‘‘Enrichment
Distribution Analysis.’’
doi:10.1371/journal.pbio.1001100.g002

Table 1. SRP targets lacking predicted SS or TM.

GO category Frequency Genes

Unknown 63 (29.6%) YAR030C, MOH1, YBL081W, YBR206W, YBR225W, MXR2, YCR015C, YCR025C, YCR102W-A, YDL023C, YDL034W,
BSC1, YDR015C, YDR124W, YDR220C, PPM1, YEL076C, JHD1, YER137C, YER187W, THI5, ROG3, STR3, YGL199C,
YGR018C, YGR066C, YHL049C, CRG1, YHR210C, YIL082W, YIR044C, YJL015C, YJL135W, YJL195C, YJL211C, HUL4,
YJR087W, YJR107W, YJR146W, YKL153W, YLR236C, YLR255C, YLR463C, BSC3, YML002W, AIM32, YMR013W-A,
YMR147W, YMR294W-A, YNL043C, YNL057W, YNL193W, YNL276C, BDS1, YOR021C, YOR041C, YOR093C,
YOR203W, YOR248W, CIN1, YPL113C, YPL114W, YPR195C

Nucleus 61 (28.6%) SWD1, CDC27, TKL2, UMP1, TDP1, THI2, SHG1, MAL33, THI3, DUN1, BPL1, MSH5, GAL3, DAD1, YDR132C, RPA14,
SCC2, PRP42, IPK1, GCN4, NUG1, SPC25, HAC1, ACT1, RPL28, RTG, ZPR1, MAL13, SHU1, SRB2, BCY1, MSL1,
TAD2, ZAP1, UTP18, PSF2, YJR008W, YJR027W, NMD5, TTI1, RGT1, PHD1, NUP120, MSN4, PMU1, POM34, CHA4,
GSP1, GLO1, NSE5, NAT4, CEP3, UBP8, CSL4, SGO1, GSP2, RDR1, CTF19, REC8, YBL005W-A, YGR109W-A

Mitochondrion 31 (14.6%) TIM12, YMC2, COS111, PGS1, CIT2, SLM3, GDH2, PTP1, YDR115W, RSM24, ACN9, PAD1, AGX1, ENO1, RRF1,
ENO2, TAO3, TES1, OPI3, TTI1, YKL070W, GPM1, YKT6, CBT1, ALT1, MSS1, IRA2, CAT5, MGE1, ALD6, GIP3

Ribosome 10 (4.7%) RPS14A, YDR115W, RSM24, RPL29, RPL28, RPS27B, RPS14B, RPS9A, GIP3, RPL1A

Endoplasmic reticulum 9 (4.2%) SED4, LCB2, SRP101, DPL1, YDR476C, SEC20, OPI3, ERG5, GIP3

Endomembrane system 9 (4.2%) SED4, COP1, LCB2, SRP101, SEC20, APL1, NUP120, POM34, RET3

Plasma membrane 3 (1.4%) ENO2, BCY1, APL1

Vacuole 3 (1.4%) ENO1, ENO2, YKT6

Golgi apparatus 2 (0.9%) COP1, RET3

SRP interactors were analyzed for the presence of predicted Signal Sequences (SS) or Transmembrane Regions (TM). 213 targets do not have predicted SS or TM.
Assignment of the corresponding cellular location was made retrieving GO ontology (component) categories from SGD.
doi:10.1371/journal.pbio.1001100.t001
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mRNA-nascent chain complexes with EDTA abrogated the

association of NAC with mRNAs (unpublished data), suggesting

that the mRNAs identified by this assay in association with

individual NAC subunits reflect the cotranslational specificity of

NAC for the nascent polypeptide.

Each of the TAP-tagged NAC subunits was ribosome associated

(Figure 4B, lower panel; Figure 1B). The extent of a/b
heterodimer formation for each b subunit was assessed by

immunoblot analysis of a/Egd2 enriched by immunoaffinity

purification of each of the two b isoforms (Figure 4B, middle panel,

lanes 2 and 3). As expected, the EGD1-encoded b subunit was

strongly associated with the a subunit, Egd2, consistent with

previous reports [16,42]. On the other hand, little of the Egd2/a
subunit copurified with the BTT1 encoded b’ subunit (Figure 4B,

compare lanes 2 and 3). This is consistent with evidence that Btt1

elutes predominantly at a homodimer molecular weight during

size exclusion chromatography of yeast cell extracts [16].

Hierarchical clustering of the mRNAs based on their patterns of

enrichment in association with each NAC subunit reveals two

striking properties of NAC: First, there were clear differences

between NAC subunits, suggesting that the different NAC subunits

recognize different subsets of mRNA-RNC complexes. Second,

NAC targets include virtually every mRNA associated with

Rpl16/17, suggesting that at least one NAC isoform can interact

with virtually every nascent polypeptide in the cell. This result is

consistent with the estimated stoichiometry of NAC to ribosomes

(1.25:1) together with evidence that most of NAC in the cell are

ribosome-bound [43]. Importantly, no mRNA was recovered by

NAC complexes from non-ribosome-associated fractions (unpub-

lished data), suggesting that the mRNA association and specificity

are mediated through translating ribosomes (unpublished data).

Similarly, omission of cycloheximide during cell extract prepara-

tion and analysis, which leads to polysome dissociation, dramat-

ically reduced the number of mRNAs associated with Egd2 (Figure

S5). Because association of Egd2 with mRNAs is critically

dependent on the presence of intact polysomes, we conclude that

Egd2 does not interact with mRNAs directly, but rather, through

its association with translating nascent chains.

What determines the substrate specificity of different NAC

subunits? The nascent proteins associated with different NAC

subunits exhibited significant differences in a number of

physicochemical properties, most notably length, hydrophobicity

and intrinsic disorder, as well as inferred translation rate

(Figure 4D–G). Btt1 associates with mRNAs encoding proteins

of higher intrinsic disorder and lower hydrophobicity, whereas

Egd2 associated with mRNAs encoding proteins with low intrinsic

disorder and high hydrophobicity (Figure 4D,E). The length

distribution of predicted protein products, which correlates

inversely with the overall rate of folding (Figure 4F) [44], as well

as translation rate of the mRNAs (Figure 4G) were also

significantly different among sets of mRNA respectively associated

with different NAC subunits. These differences suggest that each

NAC subunit participates in recognizing specific features of the

nascent polypeptide; Egd2 may have higher affinity for longer,

Figure 3. Global identification of membrane-associated mRNAs. (A) Experimental Strategy: Isolation of membrane-associated polysomes.
Membrane-associated polysomes were separated from free polysomes by subcellular fractionation of WT yeast strains and associated RNA was
isolated and then identified by microarray analysis. (B) Translational profile of SRP-associated and membrane-associated ribosomes. Hierarchically
clustered heat map of the translation profiles obtained from immunopurifications made for TAP-tagged Srp54 and Rpl16 and from membrane-
associated RNA. Each column represents the average of three different experiments and each row represents a gene. Pearson correlation coefficients
between patterns of enrichment in the different immunoaffinity isolations determine the relationships represented by the dendogram as indicated.
(C) Distribution of (i) SRP- and (ii) membrane-associated mRNAs encoding proteins of the indicated subcellular compartments. The graph represents
the enrichment observed for mRNAs encoding proteins localized to various subcellular compartments as cumulative fraction of total mRNAs; 70% of
ER proteins are enriched in the membrane associated fraction and 60% are enriched in association with SRP. (D) Scatterplot comparing the
enrichment, represented as its log2 ratio, of individual mRNAs encoding cytosolic and ER proteins in the membrane fraction and in association with
SRP. The indicated log2 ratio values are the average of three independent experiments. (E) Scatterplot comparing the enrichment of individual
mRNAs encoding ER proteins in the membrane fraction and in association with SRP. mRNAs encoding Tail-anchored proteins (TA) are highlighted in
black. Mfa1, a post-translationally translocated protein, is represented in blue. (F) Scatterplot highlighting mRNAs encoding secretory pathway
proteins that were not enriched in association with SRP but were enriched in the membrane fraction. These are putative substrates of SRP-
independent pathways of cotranslational translocation. (G) Pathways to the ER membrane. SRP- or membrane-associated pools can be compared to
describe different targeting pathways. Cotranslational pathways require mRNA transport to the ER membrane (Mem+). Targeting to the ER
membrane can be SRP mediated (SRP+/Mem+) or SRP independent (SRP2/Mem+). Posttranslational translocation pathways do not require mRNA
transport to the ER membrane or SRP association (SRP2/Mem2) and are likely mediated by the GET pathway or by cytoplasmic chaperones.
doi:10.1371/journal.pbio.1001100.g003

Table 2. Selected proteins encoded by membrane-associated mRNAs that do not associate with SRP (Mem+/SRP2).

GO term Frequency Genes

Plasma membrane (40) 7.4% GPB2, APL3, FUI1, IST2, SUL1, PHO89, GIT1, GPR1, RGT2, SNF3, HXT15, DNF2, HKR1, HXT13, SHO1, RSP5, MSB2,
MTL1, MAL11, DUR3, SLN1, PAN1, LSB6, HXT9, STE6, TRK2, FPS1, YPS3, PPZ1, DFG5, PLB3, YOL019W, SMF1,
ALR1, HXT11, SLG1, NRT1, TRE1, OPY2, AQY1

Endoplasmic reticulum (36) 6.7% CNE1, SWH1, ALG14, SEC66, YPC1, ROT2, YDR056C, YOS9, GTB1, YEL043W, ERJ5, WSC4, EPS1, JEM1, MNS1,
LHS1, SRP102, GPT2, MMM1, HRD3, UBX2, MSC1, ERO1, ASI1, SCJ1, LCB1, ASI3, PGA1, LRO1, ARE2, YNR021W,
HRD1, MPD2, FLC1, ALG5, YPR091C

Endomembrane system (27) 5% CNE1, SWH1, APL3, NUP170, ALG14, SEC66, YOS9, NUP157, WSC4, NVJ1, EPS1, MPS3, JEM1, VPS35, SRP102,
MMM1, HRD3, UBX2, NUP116, ASI1, LCB1, ASI3, PGA1, HRD1, SEC16, ALG5, APL4

Golgi apparatus (13) 2.4% SWH1, MNN2, SBE2, ANP1, RSP5, EMP47, KEX1, ATG27, MNN5, HOC1, KTR5, GNT1, APL4

Membrane-associated mRNAs and messengers enriched in SRP pulldowns were compared to generate a list of non-overlapping messengers. 541 total messengers were
enriched in membrane and not enriched on SRP pulldowns. Assignment of the corresponding location was made retrieving GO ontology (component) categories from
SGD. Only a select set of genes are listed here; categories not listed here include Mitochondrion (150 genes; 27.7%), Nucleus (69; 12.8%), Cell wall (22; 4.1%), Vacuole (24;
4.4%), and Unknown cellular component (179; 33.1%).
doi:10.1371/journal.pbio.1001100.t002
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Figure 4. Global identification of polypeptides that interact cotranslationally with NAC. (A) Global approach to identify polypeptides that
associate cotranslationally with NAC by affinity purification of a (Egd2) and b (Egd1 and Btt1) NAC subunits. (B) Immunoblot analysis of affinity
purified NAC complexes. Association of the indicated NAC subunit with ribosomes was detected using anti-Rpl3 monoclonal antibody; Egd2 (a)
subunit using anti-Egd2 polyclonal antibody and TAP-tagged proteins were detected with anti-TAP polyclonal antibody. (C) Hierarchically clustered
heat map of the mRNAs associated with ribosomes and RNCs bound to the indicated NAC subunits. Each column represents the average of three
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more slowly folding polypeptides exposing hydrophobic determi-

nants, whereas Btt1 may preferentially recognize more polar,

disordered chains.

There were also differences in the distribution of functional roles

of nascent chains associated with the different NAC (Figure 5A)

subunits. Egd1 and Egd2 targets were enriched for mRNAs

encoding metabolic enzymes, whereas the targets of Btt1 were

enriched in mitochondrial and ribosomal proteins (Figure 5A).

RNCs translating membrane and secretory pathway proteins were

also associated with NAC a/Egd2. Preferential NAC association

with nascent proteins sharing specific physicochemical properties

may have resulted indirectly in the enrichment for specific

functional categories. For instance, the preferential interaction

with nascent ribosomal proteins with Btt1 may reflect its

preference for short, highly disordered polypeptide chains with

high translation rates. Alternatively, some features differentially

associated with both overall physicochemical properties and

functional roles of the translated proteins may underlie the

observed differential specificity of NAC subunits.

Our GO analysis also revealed overlaps in specificity among

pairs of subunits, most notably for Egd1 and Egd2. mRNA

association patterns of these two subunits were similar to each

other (r = 0.74 average of three replicates for every subunit) and

more distinct from the alternative b subunit, Btt1 (Figure 4C). This

is consistent with, and likely reflects, the predominance of the

Egd1/Egd2 heterodimer in vivo [16]. NAC subunits appear to

exist as a combination of homo- and hetero-dimers in the cell

[10,42], and each complex may have a different set of specificities.

To explore this possibility, we extracted those substrate sets shared

by a a/b pair: that is, likely Egd1/Egd2 or Btt1/Egd2 substrates,

and those associating solely with individual NAC subunits, that is,

likely substrates of a NAC homodimer. We thus examined

whether specific functional themes were significantly enriched in

each category (Figure 5B). Few nascent polypeptides associated

with Egd1 alone, suggesting that Egd1 primarily functions in a

complex with Egd2. Egd1/Egd2 preferentially associated with

RNCs translating proteins that function in carbohydrate metab-

olism, while the Btt1 and Btt1/Egd2 preferentially associated with

RNCs translating mitochondrial and ribosomal proteins

(Figure 5B). Some protein classes, including redox and nucleotide

metabolism, interacted with all NAC subunits, whereas Egd2 only

and to a lesser extent Egd1/Egd2 also associated with RNCs

translating secretory proteins; notably, this subset of nascent

polypeptides also associated with SRP.

We next examined how this analysis reflected on the

physicochemical properties of substrates (Figure 5C–F). Incorpo-

rating into our analysis the idea that NAC exists as heterodimers

and homodimers exacerbated the differences in the intrinsic

properties observed for each subunit set. The binding specificities

of Egd2/Egd1 and Egd2/Btt1 appeared to reflect the combined

specificity of the subunits in the dimer (Figure 5C–F; green, Egd1/

Egd2; orange, Egd2/Btt1; blue, Egd2/Egd2; purple, Btt1/Btt1).

In contrast, the nascent polypeptides associated exclusively with

Btt1 (Figure 5C,D, purple) comprised proteins with the highest

intrinsic disorder and lowest hydrophobicity, whereas the RNCs

associated with Egd2 translated the most hydrophobic proteins

(Figure 5C, D blue). Importantly, the fact that the interaction

specificity of each subunit correlated so strongly with the predicted

physical properties of the translated polypeptide is strong evidence

that each NAC subunit recognizes determinants in the nascent

chain itself. Furthermore, both components of each NAC dimer

appear to contribute to nascent chain recognition, expanding both

the specificity and number of RNCs recognized by NAC.

Although different NAC homo- or heterodimers differentially

associated with ribosomes translating different sets of mRNAs, the

specificity of the ensemble of NAC complexes appears to

encompass virtually every translated polypeptide.

NAC Is a Modulator of SRP Specificity
The role of NAC in SRP specificity and substrate selection has

been a matter of debate [17,45,46]. NAC and SRP both contact

the ribosomal protein Rpl25 [3]. NAC was originally proposed to

compete with SRP for ribosome binding [17]. However, our

global analysis revealed that many nascent secretory pathway

proteins can interact with both SRP and the NAC subunits Egd2

and Egd1. We tested whether the specificity overlap might reflect

joint binding at the ribosome. We isolated SRP-containing RNCs

and tested for the presence of NAC (Figure S6A). Indeed,

immunopurification via either Srp54p, Srp68p, or Srp72p

revealed the presence of Egd2p in SRP-associated polysomes

(Figure S6A), suggesting that NAC and SRP might bind

simultaneously to the same RNCs, though this experiment does

not exclude that these factors might bind to different ribosomes

engaged in translation of the same mRNA. However, NAC does

not detectably affect the extent of SRP association with ribosomes,

as shown by the similarity of SRP cofractionation with polysomes

in WT and Degd1Degd2 cells (Figure S6B, see also below Figure 6B).

To further explore the functional interplay between SRP and

NAC, we examined whether the absence of NAC affects SRP

recognition of nascent proteins, as reflected by its pattern of

association with mRNA (Figure 6). To this end, we compared the

ribosome-nascent polypeptide interaction specificity of SRP in

wild type cells (herein NAC+) with that in cells lacking NAC

subunits Egd1 and Egd2 (Degd1Degd2, herein DNAC) (Figure 6A).

Clustering analysis highlights the striking differences between the

patterns of SRP-bound mRNAs in NAC+ and DNAC cells

(Figure 6A; Figure S6A). SRP association with a core set of RNCs

encoding secretory proteins was relatively independent of NAC, as

these were enriched by SRP affinity isolation in both NAC+ and

DNAC cells (Figures 6A and S7A, purple). In contrast, the SRP-

association with another set of secretory proteins appeared to be

NAC-dependent, as it was lost in DNAC cells (Figures 6A and

S7A, blue). Two SRP-dependent proteins, DPAPp and Kar2p

[27], fell into this category (Figure S7A). Strikingly, a third set of

mRNA-RNC complexes only associated with SRP in DNAC cells;

most of these mRNAs encoded cytosolic proteins (Figures 6A and

S7A, green; Off-target interactors). The relative depletion from the

SRP-associated RNCs of transcripts encoding ‘‘bona fide’’ SRP

substrates, that is, secretory pathway proteins and the correspond-

ing increase in mRNAs encoding cytosolic proteins from the SRP-

associated RNCs, was also reflected in the GO analysis of the

proteins interacting cotranslationally with SRP (Figure S7B).

Using a 1% FDR to analyze the SRP interactomes, we find that

70% of SRP-associated RNCs in NAC+ cells contained nascent

polypeptides with predicted SS or TM regions (Figure 6B) whereas

in DNAC cells, only 40% of the SRP-associated mRNAs encoded

replicates and each row represents a gene. Pearson coefficient correlations between experimental sets are indicated on the dendogram. (D–G)
Physicochemical properties of polypeptides that associate cotranslationally with NAC. Box plots showing the distribution of the hydrophobicity (D),
predicted intrinsic disorder (E), protein length (F), and relative translation rate (G) of NAC polypeptides cotranslationally associated with individual
NAC subunits.
doi:10.1371/journal.pbio.1001100.g004
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proteins with SS or TM domains. Of note, the depletion in ‘‘bona

fide’’ SRP substrates in DNAC cells was independent of the

statistical stringency of the analyses (Figure S8).

Interestingly, deletion of the second NAC isoform (Degd2/Dbtt1)

(DNAC’) had a similar effect on SRP specificity (Figure S8). As

observed for DNAC cells, the SRP interactome in DNAC’ cells

was also depleted in proteins containing predicted SS or TM

regions (Figure S8B, Figure S8C) and mRNAs encoding secretory

proteins (Figure S8D). In these cells, SRP also associated with

more cytosolic and mitochondrial proteins (Off target, Figure S8A,

Figure S8D). Thus, NAC significantly influences the in vivo

specificity of SRP interactions.

How does NAC affect SRP specificity? The extent of SRP

interaction with ribosomes and the salt-sensitivity of this

interaction were not affected by the absence of NAC (Figure 6C).

The fact that NAC appears to enhance the association of SRP with

some nascent polypeptides (i.e., NAC-dependent) and prevent

SRP interactions with others, leaving still others unaffected,

suggests a complex mode of regulation. We first hypothesized that

less hydrophobic SRP-binding nascent polypeptide sequences

might be more easily displaced in the absence of NAC. Our

analysis did not support this hypothesis; NAC-dependent and

NAC-independent SRP interacting proteins were indistinguishable

based on the length and hydrophobicity of their predicted SS or

TM domains (Figures 6D, S7C and unpublished data). mRNA

abundance and translation rate provided the strongest identifiable

differences between NAC-dependent and NAC-independent SRP

interactions (Figure 6E, note log scale in 6Ei). NAC-independent

SRP substrates were relatively highly translated, abundant

proteins; NAC-dependent SRP substrates tended to be much less

abundant membrane and secreted proteins (Figure 6E). Because

abundance and translation rate appeared key to the NAC-

modulation of SRP specificity, we compared the relative

enrichment of each class of SRP-associated mRNAs in the

presence or absence of NAC (Figure 6F). The abundant, NAC-

independent SRP substrates were the most highly enriched SRP

interactors even in wild type cells; their level of enrichment was

only modestly affected by the absence of NAC. In contrast, the

NAC-dependent SRP substrates were less highly enriched in

association with SRP, even in wild type cells. Their interaction

with SRP was completely undetectable in the absence of NAC.

The nascent cytosolic nascent proteins whose latent ability to

interact with SRP was apparently blocked by NAC were generally

highly abundant cytosolic proteins with high translation rates

(Figure 6E, Off-target). These cytosolic proteins do not bind

appreciably to SRP in wild type cells, but displayed an enrichment

level comparable to bona fide SRP substrates in the absence of

NAC, despite their lack of canonical SRP binding sequences.

It is known that SRP can recognize hydrophobic sequences with

broad specificity [47]. One of the most striking aspects of SRP

function observed here is that, in vivo, in wild type cells, SRP

displays exquisite specificity for its cognate substrates independent

of their concentration in the cell. In the absence of NAC, however,

SRP also interacts with very abundant nascent polypeptides that

lack high affinity SS or TM binding sites. These may compete for

SRP, effectively lowering its availability to sample less abundant

cognate sequences. NAC thus effectively acts as both a positive

and negative regulator of SRP interactions with potential binding

targets, tuning out the noise and enhancing the specific

interactions with low abundance cognate substrates (Figure 6G).

Robustness of Membrane Targeting Pathways in the
Absence of NAC

Deletion of NAC has few phenotypic consequences for the cell

(unpublished data) [16,21], while loss of SRP function severely

compromises growth. We reasoned that if SRP were to bind

inappropriately to nascent cytosolic proteins in the absence of

NAC and directs the paused ribosome to the ER, the associated

mRNA should inappropriately localize at the ER membrane. We

thus investigated whether loss of NAC would also affect global

mRNA targeting to the ER (Figure 7A). Strikingly, the distribution

of mRNAs between the membrane-associated and soluble

fractions was indistinguishable between NAC+ and DNAC yeast

cells (Figure 7B; r = 0.96). For instance, cytosolic proteins that

inappropriately interacted with SRP in DNAC cells (Figure 7C,

‘‘Off-target’’, green) were nevertheless largely absent from the

membrane fraction in both wild type and DNAC cells (Figure 7C).

Conversely, the ‘‘NAC-dependent’’ nascent polypeptides whose

association with SRP was impaired in DNAC cells still efficiently

associated with membranes in DNAC cells, despite their

diminished association with SRP (Figure 7D, blue, compare with

Figure S7B). We conclude that despite the loss in SRP specificity

under these conditions, loss of NAC activity has little or no effect

on the fidelity of mRNA targeting to membranes, despite the loss

in SRP specificity.

We chose two NAC-dependent SRP substrates, Kar2 and

DPAP, whose association with SRP but not with membranes was

impaired in DNAC cells, for further biochemical analysis

(Figure 7E). The efficiency of their ER translocation in wild type

or DNAC cells was evaluated by determining the ratio of processed

versus unprocessed protein following a short pulse with 35S-

methionine. Defective translocation results in accumulation of

precursors of these two proteins, that is, uncleaved Kar2 (pre-

Kar2) and non-glycosylated DPAP. The presence or absence of

NAC did not affect the speed or efficiency of translocation for

either Kar2 or DPAP (Figure 7E). In contrast, impairing SRP

function using the temperature-sensitive mutation sec65-2 did

reduce translocation of both proteins. Thus, the apparent decrease

in SRP binding of these SRP substrates in the absence of NAC did

not appreciably impair their translocation to the ER. These

experiments highlight the robustness and fidelity of membrane

targeting pathways.

To better understand how the cell compensates for the loss of

NAC function, we examined the transcriptional response to joint

Figure 5. Distinct functional and physical properties of the polypeptides cotranslationally associated with NAC. (A) Heat map
indicating GO categories (rows) differentially represented in the sets of polypeptides cotranslationally associated with different NAC subunits.
Enrichment of a specific GO annotation is evaluated in comparison to the representation of that annotation in the proteins encoded by mRNAs
significantly enriched in association with Rpl16. (B) Enrichment of different GO ontology terms (rows) in target sets (1% FDR) of different NAC
heterodimers. For this analysis, nascent polypeptides associated with each of two NAC subunits were considered to be targets of the corresponding
heterodimer. The significance of the enrichment of the GO term is represented as fold enrichment over the genome on a heat map. (C–F)
Physicochemical properties of NAC cotranslational interactors classified as substrates of the indicated hetero- or homodimers. Box plots showing the
distribution of the hydrophobicity (C), intrinsic disorder (D), protein length (E), and relative translation rate (F) of NAC cotranslational interactors
considering potential NAC dimers. For this analysis, targets common to Egd1 and Egd2 or to Egd2 and Btt1, respectively, were considered to
represent targets of the corresponding heterodimers; targets unique to Egd2 or Btt1 were considered to represent targets of the corresponding
homodimers.
doi:10.1371/journal.pbio.1001100.g005
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deletion of either Egd1 and Egd2 or Egd2 and Btt1 (Figure 7F). A

different complement of genes was induced in response to these

two perturbations, but major features of the responses were

shared. Transcripts encoding ribosomal proteins, ribosome

biogenesis and mitochondrial biogenesis machines, and chaper-

ones and stress response genes were induced in response to both

defects (Figure 7F and Tables 3 and 4). Notably, loss of NAC

activity did not lead to transcriptional induction of an unfolded

protein response (UPR), consistent with the lack of a translocation

defect in these cells (Figure 7F and unpublished data). The

chaperones induced in response to NAC deletion included stress-

inducible chaperones like SSA3 and small HSPs, as well as CLIPS,

most notably SSB1/2. The synthetic genetic interaction between

SSB1/2 and the NAC complex suggests that induction of SSB1/2

may contribute to functional compensation for the loss of NAC

[21]. The induction of ribosomal proteins and ribosome biogenesis

genes is in accord with the observation that NAC has a role in

ribosome biogenesis ([21]; Figures 4 and 5). Loss of Egd2/Btt1 led

to induction of numerous mitochondrial biogenesis factors,

including AFG3, SED1, and MIA4, suggesting a role for this

NAC complex in mitochondrial biogenesis.

Discussion

A Global Approach to Probe the Cotranslational De Novo
Folding Network

Affinity isolation of cotranslationally acting chaperones from

cells under conditions that preserve their interaction with the

nascent polypeptide and associated ribosomes and quantitative

profiling of the associated mRNAs open a window on the

specificity and interplay of chaperones and targeting factors

responsible for cotranslational protein homeostasis. This approach

should enable us to probe the structure of the CLIPS network and

the interplay between different chaperones and targeting systems.

Unlike previous studies defining chaperone interactors by

proteomic analysis, our approach focuses on cotranslational

interactors as potential chaperone substrates. The approach

presented here opens a window to understand the pathways and

principles of cotranslational chaperone action.

SRP Specificity and Cotranslational Targeting of Proteins
to the ER

The full complement of nascent chains that interact with SRP in

vivo has never been defined. Studies of SRP recognition using

model substrates and peptides have shown that SRP recognizes

highly hydrophobic signal sequences and transmembrane regions

[27] but can also recognize hydrophobic stretches found in

cytoplasmic proteins [39,48]. We find that in vivo SRP displays

considerable specificity for previously defined recognition sequenc-

es; approximately 80% of the in vivo substrates we identified

contained a predicted SS or TM domain (Figure 2D). Our analysis

also indicates that additional factors contribute to SRP specificity

and affinity in vivo: approximately 20% of SRP interactors lack a

discernible SS or TM domain. Since several SRP-associated

mRNAs encode secreted or membrane-associated proteins that

appear to lack canonical SS or TM domains, these interactions

may be functionally relevant. Conversely, a number of proteins

with clear SS or TM domains were translated in these cells but

were not enriched in association with SRP, suggesting that SRP

recognition might be regulated by features or mechanisms beyond

its intrinsic affinity for SS or TM regions. Interestingly, it has been

reported that, in bacteria, basic residues promote binding of SRP

to a subset of signal peptides whose hydrophobicity falls slightly

below a critical level [49]. Recent studies also suggest that a

hydrophobic stretch can recruit SRP to the ribosome before it

emerges from the ribosomal exit tunnel, presumably by changing

the conformation of the ribosome [50,51]. SRP-substrates without

canonical SS or TMs may contain sequence elements that

similarly enhance binding to SRP by this indirect mechanism or

even by recruiting bridging factors.

The SRP-interactome also yielded some surprising observations.

Although the glucose metabolism enzyme glyceraldehyde-3-

phosphate dehydrogenase (GAPDH, Tdh1-3 in yeast) is reportedly

mostly cytoplasmic [52], the mRNAs encoding all Tdh isoforms

(i.e., Tdh1-3) were both SRP-associated and enriched in the

membrane fraction (see Table 2). Notably, all three isoforms of this

enzyme in yeast have predicted signal sequences at the N-terminus

and have been detected on the outer surface of the cell wall [53].

Our findings suggest a mechanism by which Tdh can reach the

outer cell wall and may also explain the observation that other

primarily cytosolic proteins, including glycolytic enzymes, are

secreted by yeast spheroplasts and found as integral components of

the cell wall [54,55]. Interestingly, GAPDH mRNA has also been

found to associate with membranes in mammalian cells [56].

The variable efficiency of the SRP-export pathways for different

mRNAs has been recognized both as a regulatory mechanism and

as a source of misfolded proteins [57]. Even a small fraction of

untranslocated precursors may represent a substantial burden for

the cytosolic protein quality control machinery. Our analyses show

quantitative variation in binding of SRP to its targets, which may

be related to previous observations that some secretory and

membrane proteins are more efficiently translocated than others

[58,59]. Differential translocation efficiency is proposed to

underlie disease pathologies, such as prion formation, and to

regulate protein flux into the secretory pathway [57,60]. We find

that mRNAs encoding proteins with predicted TM regions are

more enriched in association with SRP than either polypeptides

with SS domains or those with no detectable SS or TM domains

(Figure 2F). Notably, in bacteria, SRP is a main targeting factor for

membrane proteins, while secretory proteins follow a different,

Figure 6. NAC is a global modulator of SRP specificity in vivo. (A) Hierarchically clustered heat map of the mRNAs cotranslationally associated
with SRP in either the wild type (WT) or NAC-deleted (DNAC) cells. Boxes indicate genes significantly enriched (p,0.01) in association with SRP in
both strains (purple) (NAC-Independent) or only in DNAC cells (green) (Off-target) or WT cells (blue) (NAC-Dependent). GO ontology categories
significantly enriched (p,0.01) in each data set are indicated. Pearson coefficient correlations are indicated on the dendrogram. (B) Comparison of
fraction of SRP substrates with predicted signal sequences (from Signal IP) or transmembrane regions (from TMHMM) in WT cells (black), DNAC cells
(white), or the yeast genome (grey). (C) SRP association with ribosomes is unchanged by deletion of NAC. Total yeast lysates (T) were separated into
ribosomal (P) and non-ribosomal fractions (S) through sedimentation on sucrose cushions at different salt concentrations (150 and 500 mM). SRP
presence in the different fractions was determined by western blot using a polyclonal anti-TAP antibody. (D) Box plots representing the N-terminal
hydrophobicity of different SRP cotranslational interactors: NAC-dependent, NAC-independent, and Off-target SRP interactors compared to the
genome. (E) Distribution of mRNA expression level (i) and translation rate (ii) for different classes of SRP associated mRNAs. (F) Box plots representing
the distribution of enrichment values (SAM score) for NAC-dependent, NAC-independent, and Off-target SRP interactors in WT and DNAC cells. (G)
Schematic representation of SRP modulation by NAC. NAC favors SRP binding to cognate interactors (ER-destined proteins) and prevents binding to
non-cognate interactors (cytosolic proteins).
doi:10.1371/journal.pbio.1001100.g006
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Figure 7. Robustness of protein homeostasis and translocation compensates for NAC deletion. (A) Hierarchically clustered heat map of
mRNAs in membrane-associated RNCs in WT and DNAC cells. (B) Scatterplot comparing the enrichment of individual membrane-associated mRNAs in
wild type and DNAC strains. All points fall in a diagonal line, indicating that loss of NAC does not impair membrane targeting. (C) Scatterplot
comparing the membrane enrichment for mRNAs encoding cytosolic Off-target SRP interactors in WT and DNAC strains. No increase is observed for
the DNAC cells. (D) Scatterplot comparing the membrane enrichment for mRNAs encoding NAC-dependent SRP interactors in WT and DNAC strains
for membrane-associated mRNAs. Values obtained for two known SRP targets, Kar2 and DPAP-B, are highlighted. (E) Translocation of Kar2 and DPAP-
B is not affected by deletion of NAC. WT, DNAC, and Sec65-1 cells were pulse-labeled with 35S-methionine, immunoprecipitated with specific a-Kar2
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SecB-dependent, pathway (reviewed in [61]). Although differences

among signal sequences have been shown to modulate transloca-

tion in yeast for a small number of substrates (reviewed in [57,62]),

we could not identify a clear correlation between SRP enrichment

and any defined physicochemical property in the SS or TM

domains themselves, such as length, overall or maximal hydro-

phobicity, or amino acid composition. In bacteria, the codon

adaptation index of the SS and the efficiency in translation

initiation have been proposed to influence targeting efficiency

(reviewed in [63]); we found no significant correlation between

SRP enrichment and these parameters (unpublished data). Our

data indicate that, in vivo, the features that control SRP

recognition of a given nascent polypeptide are more complex

than expected. In principle, additional features promoting a pre-

recruitment of SRP to translating ribosomes could increase the

efficiency of SRP-dependent translocation and enhance physio-

logical robustness. For example, the translation properties of a

given mRNA might influence the efficiency with which a potential

SS or TM domain or other hydrophobic stretches are recognized.

Additional ribosome-associated factors could also modulate the

SRP association with nascent chains, as shown here for NAC.

What determines the variable efficiency we observe in SRP

association with SS and TM containing nascent polypeptides

remains an important unanswered question.

Beyond SRP: Alternative Targeting Pathways to the ER
Membrane

The comparative analysis of SRP- and membrane-bound

mRNAs provides an overview of overall partitioning of co- and

posttranslational events in membrane targeting. Our data indicate

that most cytosolic mRNAs are not membrane-associated,

suggesting the existence of mechanisms that separate cytosol-

bound from membrane-bound mRNAs. SRP appears to be

involved in cotranslational targeting of most membrane and

secretory proteins to the ER; ,80% of membrane-associated

mRNAs encoding these proteins were also SRP-associated, at a

1% FDR threshold. However, we also found evidence for SRP-

independent translocation pathways. A significant minority of

mRNAs, roughly 20%, appears to associate with membranes

through SRP-independent pathways. We estimate that 25% of the

secretory pathway proteins that do not associate cotranslationally

with membranes are translocated posttranslationally to the ER;

these include tail-anchored proteins, which use the GET pathway

[37,64], and Mfa1, whose translocation is assisted by cytosolic

chaperones including Hsp70 and TRiC/CCT [38,39].

SRP is not essential in yeast [65] and downregulation of SRP in

mammalian cells has a mild effect on growth [33,66], indicating

the existence of SRP-independent mechanisms for translocation

[27]. The membrane-associated mRNAs that encode membrane

or secreted proteins but do not bind SRP (SRP2/Mem+) are

candidates for substrates of SRP-independent cotranslational

translocation pathways. Little is known about these pathways.

They may involve direct recruitment of RNCs to the Sec61

translocon [67], as well as additional factors [31,68]. Direct,

translation-independent targeting of mRNAs to membranes could

also involve RNA-binding proteins (RBPs) such as Puf1, Puf2,

Pub1, Scp160, Ypl184c, Khd1 [41], and Whi3 [69], all of which

bind distinct sets of mRNAs encoding membrane or secreted

proteins. Interestingly, while few of these RBPs bind mRNAs in

the SRP2/Mem+ set, there is also considerable overlap between

their targets and the mRNAs we found enriched in association

with SRP (unpublished data), suggesting these RBPs may provide

redundancy or another level of control to cotranslational SRP

targeting to membranes. Our experiments will provide an

opportunity to refine our understanding of the signals and features

that direct secretory proteins along these alternative non-SRP

pathways.

The functions and localization patterns of mRNAs that were

membrane-associated but not SRP-bound suggest several addi-

tional roles for SRP-independent membrane sorting of mRNAs.

Many of these (150 out of 541) encoded mitochondrial protein

precursors, which may be imported cotranslationally into

mitochondria [70]. Among the remaining non-mitochondrial

mRNAs, there was a paucity of mRNAs encoding ER-localized

proteins (Lro1) and proteins with transmembrane domains, but the

set included many mRNAs encoding proteins involved in other

membrane systems in the cell. Two other She2 targets, Mtl1 and

Lsb1, were included in this set and may also be associated with the

cortical ER during trafficking to the bud [71]. Most strikingly,

there were a number of mRNAs encoding proteins involved in

endocytosis and actin patch assembly (Vps35, Aly2, Swh1, Lsb6,

and Pan1), clathrin-mediated vesicle transport (Apl4, Apl3, Laa1,

and Sec16), bud formation (Sbe2, Ypk1, Lrg1, Prm10, and Bem3),

and vacuole function and assembly (Sch9, Vps13, Vac8, Tre2,

Tre1, Fab1, and YIR014W). Potentially, these mRNAs are

localized to specific membrane compartments to preferentially

and a-DPAP antibodies, and analyzed by SDS-PAGE and phosphorimaging. Positions of mature cleaved Kar2 (Kar2) and glycosylated DPAP (g-DPAP)
and its precursors (uncleaved pre-Kar2 and DPAP) are indicated. (F–G) Transcriptional response to deletion of NAC. Pie charts show the distribution of
genes upregulated in Degd2/Degd1 (F; 299 at 1% FDR) and Degd2/Dbtt1 (G; 310 at 1% FDR).
doi:10.1371/journal.pbio.1001100.g007

Table 3. Selected genes upregulated in Degd2/Degd1 cells.

GO term Frequency Genes

Protein folding 6% SSB1, AHA1, SSA4, SSA2, HSP104, CPR6, HSP60, TSA1, HSC82, SIS1, SSB2, HCH1, STI1, SSE1, HSP82

Ribosome biogenesis 37% RPS8A, RPS14A, NOP1, RPS16B, RPL35B, RPL35A, SSB1, RPS3, RPL12B, RPS17B, RPS18A, RPL12A, RPS24A,
RPS26B, RPL30, RPS2, RPS26A, RPL11B, RPS23A, RPS27B, RPS24B, RPL40A, RPS21B, RPS5, RPS21A, RPS0B, RPL10,
RPS31, RPP0, REH1, RPL6B, RPS17A, RPS18B, RPL6A, RPS16A, RPS3, SSB2, RPS19B, RPS15, RPL25, RPS28A, RPL5

Mitochondrion organization 2.4% SED1, AFG3, HSP60, HSP82, YME1, YLH47

Only a select subset of upregulated genes are listed here, GO ontology categories (Process) not listed include Translation (92; 36.8%), RNA metabolic process (35; 14%),
and Response to stress (25; 25%).
doi:10.1371/journal.pbio.1001100.t003
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translate the proteins near their site of action. Alternatively, the

nascent polypeptides could associate cotranslationally with mem-

brane-associated interacting partners.

The set of membrane-associated mRNAs included an abun-

dance of regulatory factors, including transcription factors (Stp2,

Ino2, and Ppr1), RBPs (Puf2 and Puf3), and signaling molecules

(Tor1, Bem3, Fab1, and Sch9). Localization of these mRNAs to

appropriate membrane structures may facilitate co-translational

association of their products with localized signaling partners or

enable locally controlled regulation of their translation by signaling

systems linked to these membranes. For instance, Stp2 promotes

expression of permease genes and is synthesized as an inactive

precursor that associates with the plasma membrane and is cleaved

upon sensing of external amino acids [72]; Tor1, a component of

the TOR complex, is a peripheral membrane protein that

regulates cell growth in response to nutrient availability and stress

[73], and Bem3 is a Rho GTPase activating protein specific to

Cdc42, which controls establishment and maintenance of cell

polarity, including bud-site assembly [74].

Uncovering the Cotranslational Specificity of the NAC
Complex

The abundant, ubiquitous, and evolutionarily conserved

Nascent Chain Associated Complex (NAC) binds ribosomes in

close proximity to the nascent chain exit site [75]. Despite its

conservation, little is known about its function. Our analysis of the

association of the three NAC subunits with nascent polypeptides

revealed a surprising and unanticipated division of labor.

Considered as a group, the three NAC subunits have transla-

tion-dependent interactions with almost every mRNA. Each

subunit, however, exhibits distinct specificity for RNCs engaged

in translation of mRNAs with different functional themes.

Based on the crystal structure of the archaeal NAC domain,

NAC complexes are obligate dimers, where two subunits must

complete the folded beta-sheet NAC-domain. Our analysis

supports the idea that NAC subunits can function as either

homodimers or heterodimers [10,16]. We found a large overlap

between the sets of transcripts associated with Egd1 and Egd2,

consistent with the idea that the Egd1/Egd2 complex is the most

abundant form. This dimer associated preferentially with nascent

metabolic enzymes, including those in carbohydrate metabolism,

such as glycolysis. Egd2, either as a homodimer or in a complex

with Egd1, was also cotranslationally associated with a large

fraction of mRNAs encoding membrane or secreted proteins,

many of which also associate with SRP. Btt1, either as a

homodimer or in a seemingly minor Btt1/Egd2 complex,

associated primarily with RNCs translating ribosomal proteins

and nuclear-encoded mitochondrial proteins.

In yeast, the three NAC subunits can be deleted with minimal

impact on growth. Deletion of all three NAC subunits leads to

enhanced ribosomal protein aggregation in cells also lacking the

Hsp70 homologs Ssb1 and Ssb2 [21]. This would suggest that the

putative function of NAC is masked by the redundancy of the

CLIPS protein homeostasis network. Our analysis of the

transcriptional response to NAC deletion (Figure 7F–G) provides

insight into how the cellular circuitry compensates for the loss of

NAC: A set of chaperones including both stress-inducible

chaperones (e.g., Ssa2/4, Hsp42, and Hsp104) and CLIPS (e.g.,

Ssb1 and Ssb2), as well as several ribosomal proteins and assembly

factors (Tables 3 and 4), were induced. This multifaceted response

suggests that loss of NAC impairs protein folding and ribosome

assembly. NAC has been proposed to have a role in mitochondrial

targeting, as shown by a synthetic growth defect by deletion of cells

lacking both Egd2 and the mitochondrial targeting factor Mft1

[19]. Our analysis revealed that mRNAs encoding mitochondrial

proteins are enriched in association with both Btt1 and Egd2

(Figure 5A,B). Moreover we found that several proteins involved in

mitochondrial assembly were induced in cells lacking NAC. Thus,

a possible auxiliary role for NAC in cotranslational targeting

polypeptides to the mitochondria deserves further investigation.

Is NAC a chaperone? Purified NAC does not prevent protein

aggregation and NAC cannot bind directly to nascent chains

unless they are ribosome associated [12,39]. While this is

unexpected for a traditional chaperone, NAC may be akin to

trigger factor in bacteria, which interacts primarily with nascent

chains in the context of the ribosome [76]. The distinct

physicochemical properties of the nascent polypeptides associated

with different NAC subunits may reflect the direct binding

specificity of each individual subunit. A more detailed under-

standing of NAC substrate specificity must await better structural

and biochemical understanding of this complex. The results of our

global analysis will open the way for these experiments.

Functional Interplay between NAC and SRP
The interplay between SRP and NAC has been controversial

[12,16,17,45,77,78]. In vitro experiments suggested that SRP can

bind to cytosolic non-cognate nascent chains and that NAC and

SRP can compete for RNC binding. On the other hand, in vivo

analyses did not support the idea that NAC is required for proper

SRP function and translocation [16]. Our experiments reconcile

these observations and provide an integrated view of the

regulation of SRP specificity by NAC. NAC modulates the

interaction of SRP with nascent chains in vivo, favoring SRP

binding to cognate substrates and disfavoring interactions with

non-cognate targets (Figure 6F). Some ER-bound nascent proteins

appear to depend on the presence of NAC in the cell for their

interaction with SRP (NAC-dependent) while others do not (NAC-

independent). Surprisingly, mRNA abundance and translation

rate, rather than direct determinants of SRP affinity such as SS or

TM hydrophobicity, are the major distinguishing features of the

NAC-dependent versus the NAC-independent SRP interactions.

Table 4. Selected genes upregulated in Degd2/Dbtt1 cells.

GO Term Frequency Genes

Protein folding 6.4% FLC2, SSB1, AHA1, SSA4, SSA2, HSP104, CPR6, HSP60, TSA1, HSC82, SIS1, YDJ1, SSB2, HCH1, STI1, SSE1, HSP82

Ribosome biogenesis 12.8% RPS14A, RPL35B, RPL35A, SSB1, RPS13, RPL12B, SNU13, RPL12A, RPS24A, RPL30, RPS2, RPS26A, RPL11B,
RPS23A, RPS24B, RPL40A, RPS21B, RPS5, RPS21A, RPL40B, RPS0B, RPL10, RPS31, RPP0, RPS18B, RPL6A, RPS16A,
RPS7B, RPS3, SSB2, RPS19B, RPS15, RPS19A, RPL5

Mitochondrion organization 4.5% VAR1, SED1, AFG3, RPN11, MIA40, MEF1, HSP60, YTA12, YDJ1, HSP82, YME1, YLH47

Only a selected set of genes are listed here, GO ontology categories (Process) not listed include Translation (81; 30.5%) and Protein metabolic process (115; 43.4%).
doi:10.1371/journal.pbio.1001100.t004

Global Specificity of Cotranslational Chaperones

PLoS Biology | www.plosbiology.org 18 July 2011 | Volume 9 | Issue 7 | e1001100



This raises the idea that, in vivo, the specificity of the factors that

interact with nascent proteins is governed not only by properties of

the nascent polypeptide sequence, such as the intrinsic affinity of a

given nascent chain for SRP, but also by the competition among

cognate and non-cognate nascent polypeptides for these factors

and by interactions between factors, exemplified by NAC and

SRP.

Our analysis provides insight into the question of how signals

such as SS or TM, which are recognized in a variable manner

depending on affinity and concentration, can be read in the cell to

determine a binary fate such as translocation, that is. proteins do

or do not get translocated. Our data show that in wild type cells,

SRP does bind with exquisite specificity to cognate substrates

spanning a very wide range of cellular mRNA abundances, while

disregarding very abundant cytosolic substrates that contain

hydrophobic stretches with potential SRP-binding affinity. In

DNAC cells, however, this specificity is relaxed, so that highly

abundant non-cognate substrates bind to SRP and low abundance

cognate substrates are lost from SRP. Thus NAC provides an

additional level of specificity that fine-tunes SRP interactions to

‘‘sharpen’’ the response.

Our data can be explained in light of previous biochemical and

biophysical measurements. NAC and SRP both contact the same

ribosomal protein, L25, but have additional non-overlapping

binding sites on the ribosome [11]. We observed that SRP-

associated polysomes also contain associated NAC (Figure S6A).

The interplay between these factors appears to be relevant for SRP

specificity. SRP samples most translating ribosomes to encounter

RNCs translating cognate polypeptides. Affinity measurements

indicate that all translating ribosomes can bind SRP [58]. RNCs

translating cytosolic polypeptides have significant affinity for SRP

(ca. 8 nM) [58], however this interaction is salt sensitive and likely

has a higher dissociation rate [79]. In contrast, SRP binds with

extraordinarily high, subnanomolar affinity to RNCs bearing

cognate substrates; this interaction is also salt-resistant, perhaps

related to its low dissociation rate in vivo [80]. Of note, NAC was

shown to reduce association of SRP to non-cognate RNCs.

Accordingly, loss of NAC would result in a higher residence time

for SRP on ribosomes translating highly abundant non-cognate

mRNAs and a lower availability of SRP to bind low abundance

cognate mRNAs. Our data suggesting that SRP and NAC overlap

in binding to RNCs, much as proposed for trigger factor and SRP

in bacteria, open the possibility for them acting in concert on a

translating nascent chain. Because it appears that the conforma-

tional state of the ribosome contributes to SRP recruitment

[43,51], a more speculative possibility is that NAC exerts its

regulatory activity through modulation of the ribosomal cycle.

Robust Proofreading Mechanisms Ensure the Fidelity of
ER Targeting

Despite the relaxed specificity of SRP binding to nascent chains

in DNAC cells, there was no detectable difference in mRNA

targeting to membranes in these cells, and no significant induction

of a UPR response (Figure 7), supporting previous findings that

NAC has no impact on translocation or the interaction of RNCs

with membranes [77,78]. This is likely the combined result of the

redundancy of mRNA targeting pathways, which ensure that

secretory proteins reach the membrane, together with proofread-

ing mechanisms that prevent non-cognate SRP-RNC complexes

from associating with membranes. For instance, the SRP targeting

pathway contains an inbuilt proofreading mechanism at the SRP

receptor (SR) level whereby the SRP-SR interaction is enhanced

when SRP is bound to a signal sequence [81,82]. Furthermore, the

Sec61 translocon can stringently recognize signal sequence RNCs

[5,47]. These different mechanisms may together provide a robust

system that ensures the fidelity of translocation even when the

specificity of SRP interactions is impaired.

Methods

Strains, Protein, and RNA Affinity Purifications
Strains carrying chromosomally integrated Rpl16-TAP, Rpl17-

TAP, Egd1-TAP, Egd2-TAP, Btt1-TAP, Srp68-TAP, and Srp72-

TAP were obtained from Open Biosystems, Srp54-TAP from

Euroscarf. Degd1 and Degd2 yeast strains from the Saccharomyces

Genome Deletion Project [83] were used to obtain Degd1/Degd2 by

mating, sporulation, and tetrad dissection. Sec65-1 strain was a

kind gift of Peter Walter. Immunoaffinity purification of specific

ribosome-associated factors together with ribosomes and associat-

ed RNAs was carried out exploiting the C-terminal TAP-tagged

derivative of each selected protein [84]. Briefly, 1 liter cultures

were grown to OD 0.7–0.8 in YPD. Following addition of

cycloheximide (CHX) (0.1 mg/ml) to stabilize ribosome-nascent

chain complexes, cells were harvested by centrifugation, washed

twice in buffer A (50 mM Hepes-KOH [pH 7.5], 140 mM KCl,

10 mM MgCl2, 0.1% NP-40, 0.1 mg/ml CHX), resuspended in

2 ml of buffer B (buffer A plus 0.5 mM DTT, 1 mM PMSF,

20 mg/ml pepstatin A, 15 mg/ml leupeptin, 1 mM benzamidine,

10 mg/ml aprotinin, 0.2 mM AEBSF (Sigma), 0.2 mg/ml heparin,

50 U/ml Superasin (Ambion), and 50 U/ml RNAseOUT (In-

vitrogen)), and dripped into a conical 50 ml Falcon tube filled with

and immersed in liquid nitrogen. Frozen cells were pulverized for

1 min at 30 Hz on a Retsch MM301 mixer mill. Pulverized cells

were thawed and resuspended in 5 ml of buffer B; cell debris was

removed by two sequential centrifugation at 8,000 g for 5 min at

4uC. A 100 ml aliquot (5%) of the supernatant was removed for

reference RNA isolation. The remaining lysate was incubated with

6.76106 beads/ml of IgG-coupled magnetic beads (Dynabeads,

Invitrogen) at 4uC for 2 h. Beads were washed once in 5 ml of

buffer B for 2 min and 5 times in 1 ml buffer C (50 mM Hepes-

KOH [pH 7.5], 140 mM KCl, 10 mM MgCl2, 0.01% NP-40,

10% glycerol, 0.5 mM DTT, 10 U/ml superasin, 10 U/ml

RNAseOUT, 0.1 mg/ml CHX) for 1 min, resuspended in

100 ml of buffer C, and incubated for 2 h in 0.3 U/ml TEV

protease (Invitrogen) at 16uC. Supernatant was recovered as final

pulldown for protein and RNA isolation. Reference RNA was

isolated using RNeasy mini kit (Quiagen), while RNA from the

eluate was isolated by sequential extraction with Acid Phenol:-

Chloroform 125:24:1 (Ambion), Phenol/Chloroform/Isoamyl

Alcohol 25:24:1 (Invitrogen), and chloroform followed by

isopropanol precipitation with 15 mg of Glycoblue (Ambion) as

carrier.

Sucrose Density Fractionation
A total of 20 OD254 nm were loaded on a 7%–47% sucrose

gradient in buffer B without NP-40. The samples were centrifuged

on a Beckman SW-41 rotor for 90 min at 42,000 rpm at 4uC.

Gradients were continuously fractionated on an ISCO collector

with a flow cell UV detector recording the absorbance at 254 nm.

For protein detection by western blotting, fractions were

precipitated with trichloroacetic acid, separated by SDS-PAGE,

and analyzed by immunoblotting using the indicated antibodies.

For RNA isolation and microarrays analysis, fractions correspond-

ing to 60S, 80S, and polysomes were pooled to isolate polysome-

associated RNA and the supernatant and low sucrose fractions

were pooled to isolate free RNA. RNA was purified with RNeasy

Mini Columns kit (Qiagen).
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Subcellular Fractionation and RNA Isolation
Free cytosolic polysomes and membrane-bound polysomes were

fractionated by sedimentation velocity exactly as described [34,85]

starting with 250 ml of exponential growth cultures (of WT or Degd1/

egd2) in YPD. Total RNA from free and membrane-associated

polysomes was purified with RNeasy Mini Columns Kit (Qiagen).

Translocation Assays
50 ml cultures of WT, Degd1/egd2, or sec65-1 cells were grown in

YPD at 30uC or followed by 1 h at 37uC (sec65-1). Cells were

starved in SD-Met media for 30 min and labeled with 35S-

methionine for 7 min. Endogenously expressed Kar2 and DPAP-B

were immunoprecipitated with specific antibodies (a kind gift of

Peter Walter and Mark Rose, respectively) and analyzed by SDS-

PAGE in 8% acrylamide gels. Translocation defects were

measured by comparing the ratio of non-processed precursor

versus processed mature protein, namely non-signal sequence-

cleaved versus cleaved Kar2 and an unglycosylated precursor

versus glycosylated protein for DPAP-B.

Microarray Sample Preparation
3 mg of reference RNA and 50% or up to 3 mg of TAP-tag affinity

purified RNA were reverse transcribed with Superscript II

(Invitrogen) in the presence of 5-(3-aminoallyl)-dUTP (Ambion)

and dNTPs (Invitrogen) with a 1:1 mixture of N9 and dT20V

primers. The resulting cDNA was covalently linked to Cy3

(reference RNA) and Cy5 (purified RNA) NHS-monoesters (GE

HealthSciences). Dye-labeled DNA was diluted into 20–40 ml

solution containing 36 SSC, 25 mM Hepes-NaOH, pH 7.0,

20 mg poly(A) RNA (Sigma), and 0.3% SDS. The sample was

incubated at 95uC for 2 min, spun at 14,000 rpm for 10 min in a

microcentrifuge, and hybridized at 65uC for 12–16 h in the MAUI

hybridization system (BioMicro). Following hybridization, micro-

arrays were washed in 400 ml of four subsequent wash buffers made

of 26SSC with 0.05% SDS, 26SSC, 16SSC, and 0.26SSC. The

first wash was performed at 65uC for 5 min and the following

washes for 2 min each at room temperature. Slides were briefly

immersed in 95% ethanol and dried by centrifugation in a low-

ozone environment to prevent Cy5/3 dyes destruction. Once dry,

the microarrays were kept in a low-ozone environment during

storage and scanning.

For fractionation experiments, 10 mg of free polysomes-RNA

(Cy3) and 3 mg of rER polysomes-RNA were used for reverse

transcription.

For analysis of transcriptional levels on mutant strains, 3 mg of

reference RNA (wild type strain) (Cy3) and 3 mg of experimental

RNA (mutant strain)(Cy5) were used for reverse transcription.

Microarray Scanning, Processing, and Analysis
Microarrays were scanned with an Axon Instrument Scanner

4000B (Molecular Devices). PMP levels were adjusted to achieve

0.05% pixel saturation for IP experiments and 0% saturation for

analysis of transcriptional levels. Data were collected with the

GENEPIX 5.1 (Molecular Devices), and spots with abnormal

morphology were excluded from further analysis. Arrays were

computer normalized by the Stanford Microarray Database

(SMD) [86]. Log2 median ratios were filtered for a regression

correlation greater than 0.6 and a signal over background greater

than 2.5 to remove low-confidence measurements. Hierachical

clustering was performed with Cluster 3.0 [87], and results were

visualized with Java TreeView [88].

At least three, usually four, independent biological replicates

were employed for each condition. After removing features

missing two or more values, we generated a representative dataset

by running a one-class t test with 800 (SAM) [22]. Ultimately,

substrates were defined as those encoded by mRNAs that were

differentially expressed with a false discovery rate (FDR) (q-value)

of 1.

Data Analysis
Enriched GO terms among the identified targets were retrieved

with GO Term Finder [89], which uses the hypergeometric

density distribution function to calculate p values and the programs

Genetrail [90] and FuncAssociate [91].

The GO database [89] was used to collect a list of GO

categories. In these classifications, gene products can be affiliated

with one or more GO category assignments.

Lists of proteins with predicted signal peptides and transmem-

brane regions were downloaded from the Saccharomyces Genome

Database (SGD), which uses the prediction programs SignalIP

[92] and TMHMM 2.0 [93], respectively.

Intrinsic disorder was predicted from the protein sequences with

the Disopred2 software [94] after filtering out coiled-coil and

transmembrane regions with the program pfilt (http://bioinf.cs.

ucl.ac.uk/downloads/pfilt). Reported is the fraction of the protein

sequence that is predicted to be unstructured. Sequence hydro-

phobicity was approximated by the average of the hydrophobicity

profile, computed from the Kyte and Doolittle scale [95] with

averaging over sliding windows of size 7. Hydrophobic stretches

were defined as 5 or more consecutive amino acids that surpassed

a threshold of 1 in the hydrophobicity profiles. Data on translation

rate, ribosomal density, and mRNA expression were retrieved

from [23] and [96]. Statistical data analysis was performed in R

(www.r-project.org). Box plots indicate the data distribution

through median, 25%, and 75% quartiles (filled box), as well as

the range of non-outlier extremes (dashed lines).

Supporting Information

Figure S1 Global strategy to define specificity of ribosome-

associated factors. (A) TAP-tagged proteins associate with poly-

somes. The OD254 nm profile (top) identifies the polysomal fractions

on sucrose gradients. Individual fractions were analyzed for the

presence of TAP-tagged proteins and the ribosomal protein Rpl3 by

SDS-PAGE and immunoblotting. (B) Translational profile of yeast

strains using sucrose gradients to recover polysome-bound mRNAs.

Hierarchically clustered heat map of the translation profiles

obtained from mRNA purified from polysomes. Three independent

polysomes purifications were made from Rpl16-TAP tagged yeast

strain. Pearson coefficient correlations between experiments are

indicated on the tree. Significantly enriched GO terms (p,0.01) are

indicated.

(TIF)

Figure S2 Using the SRP interactome to assess algorithms that

identify transmembrane regions and signal sequences. (A) Predic-

tion of SS or TM on the SRP enriched interactome. Number of

SRP interactors with predicted transmembrane regions (i) or signal

sequences (ii) using the indicated prediction programs. The line

represents the consensus, that is, the proteins predicted to have a

transmembrane region in all three programs. (B) Prediction on the

unenriched non-SRP interactors. Number of proteins unenriched in

SRP pulldowns (non-SRP interactors) with predicted transmem-

brane regions (i) or signal sequences (ii). The line represents the

consensus, that is, the proteins predicted to have a transmembrane

region in all three programs.

(TIF)
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Figure S3 SRP enrichment shows weak correlation with

hydrophobicity. (A) Correlation between SRP enrichment (as

SAM score) and N-terminus hydrophobicity of the corresponding

protein. Genes were grouped by SAM score in bins of 1.

Hydrophobicity was calculated as an average of the score obtained

with the Kyte-Doolittle algorithm for the first 50 aminoacids of the

protein corresponding to every grouped gene, with a window of 11.

(B) Scatterplot showing the correlation between SRP binding (as

SAM score) and N-terminus hydrophobicity, calculated as in (A).

(C) Scatterplot showing the correlation between SRP binding (as

SAM score) and maximum hydrophobicity of the signal sequence

(SS) or transmembrane region (TM) on proteins with these features.

(TIF)

Figure S4 Scatterplots comparing the enrichment obtained for

membrane and SRP-associated mRNAs encoding proteins of

different subcellular localizations.

(TIF)

Figure S5 Intact polysomes required for Egd2-TAP association

with mRNAs. (A) Cycloheximide omission causes polysome

dissociation and Egd2 release. Polysome profiles of cell extracts

were prepared in the presence (+ CHX) or absence (2CHX) of

cycloheximide and fractionated by sucrose gradient centrifugation.

The OD254 nm profile (top) identifies the ribosome elution

profiles across the sucrose gradient. In the absence of CHX, a

large fraction of polysomes dissociate yielding monosomes.

Individual fractions were analyzed for the presence of Egd2 and

the ribosomal protein Rpl3 by SDS-PAGE and immunoblotting.

The migration of Egd2/aNAC into the heavier fractions of the

gradient depends on its association with translating polysomes. (B)

Amount of total RNA recovered by immunopurification of Egd2-

TAP from +CHX and 2CHX cells. The same amount of cells was

used for both conditions. Omitting CHX leads to a substantial

reduction in the total amount of total RNA recovered, consistent

with a substantial reduction in Egd2 binding to ribosomes. (C)

Number of significant mRNAs that are significantly associated

with Egd2 in the presence (+CHX) or absence (2CHX) of

cycloheximide. Omission of CHX dramatically reduces the

number of mRNAs significantly (1% FDR) associated with

Egd2. Most mRNAs associated with Edg2 in 2CHX also bind

+CHX, suggesting they arise from residual RNCs that did not

dissociate.

(TIF)

Figure S6 Effect of NAC deletion on the SRP interactome. (A)

NAC and SRP associate to the same ribosomal complexes. Eluates

obtained after immunopurification of SRP using the indicated TAP-

tagged SRP subunits, Srp54p, Srp68p, and Srp72p, were analyzed

by immunoblot for the presence of an NAC with anti-Egd2

polyclonal antibody and for the presence of ribosomes using anti-

Rpl3 monoclonal antibody. (B) SRP associates with polysomes in

WT and DNAC strains. Yeast extracts from the indicated cells were

fractionated on sucrose gradients and individual fractions were

analyzed for the presence of SRP and the ribosomal protein Rpl3.

The OD254 nm profile (top) identifies the polysomal fractions.

(TIF)

Figure S7 Effects of NAC deletion (Degd2/Degd1) on the SRP

interactome. (A) Scatterplot showing enrichment of SRP-associat-

ed mRNAs in WT and DNAC strains. Purple, NAC-independent

SRP interactors; blue, NAC-dependent SRP interactors; green,

Off target SRP interactors. Values obtained for two known SRP

targets, Kar2 and DPAP-B, are shown. (B) Comparison of the

fraction of SRP-associated mRNAs encoding proteins of different

subcellular localizations in the WT (black), DNAC (white), or

genome (grey). (C) Distribution of lengths of first hydrophobic

stretches found in mRNAs encoding targets of different SRP

interactors and the genome. To look for hydrophobic stretches,

protein sequences were analyzed to look for groups of 5 or more

aminoacids with a Kyte-Doolittle scale value higher than 1 using a

sliding window of 7.

(TIF)

Figure S8 Effects of NAC’ deletion (Degd2/Dbtt1) on the SRP

interactome. (A) Hierarchically clustered heat map of the SRP

interactomes in either WT (four independent replicates) or NAC’-

deleted (DNAC’) (three independent replicates) cells. Boxes

indicate genes significantly enriched (p,0.01) in the SRP-

interactome in both strains (purple) (NAC-independent) or only

in DNAC’ cells (green) (Off-target) or WT cells (blue) (NAC-

dependent). GO ontology categories significantly enriched (p,

0.01) in each dataset are indicated. Pearson coefficient correlations

are indicated on the tree. (B) Comparison of fraction of SRP

substrates with predicted signal sequences (from Signal IP) or

transmembrane regions (from TMHMM) in WT cells (black),

DNAC cells (Degd2/Degd1) (white), DNAC’ (Degd2/Dbtt1) (dark

grey), or the yeast genome (grey). (C) Comparison of the fraction of

SRP-associated mRNAs encoding proteins of different subcellular

localizations in the WT (black), DNAC (white), DNAC’ (dark grey),

or the yeast genome (grey). (D) The differences observed between

the SRP interactors in WT, DNAC, and DNAC’ are independent

of the statistical threshold employed. Fraction of SRP-associated

nascent chains encoding proteins with predicted Signal Sequences

(SS) or Transmembrane Regions (TM) in the WT, DNAC, and

DNAC’ backgrounds, calculated as in (B) but using different

statistical stringencies. The graph shows the percentage of

significant SRP targets with TM or SS in datasets obtained using

the indicated statistical thresholds for FDR (False Discovery

Rates). WT (black), DNAC (white), and DNAC’ (dark grey).

(TIF)

Table S1 SRP interacting polypeptides without SS/TM do-

mains that are encoded by membrane-associated mRNAs.

(DOC)
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