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Abstract

Glial loss in the hippocampus has been suggested as a factor in the pathogenesis of stress-related brain disorders that are
characterized by dysregulated glucocorticoid (GC) secretion. However, little is known about the regulation of astrocytic fate
by GC. Here, we show that astrocytes derived from the rat hippocampus undergo growth inhibition and display moderate
activation of caspase 3 after exposure to GC. Importantly, the latter event, observed both in situ and in primary astrocytic
cultures is not followed by either early- or late-stage apoptosis, as monitored by stage I or stage II DNA fragmentation. Thus,
unlike hippocampal granule neurons, astrocytes are resistant to GC-induced apoptosis; this resistance is due to lower
production of reactive oxygen species (ROS) and a greater buffering capacity against the cytotoxic actions of ROS. We also
show that GC influence hippocampal cell fate by inducing the expression of astrocyte-derived growth factors implicated in
the control of neural precursor cell proliferation. Together, our results suggest that GC instigate a hitherto unknown dialog
between astrocytes and neural progenitors, adding a new facet to understanding how GC influence the cytoarchitecture of
the hippocampus.
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Introduction

Stress and glucocorticoid (GC) hypersecretion during ante-

natal, neonatal, adolescent and adult life are implicated in a

number of brain disorders, including major depression [1,2],

dementia [3], addiction [4] and schizophrenia [5,6]. Neuroim-

aging studies in humans reveal a strong negative correlation

between cortisol levels and hippocampal volume in patients

with major depression [7,8]; importantly, there is a positive

association between cognitive function and cortisol levels [7,9].

Similar structure-behavior relationships have been reported in

the hippocampus, and other brain regions, of laboratory

rodents experiencing high GC levels [10–14]. These volumetric

changes have been ascribed to neuronal atrophy [15] and glial

cell loss [16]. Supporting the latter, postmortem studies report

reduced glial densities and numbers in the prefrontal cortex

(PFC) [17], amygdala [18] and hippocampus [16] of depressed

patients, and Banasr and Duman [19] demonstrated that

chemical ablation of astrocytes in the PFC results in depressive-

like behavior in rats. Moreover, chronic stress has been shown

to induce astrocytic loss in the hippocampus [20], an effect that

can be reversed by drugs with antidepressant actions. While

Banasr et al. [21] found that chronic stress interferes with glial

cell metabolism, through glutamatergic mechanisms, it remains

unclear as to whether GC are causally involved in the loss of

astrocytes after stress. The present study provides unequivocal

evidence that astrocytes respond to GC with growth inhibition

rather than apoptosis. Moreover, this study shows, for the first

time, that GC modify astrocytic production of various growth

factors that ultimately inhibit the proliferation of neural

precursors in the hippocampus.

Results

Astrocytes escape GC-induced apoptosis during
development and adulthood

It has been reported that hippocampal astrocyte numbers are

reduced in GC-related disorders [16,20], suggesting that GC

have a detrimental effect on astrocyte generation or survival. In

the present study we monitored the in situ expression of

phospho-H2A.X, a marker of early apoptosis, in GFAP-positive

cells (astrocytes) within the hippocampal formation of GC-

treated neonatal (1 day old) and adult (3-month old) rats. Results

demonstrate very low co-localization of phospho-H2A.X and

GFAP immunoreactivity in the hippocampus (all subfields) of

neonatal (,5%) and adult (,1%) rats (Fig. 1M-Q), indicating

refractoriness of astrocytes to GC-triggered apoptosis. These

findings contrast strikingly with those previously reported by us

with respect to neural precursor cells [22] and mature neurons

[23–26], and replicated in this study: specifically, we here show

that a significant number of calbindin D28K-positive cells

(neurons) express phospho-H2A.X upon exposure to GC, an

effect that was evident in both, the neonatal and adult

hippocampus (Fig. 1A–L, N, P).
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Figure 1. GC treatment drives neurons but not astrocytes into apoptosis in neonatal and adult rats. A–L, Representative confocal
images showing double staining for calbindin-D28K (A, D, G, J) and phosho-H2A.X (B, E, H, K) in the dentate gyrus of control and GC-treated
neonatal (A–C, G–I) and adult (D–F, J–L) rats. Hoechst 33342 staining was used to identify cell nuclei and to help delineate the SGZ and GCL. Arrows
indicate the representative positive phosphor-H2A.X staining in calbindin-D28K positive neurons. M and O, are representative images showing
double-staining of GFAP and phospho-H2A.X in the stratum radiatum of the hippocampal CA3 and CA1 subfields (CA3-r, CA1-r) in GC-treated
neonatal (M) and adult (O) rats. Arrowheads indicate GFAP-positive astrocytes that were negative for phospho-H2A.X, an early marker of apoptosis.
Arrows indicate the representative phosphor-H2A.X staining in GFAP-negative cells. N and P illustrate the significant increase of apoptosis in
calbindin-positive neurons, but not GFAP-labeled astrocytes, in neonatal (N) and adult (P) rats treated with GC (dexamethasone, 200 mg/kg/d on days
1–3, tapering to 100 mg/kg/d on days 4–7). The counts are from all hippocampal subregions displaying positive signal for calbindin (granule cell layer
of DG) or GFAP (molecular and polymorphic cell layers of DG, and the strata oriens and radiatum of CA1-CA3). Q, Stacking figure showing that GC
treatment does not induce apoptosis in astrocytes in any hippocampal subfield, as indicated by double-staining of GFAP and phopho-H2A.X. The
relative numbers (%) of phospho-H2A.X+/GFAP+ cells relative to total GFAP+ cells in each subfield were calculated; each value was used to create the
stacking figure in which each column represents the % of apoptotic events in astrocytes in each subfield vs. the total number of apoptotic events in
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Phenotypic identity of GC-sensitive hippocampal cells
and mechanisms contributing to GC-insensitivity

The incidence of GC-triggered apoptosis was monitored by

TUNEL and Hoechst 33342 histochemistry in mixed hippocam-

pal cultures transfected with GFP-driven neuron- (Ta1-GFP)

[27,28] and astrocyte- (GFAP-GFP) [29] specific plasmids; the

genetic tagging approach excluded the possibility that astrocytes

undergoing apoptosis might have lost their GFAP antigenicity. As

shown previously [26], maximum apoptotic effects were seen in

the primary hippocampal cultures when DEX was applied at

1025 M, a dose used in all subsequent experiments. This analysis

revealed that neurons (Fig. 2G-I and J), but not astrocytes (Fig. 2D–

F and J), are sensitive to the apoptotic actions of GC. While

confirming results reported in the previous section, this experiment

also revealed that GC treatment increases the expression of active

(cleaved) caspase 3 in astrocytes (Fig. 3A–F); in fact, extended

exposure to GC (up to 144 h) was accompanied by further

increases of activated caspase 3 levels (Fig. 3H) but, nevertheless,

without any significant increase of apoptotic events (data not

shown).

The neuronal effects of GC were prevented by pre-application

of mifepristone (RU38486; 1025 M), a glucocorticoid receptor

(GR) antagonist, indicating their mediation through GR (Fig. 2J).

In astrocytes, which also express GR (Fig. 2A–C), mifepristone

abolished the ability of GC to stimulate active caspase 3 levels

(Fig. 3A–G). Thus, the resilience of astrocytes to the apoptotic

actions of GC most likely reflects the intrinsically different cellular

machineries in astrocytes and neurons.

Further studies were carried out in astrocyte-enriched (.90%,

Fig. 4A) cultures to examine the intrinsic responses of astrocytes to

GC, to specifically exclude potential confounds resulting from

their juxtaposition to neurons in the mixed-cell cultures. Extending

our previous demonstration that GC inhibit proliferation of neural

cells in culture [30], we now show that enriched astrocyte cultures

also exhibit growth inhibition upon exposure to GC and that the

GC effect is abrogated in the presence of the GR antagonist,

mifespristone (Fig. 4B–F). Fluctuations in the levels of cyclins and

cyclin-dependent kinases (CDK), as well as cell cycle inhibitors,

determine the progress of the cell cycle and proliferative capacity

[31]. Here, we show by immunoblotting that GC respectively

down- and upregulate the expression of cyclin D1 and the cell

cycle inhibitor p27 in astrocytes (Fig. 4G and H). These effects

appear to be selective insofar that the levels of other cyclins (e.g.

cyclin E) and CDK6 were not significantly influenced by GC

treatment (Fig. 4G and H).

Astrocytes grown in either serum-free, chemically-defined

medium (Neurobasal A/B27, also used for the mixed-cell cultures)

or standard medium (DMEM), supplemented with charcoal-

stripped (steroid-free) serum, displayed moderate increases in

immunoreactive caspase 3 (active form), but failed to show signs of

apoptosis upon treatment with GC (1029–1025 M), as revealed by

TUNEL and active caspase 3 histochemistry (Fig. 5A–F, J; also see

Fig. 6A). On the other hand, the astrocytic cultures showed

significant levels of caspase 3 activation and apoptosis when

treated with staurosporine (50 nM), a protein kinase inhibitor and

general apoptotic agent (Fig. 5G–I, J). Notably, the dose-response

curves showing astrocytic vs. neuronal apoptotic responses to

staurosporine reveal that astrocytes are less vulnerable to apoptosis

(Fig. 6B).

Apoptotic DNA fragmentation is a two-stage process in which

the DNA is first cleaved into large fragments of 50–300 kb (high

molecular weight [HMW] DNA fragmentation), followed by

subsequent inter-nucleosomal cleavage into low molecular weight

(LMW) fragments [32]. Although LMW fragmentation (identified

by TUNEL, DNA laddering, Hoechst staining) is a widely used

marker of apoptosis, there is strong evidence that apoptosis in

certain cells, and under specific conditions, may be marked by

HMW DNA fragmentation [33]. Accordingly, extracts from GC-

treated astrocytes were subjected to pulse-field gel electrophoresis

and immunoblotting with an antibody against phospho-H2A.X

which marks one of the earliest cellular responses to DNA damage

that subsequently leads to apoptosis [34]. As shown in Figs. 5L and

K, neither HMW DNA fragmentation nor phospho-H2A.X levels

were increased when astrocytes were exposed to GC. In contrast,

both markers were strongly evident in extracts from staurosporine-

treated astrocytes (Fig. 5L and K).

Together, the findings reported thus far in this section suggest

that the differential GC-induced apoptotic response of astrocytes

and neurons reflects divergent post-receptor cellular responses by

the two cell types. At the same time, the results indicate that, as

compared to neurons, astrocytes are endowed with mechanisms

that allow them to more effectively buffer the actions of apoptotic

stimuli.

Since mitochondria play a critical role in the regulation of

apoptosis, including GC-induced apoptosis [35], our initial

investigations into factors and mechanisms that could potentially

render astrocytes resistant to GC-induced apoptosis focused on

mitochondrial function. Previous studies have shown that GC

increase neuronal ROS levels [36,37]. High levels of cellular ROS,

generated by mitochondria as by-products of cellular metabolism,

result in oxidative damage of DNA and other macromolecules and

ultimately lead to cell senescence and death [38]. Here, we asked

whether differences in the rates of ROS generation by neurons

and astrocytes can explain their differential sensitivity to GC-

induced apoptosis. By monitoring ethidium intercalation into

DNA, we found that, as compared to astrocytes, neurons produce

significantly higher levels of ROS under basal conditions, as well

as after GC treatment (Fig. 6C).

The mitochondrial or intrinsic pathway of apoptosis is

rheostatically controlled by pro- and anti-apoptotic proteins [38]

and we previously showed that GC-induced apoptosis in

hippocampal neurons is determined by the relative expression

levels of pro- (Bax) and anti- (BCl-xl, BCl-2) apoptotic molecules

[24]. Results depicted in Fig. 6D and E show that whereas GC

dose-dependently increases the ratio of bax:bcl-2 mRNA levels

(bax:bcl-xl ratios were unchanged) in neurons, astrocytes do not

exhibit major alterations in these profiles; these expression profiles

correlated with the extent of activation of caspase 3 (high in

neurons that ultimately underwent apoptosis, low in astrocytes

which resisted apoptosis; Fig. 6F). These findings suggest that

differences in the ability of astrocytes and neurons to buffer the

cellular actions of GC contribute to their differential vulnerability

to GC-induced apoptosis.

GC regulation of astrocytic cytokines and neuronal cell
turnover

Astroyctes produce a large number of soluble, membrane-

bound proteins and peptides under basal conditions and in

response to neuronal insults. Whereas anisomorphic or reactive

astrocytes in the whole hippocampal formation (100%). o, stratum oriens; m, molecular layer; p, polymorphic cell layer. r, stratum radiatum. * p,0.05
compared to CON. Scale bars: 20 mm.
doi:10.1371/journal.pone.0022419.g001
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astrogliosis leads to exacerbation of the effects of insults, astrocyte

activation (or isomorphic astrogliosis) is thought to play a role in

promoting neuronal survival, repair and proliferation [39]. Since

the expression of several astrocyte-derived cytokines is known to be

regulated by GC [40,41], we here focused on those implicated in

neurogenesis and neuronal survival. Analysis by qPCR revealed

that GC regulate the expression of a number of cytokine genes

whose products could potentially influence the fate of neurons

Figure 2. Astrocytes are spared from GC-triggered apoptosis in primary hippocampal cultures. Hippocampal cultures were genetically
tagged with either Ta-tubulin-GFP or GFAP-GFP plasmids, to identify neurons and astrocytes, respectively. Approximately 50% of astrocytes in typical
cultures displayed GR immunoreactivity (A–C, examples shown by arrowheads). After exposure to GC or vehicle, apoptosis in the different cell
populations was visualized by TUNEL and Hoechst 33342 histochemistry (D–F and G–I). Solid arrowheads exemplify GFP+ cells that entered
apoptosis after GC treatment; open arrowheads indicate non-apoptotic GFP-transfected cells. Numerical data (mean 6 SD) from analysis of TUNEL
staining in either all cells in culture, Ta-tubulin-GFP or GFAP-GFAP sub-populations are depicted in (J). * p,0.05 vs. CON, # p,0.05 vs. DEX. Scale
bars: 50 mm in A–C and 20 mm in D–I.
doi:10.1371/journal.pone.0022419.g002
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through paracrine mechanisms. Specifically, GC significantly

altered the expression of mRNAs encoding death-inducing factors

(fasL, trail, tweak and tnfa, Fig. 7A), neurotrophic factors (bdnf, ngf,

Fig. 7B) and mitogenic factors (bfgf, vegf, Fig. 7C) in astrocyte-

enriched cultures.

Given the complexity of the above reported cytokine expression

patterns, we next investigated whether GC treatment of astrocytes

alters the expression of cytokines implicated in neural cell

turnover. To this end, the effects of conditioned medium (CM)

or conditioned medium from DEX-treated (DCM) astrocytic

cultures (from which small [,MW 3 Kd] molecules were diluted

out serially [final DEX levels: 3.10211 M] or excluded by physical

adsorption) on neurogenesis and apoptosis in primary hippocam-

pal cultures was monitored. As shown in Fig. 8A, neural precursor

cell proliferation was promoted by CM, an effect that was dose-

dependently attenuated when astrocytes were treated with GC

(DCM) (Fig. 8B). Neural precursor cell proliferation was not

observed when cultures were exposed to DEX at a concentration

of 3.10211 M; this, together with the finding that the GR

antagonist RU38486 failed to block the anti-proliferative effects

of DCM, indicates that the effects of DCM did not result from the

effects of residual GC in the CM. Lastly, both CM and DCM

significantly, and to similar extents, attenuated apoptosis (Fig. 8C).

Discussion

The pleiotropic roles of astrocytes have recently been extended

to include the regulation of neurogenesis, migration and synaptic

modulation [42,43], with astrocytic loss and dysfunction being

increasingly implicated in the pathogenesis of psychiatric disorders

such as major depression [17,19–21,44]. However, while some

authors reported a loss of astrocytes [16,20], others reported an

increase in astrocyte densities [45] in the hippocampus of

depressed human subjects and animal models of depression.

Accordingly, the present study involved a detailed analysis of the

direct effects of GC on hippocampal astrocytic fate. In light of

Figure 3. Caspase 3 is activated by GC-treated in astrocytes grown in mixed hippocampal cultures. As compared to vehicle-treated
GFAP-GFP-labeled astrocytes (A–C), those treated with GC (D–F) displayed moderate levels of activated caspase 3. Open arrowheads indicate GFAP-
GFP+/cleaved caspase 32 staining; solid arrowheads indicate GFAP-GFP+/cleaved caspase 3+ cells. The GR antagonist RU38486 significantly
attenuated GC-stimulated activation of caspase 3 (G). Extended exposure of cultures to GC (48–144 h) led to a progressive increase in activated
caspase 3 immunoreactivity in GFAP-GFP tagged astrocytes (H), without causing significant apoptosis monitored by TUNEL and Hoechst staining (not
shown). All numerical data represent mean 6 SD. * p,0.05 vs. CON, # p,0.05 vs. GC. Scale bar: 50 mm.
doi:10.1371/journal.pone.0022419.g003
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previous demonstrations that GC - strongly linked to depression -

induce apoptosis in a subpopulation of hippocampal neurons [22–

24,26,46], we specifically investigated whether GC influence

astrocytic numbers through a similar process.

A first experiment in neonatal and adult rats revealed that,

unlike hippocampal neurons, GFAP-labeled astrocytes do not

succumb to apoptosis after GC administration. This finding was

confirmed in more detailed analyses performed on primary

hippocampal cultures (containing neurons and glia) as well as

cultures enriched in hippocampus-derived astrocytes. Since the

apoptotic process, from cell rounding and membrane blebbing

through to lysis, can last between 12 and 24 h [47], and because

individual cells may be asynchronous in their sensitivity, we here

treated cultures with a synthetic GC (dexamethasone) for 48 h to

capture all potential apoptotic events. Subsequently, early (stage I)

or late (stage II) stages of DNA fragmentation were monitored,

using immunoblotting with anti-phospho-H2A.X and pulsed-field

gel electrophoresis (stage I) or TUNEL and Hoechst staining (stage

II), respectively. Neither stage of DNA fragmentation was

observed in astrocytes exposed to GC, indicating that astrocytes

may be resistant to GC-induced apoptosis.

First attempts to identify the mechanisms that may contribute to

the resistance of astrocytes to the apoptotic actions of GC revealed

that, as compared to neurons, astrocytes have lower levels of

reactive oxygen species (ROS) under resting conditions and

generate lower ROS levels when exposed to GC. Thus, astrocytes

are less likely to suffer from ROS-induced disruption of the

mitochondrial membrane permeability, a major trigger of

apoptosis [48]. Mitochondrial membrane permeability and thus,

cell survival, is rheostatically regulated by pro- and anti-apoptotic

members of the BCl2 family [24,49]. Our finding that astrocytes

can maintain a higher ratio of anti-apoptotic (BCl-2 and BCl-xL)

to pro-apoptotic (Bax) protein levels after exposure to GC indicates

that astrocytic refractoriness to GC-induced apoptosis may

critically depend on this attribute.

Astrocytes exposed to GC display moderate increases in the levels

of activated caspase 3, the so-called ‘executioner caspase’ even

though they do not respond to this particular stimulus with signs of

apoptosis. Our finding that staurosporine can trigger apoptosis in

astrocytes not only verifies an intact apoptotic machinery but also

indicates that, as compared to staurosporine, GC cannot elicit a

sufficiently strong activated caspase 3 response. Previous studies

Figure 4. Anti-proliferative actions of GC in astrocytes are GR-dependent. A, Representative immunostaining of GFAP in the enriched
astrocytic culture. B–E, are representative images showing BrdU incorporation in control (B, C) and GC-treated (dexamethasone, at 1025 M for 48 h
in medium with charcoal-stripped serum) astrocytes (D, E). Hoechst 33342 counterstaining demonstrates comparable cell densities. BrdU (20 mM)
was added to cultures 12 h before fixation. F, shows that the anti-proliferative actions of GC are counteracted by addition of the GR antagonist,
RU38486 (1025 M). G, Representative Western blots showing GC (dexamethasone; 1025 M in medium supplemented with charcoal-stripped serum;
48 h) regulation of various key regulators of the cell cycle in cultured astrocytes; the semi-quantitative (n = 4) data from these immunoblotting
experiments are shown in H. Note that while GC treatment downregulates cyclin D1 protein expression, the treatment results in a concomitant
increase in the levels of the cell cycle inhibitor, p27. Cyclin E and CDK6 expression levels are not changed after exposing astrocytes to GC. Numerical
data represent mean 6 SD. * p,0.05 vs. CON, # p,0.05 vs. GC. Scale bar: 50 mm.
doi:10.1371/journal.pone.0022419.g004
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have ascribed non-apoptotic functions to caspases (reviewed by

Fernando and Megeney) [50]. For example, studies in cells of

both, neuroepithelial [51–54] and mesodermal [55–57] origin

suggest that activated caspase 3 plays a crucial role in cell

differentiation. This notion is further supported by the recent

finding that astroglial caspase 3 activation is not accompanied

with cell death, but rather leads to cytoskeleton remodeling [58].

Our finding that GC cause astrocytic growth inhibition by

inducing exit from the cell cycle (reduction of cyclin D1 and

concomitant increase of p27) also supports the view that GC may

contribute to the functional remodeling of astrocytes. Interest-

ingly, in contrast to their targeting highly selective neuronal

populations for apoptosis [59], GC have been reported to induce

cell cycle arrest in a variety of neural cells, including neural

precursors [60], microglia [61] and a neuroblastoma cell line

[30]. To our knowledge, this is the first study to show that GC

can also inhibit the proliferation of astrocytes while inducing their

functional differentiation (see below). It therefore provides a new

perspective on how elevated GC secretion may contribute to

psychiatric illness.

Figure 5. Enriched astrocytic cultures also respond to GC with moderate activation of caspase 3, but fail to show signs of early- or
late-stage apoptosis. After re-plating, enriched astrocytic cultures were treated with GC (48 h) in medium containing either charcoal-stripped
serum (data not shown) or B27 supplement (representative images in A–L). Enriched astrocytes responded to GC treatment DEX with moderately
increased immunostaining for activated caspase 3; these cells did not enter late-stage (stage II) apoptosis, as shown by TUNEL (A–F). In contrast,
staurosporine (STA) induced a marked activation of caspase 3 and apoptosis (G–I). The immunocytochemical results shown for activated caspase 3 in
A–I were confirmed by immunoblotting (J). Staurosporine, but not GC, treatment of enriched astrocytic cultures significantly increased levels of
immunoreactive phospho-H2A.X, a marker of early apoptosis, as shown by immunoblotting studies (K). Similarly, astrocytes exposed to STA, but not
GC, displayed high molecular weight (HMW) DNA fragments, when lysates where subjected to pulse-field gel electrophoresis (PFGE) (L); all lanes were
loaded with DNA from the same number of astrocytes, and arrow indicates 50 kb HMW DNA fragments. Scale bars: 50 mm.
doi:10.1371/journal.pone.0022419.g005
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PLoS ONE | www.plosone.org 7 July 2011 | Volume 6 | Issue 7 | e22419



Previous findings reported that GC alter the expression of

astrocytic genes such as glutamine synthetase [62], GLT-1 [63]

and interleukin-1 receptor [64]. These observations, together with

results from the present study, show that the astrocytic

transcriptome is influenced by GC. Interestingly and notwith-

standing their potential roles in astrocytic insensitivity to GC-

induced apoptosis, GC modulate the expression of a number of

genes implicated in the regulation of neurogenesis in the

hippocampus. However, the mRNA expression profiles of GC-

treated astrocytes are difficult to interpret at present (e.g. the

observed patterns of bfgf and vegf expression appear to be counter-

intuitive). Importantly, this study shows that GC-induced changes

in astrocytic function have a substantial influence over neurogen-

esis; the latter most likely involve the recruitment of, and cross-talk

Figure 6. Insights into potential mechanisms underlying astrocytic resistance to GC-induced apoptosis. Astrocytes show less
susceptibility to GC- (A) and staurosporine (STA)-induced (B) apoptosis, as compared to neuronal cells. Both neurons and astrocytes respond to GC
treatment with a significant increase of ROS (measured by fluorescent DHE nuclear translocation) (C); note that, as compared to neurons, astrocytes
generate markedly lower levels of ROS under basal conditions and after GC treatment. The ratios of expression of mRNAs for pro- vs. anti-apoptotic
members of the Bcl2 family (bax vs. bcl-XL and bcl-2) are different in neurons and astrocytes (D and E); mRNA levels were determined by qPCR.
Neurons and astrocytes also respond differentially to GC treatment in terms of their activated caspase 3 responses (measured by immunoblotting)
(F), with astrocytes showing smaller increases in levels of activated caspase 3. Numerical data are shown as mean 6 SD. * p,0.05 vs. neuron CON;
# p,0.05 vs. astrocyte CON; + p,0.05 GC-treated neurons vs. GC-treated astrocytes. Scale bars: 25 mm.
doi:10.1371/journal.pone.0022419.g006
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with, multiple effectors that play decisive roles in the pathways that

regulate neural death and proliferation. To our knowledge, this

represents the first report in which astrocytes are implicated as

paracrine mediators of the negative effects of stress and GC on the

proliferation of hippocampal neurons. To date, research on the

regulation of neurogenesis and neuronal cell numbers by stress,

GC and antidepressants [65] has been largely focused on the

intrinsic mechanisms that control the birth and differentiation of

neural precursors [60]. Our finding that neurogenesis is subject to

extrinsic controls through GC-induced changes in astrocytic

function adds a new dimension to present views of the

pathophysiology of depression and other mental disorders in

which dysregulation of hippocampal cytoarchitecture is causally

implicated.

In summary, our studies show that hippocampal astrocytes do

not enter the apoptotic pathway upon treatment with GC;

accordingly, we conclude that the reduced number of astrocytes

observed after exposure of animals to stress cannot be explained by

GC-induced apoptosis. Our results indicate that, as compared to

neurons, astrocytes are equipped with ROS load-reducing

mechanisms that promote their survival. At the same time, GC

appear to activate cellular pathways that result in an attenuation of

neural proliferation. Together, these observations suggest that GC

can dictate hippocampal architecture and ultimately function by

initiating a hitherto undisclosed dialog between astrocytes and

neurons.

Materials and Methods

Drugs and plasmids
The glucocorticoid receptor (GR) agonist dexamethasone

(DEX), obtained from Merck (Darmstadt, Germany) in aqueous

solution, was added to cultures for 48 h (24 h after transfection).

The GR antagonist, mifepristone (RU38486; provided by the

National Hormone and Pituitary Program, Torrance, CA) was

added (10 mM) 1 h before the application of DEX. Cells

undergoing mitosis were labeled by addition of 5-bromo-29-

deoxyuridine (BrdU; 20 mM; Sigma, St. Louis, MO) to cultures for

4 h. Staurosporine (Sigma) was used at 50 nM to induce apoptosis

in astrocytes. The plasmids pBSII SK-Ta1-GFP (kind gift of Dr.

Freda Miller) [27,28] and pGFAP-GFP (kind gift of Dr. Helmut

Kettenmann) [29] were used to label neurons and astrocytes,

respectively.

Primary hippocampal and enriched astrocyte cultures
Unless specified, all cell culture materials were purchased from

Invitrogen (Eggenstein, Germany). Hippocampal neuronal cul-

tures were prepared from Wistar rats aged 4 days (P4; Charles

River, Sulzfeld, Germany), following a previously published

protocol [66]. Transfections were carried out after 5–6 days in

vitro (DIV), using Lipofectamine 2000 (Invitrogen) [66]. Trans-

fection efficiency, judged by control transfection with pEGFP, was

,10%.

Enriched astrocytic cultures were obtained from hippocampi

from P4 rats [66], plated at a density of 130 cells/mm2 in DMEM

containing 10% fetal bovine serum (FBS) and 1% kanamycin.

After 12 days in vitro (DIV), cultures were shaken (260 rpm, 20 h)

and washed with cold PBS. After discarding the supernatant, the

residual cells were trypsinized and replated. Experiments were

performed on astrocytes in their third passage in vitro and,

depending on the specific treatments, were transferred into either

DMEM/10% charcoal-stripped FBS (to exclude confounding by

steroids in serum), DMEM/N2 Supplement or Neurobasal/B27

medium (to allow comparisons between glia and neurons).

Conditioned medium
After washing with PBS, astrocytes were maintained for 48 h in

Neurobasal A/B27 medium 6 DEX. The growing medium

Figure 7. Temporal mRNA expression profiles of growth- and
survival-regulating peptides in GC-treated astrocytes. A,
molecules implicated in the extrinsic death pathway; FasL mRNA was
transiently increased, TRAIL and TWEAK mRNAs showed transient
reductions and TNFa mRNA showed a sustained reduction after
application of GC. B, expression patterns of the mRNAs encoding the
neurotrophic factors BDNF (transient upregulation) and NGF (sustained
downregulation) after GC treatment. C, levels of mRNA encoding for
the mitogenic factors bFGF (increased) and VEGF (decreased) following
exposure of astrocytes to GC. In all analyses, gapdh and actin served as
housing-keeping gene controls. Values shown derive from 3 indepen-
dent experiments (mean 6 SD).
doi:10.1371/journal.pone.0022419.g007
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(hereinafter referred to as conditioned medium, CM) was then

harvested and centrifuged (300 rpm, 3 min, to remove residual

cellular material); supernatants were then either concentrated or

extracted to exclude DEX. For concentration, supernatants were

run through Vivaspin columns (Vivaspin20, Sartorius, Aubagne,

France) to concentrate peptides with an Mr .3 kD; smaller

molecules, including DEX at an initial concentration of 1025 M,

were washed out serial dilution-concentration steps to reach a

estimated final concentration of DEX that was ,3.10211 M. To

extract DEX, supernatants were run through Speedisk H2O-

Phobic DVB polymer columns (JT Baker, Phillipsburg, NJ).

Complete removal of DEX from CM and DCM was evidenced by

the disappearance of the phobic indicator, phenol red.

Quantitative PCR
Total RNA was isolated (RNAeasy kit; Qiagen, Hilden,

Germany) and reverse transcribed with Superscript II RNA H-

reverse transcriptase (Invitrogen) and custom-synthesized Oligo-

dT12-18 primers (MWG Biotech, Ebersberg, Germany). Quan-

titative PCR (qPCR) was performed with a LightCycler (Roche,

Mannheim, Germany) in 10 ml mixtures containing 2 ml of 5X

master mix (FastStart DNA SYBR green I; Roche), 5 ml of water,

0.5 ml of each primer and 2 ml of extracted DNA. The reaction

was performed with preliminary denaturation for 10 min at 95uC
(slope, 20uC/s), followed by 40 cycles of denaturation at 94uC
(5 s), annealing (5 s) at 65uC and extension at 72uC (10 s). Relative

mRNA expression ratios (housekeeping genes: actin and gapdh)

were subsequently calculated. The following primers were used:

bax (174 bp) fwd: CTGCAGAGGATGATTGCTGA; rev: GAT-

CAGCTCGGGCACTTTAG

bcl-2 (251 bp) fwd: CGGTGGTGGAGGAACTCTTC; rev: CAGC-

CAGGAGAAATCAAACAGA

bcl-2 (251 bp) fwd: TGACCACCTAGAGCCTTGGAT; rev: CAG-

GAACCAGCGGTTGAAA

fas-l (255 bp) fwd: AAGGAGTGTGGCCCACTTAAC; rev:

CTTCTCCTCCATTAGCACCAG

tnfa (221 bp) fwd: CCCAGACCCTCACACTCAGATCAT; rev:

GCAGCCTTGTCCCTTGAAGAGAA

trail (167 bp) fwd: GCTTGCAGGTCAAGAGGCAAC; rev:

TCTCCGAGTGATCCCGGTAATG

tweak (154 bp) fwd: CTGTCAGGTGCACTTTGATGAG; rev:

AGCAAGTCCAGCTTCAGGTAGA

bdnf (111 bp) fwd: AAGGCTGCAGGGGCATAGAC; rev:

TGAACCGCCAGCCAATTCTC

Figure 8. Conditioned medium from GC-treated astrocytes influences neurogenesis in hippocampal cultures. A, Treatment of primary
hippocampal cultures with DCM (conditioned medium harvested from GC-treated astrocytes) attenuated the mitotic effects of CM (conditioned
medium from normal astrocytes), measured by BrdU incorporation and Ki67 immunostaining. Conditioned media were prepared by either serial
concentration (to reduce dexamethasone concentrations to ,3.10211 M; CM and DCM) or physical absorption of dexamethasone (CM-hydro and
DCM-hydro). The effects of DCM could not be antagonized with GR antagonist, RU38486 (1028 M). Neither dexamethasone (3.10211 M) nor RU38486
(1028 M) exerted significant effects on neural proliferation, and DCM-hydro attenuated the mitotic effects of CM-hydro to similar extents. B, CM
caused a dose-dependent increase in neural proliferation, whereas DCM reduced the stimulatory effects of CM. C, Apoptosis in primary hippocampal
cells in culture were reduced by CM and DCM to similar extents. Numerical data represent mean 6 SD. * p,0.05 vs. CON, + p,0.05 vs. corresponding
CM group.
doi:10.1371/journal.pone.0022419.g008
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ngf (142 bp) fwd: CCAAGCACTGGAACTCATACTGC; rev:

CTGCTGAGCACACACACGCAG

bfgf (216 bp) fwd: GACCCACACGTCAAACTACA; rev:

TTTCAGTGCCACATACCAAC

vegf (196 bp) fwd: CCTGGTGGACATCTTCCAGGAGTACC; rev:

GAAGCTCATCTCTCCTATGTGCTGGC

gapdh (116 bp) fwd: TGGAGAAACCTGCCAAGTATG; rev:

GTTGAAGTCGCAGGAGACAAC

actin (76 bp) fwd: GGGAAATCGTGCGTGACATT; rev:

GCGGCAGTGGCCATCTC

Pulse-field gel electrophoresis
Fragmentation of high molecular weight (HMW) DNA was

assayed by pulse-field gel electrophoresis (CHEF-DR II; Biorad,

Hercules, CA). Approximately 5.106 astrocytes per condition were

suspended in 40 ml of PBS, mixed with an equal volume of warm

1% Seakem gold agarose (SKG; Bio Whittaker Molecular

Applications, Rockland, MD) in 0.5X TBE buffer (45 mM Tris,

45 mM boric acid, 1 mM EDTA, pH 8.3), and transferred to

block molds (Biorad). Agarose blocks were incubated at 50uC in

1 ml of NDS buffer (1% laurylsarkosyl, 10 mM Tris, 0.5 M

EDTA, pH 9.5) containing 200 mg/ml proteinase K, and then in

NDS buffer containing 10 mg/ml RNase; each incubation lasted

24 h. The blocks were inserted into wells of a 1% SKG gel in 0.5X

TBE, and electrophoresed at 6V/cm for 14 h at 14uC with a

switch time of 5–50 s.
Reactive oxygen species (ROS) generation. Generation of

ROS was assayed by allowing dihydroethidium (DHE; 5 mM) to

react (30 min; 37uC) with cellular superoxide ions to yield a red

fluorescent ethidium product. After washing and fixation in 4%

PFA, ethidium accumulation in the cell nucleus was monitored by

fluorescence microscopy (excitation, 520 nm; emission, 590 nm).

Observations were made in hippocampal (mixed cell types and

astrocyte-enriched) cultures under basal conditions and after

exposure to DEX.
Immunochemistry. Cells were fixed in 4%

paraformaldehyde, permeabilized in Triton-X100/PBS (0.3%)

and blocked in 5% donkey serum/0.3% Triton (30 min) before

incubation (4uC, overnight) with primary antibodies: anti-BrdU

(1:200; DAKO, Hamburg, Germany), anti-GFAP (1:2000;

DAKO), anti-GR (1:300; Santa Cruz) and anti-active caspase 3

(1:200; Cell Signaling/NEB, Frankfurt, Germany). For BrdU

staining, cells were permeabilized, treated with 2N HCl (30 min)

and incubated with anti-BrdU. After washing in PBS, cells were

incubated (1 h, RT) with appropriate secondary AlexaFluor 488/

594 conjugates (1:500; Invitrogen). Nuclei were stained with

Hoechst 33342 (1 mg/ml in PBS, 10 min). TUNEL histochemistry

was performed as previously described [26], using FITC- or Texas

Red-conjugated avidin (Vector Labs; Burlingame, CA) for signal

visualization. Double staining of H2A.X and calbindin D28K or

GFAP was performed using the following antisera (48 h

incubations at 4uC): mouse anti-phospho-H2A.X (Millipore,

Schwalbach, Germany; 1:500) and rabbit anti-calbindin D28K

(Millipore; 1:500) or rabbit-anti-GFAP (DAKO). Appropriate

Alexa conjugates were used to visualize immunoreactive signals.

Specimens were examined on an Olympus BX-60 microscope,

video-lined to a computer equipped with image-processing

software (ImagePro, Media Cybernetics, Bethesda, MD). Cell

counts were performed on 10 individual microscopic fields

(0.072 mm2), randomly chosen across two diameters of each

coverslip (400X magnification). An average of 1,000 cells or 100

transfected cells were sampled on each coverslip; results shown

represent values from 6–9 coverslips/treatment.

Apoptosis in rat hippocampus. Experiments were

conducted in accordance with local regulations (Regierung von

Oberbayern License 2531-22-07) and European Union Directive

(EU8869/10). Male Wistar rats born in-house to mothers from

Charles River (Sulzfeld, Germany) were housed under standard

laboratory conditions (12 hours light cycle; food and water

available ad libitum). Rats (1 day or 3 months old) received daily

s.c. injections of either vehicle (saline; n = 5) or a tapering dose of

DEX (days 1–3: 200 mg/kg/d; days 4–7: 100 mg/kg/d; n = 6) and

were sacrificed 24 h after the last injection. Brains were snap-

frozen in a bath of isopentane and serial cryo-sections (20 mm each

at intervals of 160 mm) were thaw-mounted onto gelatin-subbed

glass slides, air-dried, and stored at 280uC until processing for

immunohistochemistry. Incidence of apoptosis in calbindin D-

positive neurons and GFAP-positive astrocytes was detected by

phospho-H2A.X-staining. Sections were examined by confocal

laser-scanning microscopy (Olympus IX81; 60X water-immersion

lens) and results shown derive from evaluation of cells randomly

selected within defined hippocampal subregions (100 neurons, 100

astrocytes; 4 sections per animal).

Lysate preparation and western blotting. Cells were lysed

in 100 mM Tris-HCl, 250 mM NaCl, 1 mM EDTA, 5 mM

MgCl2, 1% NP-40, a cocktail of protease inhibitors (Complete

Protease Inhibitors; Roche, Mannheim, Germany) and

phosphatase inhibitors (Sigma) for 30 min and cleared by

centrifugation at 13,000 g for 20 min. After determination of

protein concentration (Lowry method), samples were separated by

SDS-PAGE on 10%-15% polyacrylamide gels, and transferred to

nitrocellulose membranes. Membranes were blocked in PBS

containing 5% non-fat milk and 0.2% Tween-20, and incubated

overnight with antisera against phospho-H2A.X (1:1000), active

caspase 3 (1:200), cyclinD1 (1:300; Santa Cruz), cyclin E (1:500;

Santa Cruz), CDK6 (1:500; Santa Cruz) or p27 (1:500; Santa

Cruz). Specific protein bands were revealed by enhanced

chemiluminescence (GE Life Sciences, Freiburg, Germany), after

incubation with appropriate horseradish peroxidase-IgG

conjugates (GE Life Sciences).

Statistics. All numerical data (mean 6 SEM) were subjected

to ANOVA and appropriate post-hoc analysis, using SPSS

software (v.10.0; SPSS Inc, Chicago, IL). The level of

significance was preset at p,0.05.
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12. Pêgo JM, Morgado P, Pinto LG, Cerqueira JJ, Almeida OFX, et al. (2008)
Dissociation of the morphological correlates of stress-induced anxiety and fear.

Eur J Neurosci 27: 1503–1516.

13. Leão P, Sousa JC, Oliveira M, Silva R, Almeida OFX, et al. (2007)
Programming effects of antenatal dexamethasone in the developing mesolimbic

pathways. Synapse 61: 40–49.
14. Schubert MI, Kalisch R, Sotiropoulos I, Catania C, Sousa N, et al. (2008) Effects

of altered corticosteroid milieu on rat hippocampal neurochemistry and
structure--an in vivo magnetic resonance spectroscopy and imaging study.

J Psychiatr Res 42: 902–912.

15. Sousa N, Cerqueira JJ, Almeida OFX (2008) Corticosteroid receptors and
neuroplasticity. Brain Res Rev 57: 561–570.

16. Müller MB, Lucassen PJ, Yassouridis A, Hoogendijk WJ, Holsboer F, et al.
(2001) Neither major depression nor glucocorticoid treatment affects the cellular

integrity of the human hippocampus. Eur J Neurosci 14: 1603–1612.

17. Rajkowska G, Miguel-Hidalgo JJ, Wei J, Dilley G, Pittman SD, et al. (1999)
Morphometric evidence for neuronal and glial prefrontal cell pathology in major

depression. Biol Psychiatry 45: 1085–1098.
18. Bowley MP, Drevets WC, Ongür D, Price JL (2002) Low glial numbers in the

amygdala in major depressive disorder. Biol Psychiatry 52: 404–412.
19. Banasr M, Duman RS (2008) Glial loss in the prefrontal cortex is sufficient to

induce depressive-like behaviors. Biol Psychiatry 64: 863–870.
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