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CellCycleTRACER accounts for cell cycle and
volume in mass cytometry data
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Recent studies have shown that cell cycle and cell volume are confounding factors when

studying biological phenomena in single cells. Here we present a combined experimental and

computational method, CellCycleTRACER, to account for these factors in mass cytometry

data. CellCycleTRACER is applied to mass cytometry data collected on three different cell

types during a TNFα stimulation time-course. CellCycleTRACER reveals signaling relation-

ships and cell heterogeneity that were otherwise masked.
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S ingle-cell analysis technologies are rapidly improving and
will eventually match the performance of their population-
level counterparts. RNA transcriptomes can be quantified in

thousands of single cells, and analyses of transcriptomes of single
cells with spatial resolution in tissues have been reported1-3. Mass
cytometry has the potential to enable simultaneous
detection of up to 50 proteins, protein modifications, such as
phosphorylation, and transcripts in single cells4–7. Recent devel-
opments enable highly multiplexed imaging of similar numbers of
markers in adherent cells and tissues5,8,9,10.

Single-cell data are typically used to identify cell subpopula-
tions that share similar transcript or protein expression or
functional markers. Analyses of these subpopulations can be used
to reveal differences between tissue compartments in health and
disease11–14, to reconstruct signaling network interactions, to
study regulatory mechanisms15-17, and, together with clinical
data, to identify single-cell features that predict characteristics
such as response to treatment and likelihood of relapse18. For
continuous processes, such as stem cell differentiation and the cell
cycle, single-cell data allow the in silico reconstruction of the
temporal dimension and thus the investigation of the underlying
molecular changes and circuitries. Several algorithms designed to
reconstruct cell trajectories from single-cell data are available,
each with distinct strengths and weaknesses19–25.

Recent single-cell transcriptomic studies revealed that cell-cycle
state and cell volume contribute to phenotypic and functional cell
heterogeneity even in monoclonal cell lines26,27. This hetero-
geneity can obscure biological phenomena of interest28,29. For
analysis of single-cell transcriptomic data, computational meth-
ods have been developed to reveal variability in cell-cycle state
and cell volume; these methods use principal component analysis,
random forests, LASSO, logistic regression, support vector
machines, and latent variable models26,28,30,31. These methods
leverage large numbers of previously annotated cell-cycle genes
and are thus not transferrable to mass cytometry data analyses.

Here, we develop a combined experimental and computational
method, called CellCycleTRACER, to quantify and correct
cell-volume and cell-cycle effects in mass cytometry data. The
application of CellCycleTRACER to measurements of three
different cell lines over a 1-h TNFα stimulation time course
reveals signaling features that had been otherwise confounded by
cell-cycle and cell-volume effects.

Results
Cell-cycle and cell-volume effects measured by mass cytometry.
The impact of cell-cycle and cell-volume heterogeneity on mass
cytometry data has not been addressed. We, therefore, set out to
characterize how these factors influence commonly employed
mass cytometry data analyses. To assess the effect of cell cycle, we
exploited the simultaneous measurements of four cell-cycle
markers recently identified by Behbehani et al.32: phosphory-
lated histone H3 (p-HH3), which peaks in the mitotic phase;
phosphorylated retinoblastoma (p-RB), which monotonically
increases from late G1 to M phase; cyclin B1, which increases
from G2 to early M phase and rapidly diminishes during the late
M phase; and 5-Iodo-2′-deoxyuridine (IdU), a thymidine analog
incorporated during the S phase. We found that cell signaling as
measured by protein phosphorylation strongly depended on the
cell-cycle phase (Supplementary Note 1 and Supplementary
Fig. 1). For example, a biaxial plot of phosphorylation of Ser241
on PDK1 vs. phosphorylation of Thr172 on AMPKα revealed that
in G2 and M phases, phosphorylation levels were elevated
(Fig. 1a). Consequently, the estimated Pearson correlation
coefficient between these two markers appears to be high due
to the G2 and M cells that inflate the correlation. Less dramatic

cell-cycle effects were also observed in published data32 from a
population of human T cells analyzed using a panel of immune-
related cell-surface markers (Supplementary Fig. 2).

To assess the impact of cell volume, we had first to identify a
marker that could be used to robustly quantify cell volume at a
single-cell level. The ruthenium complex bis(2,2′-bipyridine)-4′-
methyl-4-carboxybipyridine-ruthenium-N-succidimyl ester-bis
(hexafluorophosphate) (ASCQ_Ru) stains proteins by covalently
binding to amino groups33 (Supplementary Fig. 3a). ASCQ_Ru
can be used in mass cytometry to reliably measure cell volume, as
demonstrated using confocal laser scanning microscopy and
three-dimensional cell reconstruction (Supplementary Fig. 3b−d),
provided that the cells are not under conditions where the total
protein mass and volume become uncorrelated (e.g., under
drastic changes in osmolarity). In mass cytometry, ASCQ_Ru is
measured by the ion counts of seven ruthenium isotopes (96Ru,
98Ru, 99Ru, 100Ru, 101Ru, 102Ru, 104Ru) that do not overlap with
channels used for antibody measurements. Similarly to what we
found for the cell cycle, the estimated correlation coefficients
among phosphorylation markers were influenced by cell-volume
heterogeneity (Fig. 1b, Supplementary Fig. 4). Given that the
cell-cycle state and cell volume broadly confounded marker
relationships, it was not surprising that analyses of mass
cytometry data using standard statistical approaches, such as
Pearson or Spearman correlations, or state-of-the-art computa-
tional methods, such as tSNE or DREMI, can result in misleading
conclusions (Supplementary Figs. 1, 4).

CellCycleTRACER normalizes cell-cycle and cell-volume
effects. Cell volume and cell cycle change in a continuous manner
and should be corrected, or at least taken into account, accord-
ingly. Therefore, we developed CellCycleTRACER, an algorithm
for the analysis of single-cell mass cytometry data that enables
correction for cell-cycle state and cell-volume heterogeneity.
CellCycleTRACER is implemented as a simple and intuitive
graphical user interface and can be applied to any mass cytometry
data set. Its application requires that four channels be dedicated
to the cell-cycle markers p-HH3, p-RB, cyclin B1, and IdU (see
the section “Software and Data Availability”).

CellCycleTRACER first exploits the ASCQ_Ru signal to
transform raw marker counts into single-cell volume-relative
intensities (Fig. 1c, Methods and Supplementary Note 2). After
cell-volume correction, CellCycleTRACER uses data on the
aforementioned four cell-cycle markers to classify cells into
discrete cell-cycle phases and order them on a continuous path
analogous to cell-cycle pseudotime (Fig. 1d, Methods and
Supplementary Notes 3, 4). To automatically classify cells
according to cell-cycle stage, CellCycleTRACER exploits a new
machine learning approach that combines decision trees and
Gaussian mixture models (Supplementary Figs. 5, 6, Methods and
Supplementary Note 3); this approach reproduced manual gating
procedures with 98.9% accuracy (Fig. 1d, Supplementary Fig. 7).
Next, the single cells are ordered on a continuum that traces cell-
cycle evolution based on a novel trajectory reconstruction
technique (Fig. 1d, e). To achieve this, CellCycleTRACER exploits
the prior cell-cycle phase assignment and identifies the optimal
one-dimensional embedding of the four cell-cycle markers that
preserves the known order of the cell-cycle phases by minimizing
ordering violations (Fig. 1e, Supplementary Fig. 8, Methods
and Supplementary Note 4). Finally, the cell-cycle trajectories of
the measured markers are obtained by projecting single-cell
measurements onto the pseudotime dimension (Fig. 1d,
lower right).

Reconstructed cell-cycle trajectories of the four markers used
for the pseudotime inference (p-HH3, p-RB, cyclin B1, and IdU)
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agreed with their cell-cycle-dependent variation (Fig. 1d, dashed
lines)32,34. Additionally, the pseudotime was validated by analyses
of two independent cell-cycle markers, p-CDK1 (Tyr15) and
cyclin E (Fig. 1d, solid lines). CellCycleTRACER results faithfully
recapitulated prior biological knowledge. Phosphorylation of
Tyr15 on CDK1 progressively increased during S and G2 phase,
peaked at the G2/M transition and sharply decreased after the
entry to M phase. Cyclin E progressively accumulated during the
G1 phase and reached the maximum at the G1/S transition before
being degraded during the S phase35,36 (Fig. 1d, Supplementary
Fig. 9). Furthermore, comparison with five state-of-the-art

trajectory and embedding reconstruction methods showed that
these methods failed to reproduce biologically relevant orderings
of the cell cycle (Supplementary Fig. 10). For example,
Wanderlust19 ordered the cells from G1→G2→S→M. Since
Wanderlust works by first constructing k I-nearest neighbor
graphs in the four-dimensional space of the cell-cycle markers
and assumes that changes in protein abundance levels are gradual
in the trajectory, it traversed the data in the wrong order because
the G1 cluster is closer to G2 than S due to the jump in IdU. The
other methods tested resulted in different incorrect orderings.
SCUBA49 constructed a G2→S→G0/G1 trajectory and
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Fig. 1 Cell-volume and cell-cycle biases in mass cytometry data and their corrections using CellCycleTRACER. a Biaxial plot of p-PDK1 (Ser241) vs. p-
AMPKα (Thr172) in THP-1 cells, where pre-gated cell-cycle phases are indicated by different colors. Computation of Pearson correlation coefficients across
cell-cycle phases indicates a strong cell-cycle bias. b Biaxial plot of p-PDK1 (Ser241) vs. p-AMPKα (Thr172) in G0/G1 phase THP-1 cells that were pre-
gated by cell volume as indicated by different colors. Pearson correlation coefficients are indicative of the cell-volume bias. c Cell-volume correction using
ASCQ_Ru measurements removes cell-volume variability and transforms raw counts of measured markers into relative concentrations at single-cell
resolution. d Construction of cell-cycle pseudotime initiates with automatic classification of the cells into discrete cell-cycle phases using measurements of
IdU, cyclin B1, p-HH3, and p-RB25. The optimal trajectory across phases is constructed by projecting the data in a one-dimensional embedding function
analogous to cell-cycle pseudotime. Mean trajectories of all measured cell-cycle markers across the reconstructed pseudotime recapitulate known
behavior. Markers used to construct the pseudotime (IdU, cyclin B1, p-HH3, and p-RB) are shown as dashed lines, additional cell-cycle markers
used as validation (cyclin E and p-CDK1) are shown as solid lines. e Simplified example of the trajectory reconstruction technique. By exploiting prior
information of the class labels for each cell and the order of the classes, the best embedding function is computed by selecting the one that
optimally preserves the known ordering across all cells in the new subspace defined by the embedding. f CellCycleTRACER aligns cell-cycle pseudotime by
equalizing cell-cycle phase duration across all analyzed samples. g CellCycleTRACER correction for cell-cycle redistributes the single cells independently of
cell-cycle variation
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incorporated the M phase cells in the other clusters; TSCAN50

constructed a M→S/G2→G0/G1 trajectory by mixing together G2
and S cells; and Monocle ordered the data as G0/G1→M→G0/
G1→G2→S, by ordering M phase cells in the middle of the G0/G1
cluster. Last, diffusion maps48 yielded a non-linear, low-
dimensional embedding of the data that did not capture the
known ordering. Since these methods are unsupervised techni-
ques, they reconstruct continuous trajectories of the given
measurements with no additional label information. It is thus
impossible to “force” these methods traverse the data in the
known cell-cycle phase order. CellCycleTRACER, however,
exploits the known order of the phases through a mathematically
well-defined optimization routine and guarantees by design that
the known ordering will be preserved in the inferred one-
dimensional embedding.

Reconstructed cell-cycle trajectories of cell-surface markers
from a population of human T cells32 indicated a continuous
increase across the cell cycle for many of the proteins, peaking at
the M phase (Supplementary Fig. 11). CellCycleTRACER can also
remove cell-cycle-related inter-sample variations (due, for
example, to the use of different cell lines or of the same cell
line at different stimulation time points) and enables unbiased
multi-sample analyses by trajectory alignment. This is achieved
using a subsampling strategy that equalizes the relative cell-cycle
phase proportions either to the mean inter-sample proportions or
to the proportions of a user-selected sample (Fig. 1f, Methods and
Supplementary Note 5). Last, CellCycleTRACER can correct for
cell-cycle-related intra-sample variations by dividing the ordered
single-cell values by the normalized mean trajectory (Fig. 1g,
Methods and Supplementary Note 6). The data set can be
exported after any step of the pipeline, facilitating the use of
various downstream data analysis approaches.

Assessing CellCycleTRACER with TNFα stimulation data. To
test the performance of our method, we measured the abundances
of 25 protein phosphorylation sites, three housekeeping proteins,
and three phenotypical markers in conjunction with the cell-
volume and cell-cycle markers (Supplementary Table 1) in
HEK293T (embryonic kidney), MDA-MB-231 (breast cancer),
and THP-1 (monocyte) cells that had been stimulated with TNFα
for 0, 5, 10, 15, 30, and 60 min (Methods). Analyses of cell volume
at the control time point (0 min) showed that MDA-MB-231 cells
had on average the largest volume, followed by HEK293T and
THP-1 cells (Fig. 2a). After cell-volume correction using Cell-
CycleTRACER, the single-cell-volume distributions in the three
cell lines perfectly aligned (Fig. 2a). Marker abundances were
strongly influenced by the cell-volume correction. For example,
the amount of phosphorylated MKK4 (Ser257/Thr261) in THP-1
cells was twofold lower compared to the amounts in the other two
cell lines when uncorrected for volume biases; after the correc-
tion, the amounts were nearly identical in each of the cell lines
(Fig. 2a). After cell-volume correction, the coefficients of variation
of the measured markers were reduced, indicating that our
method corrected for cell-volume-dependent variations (Fig. 2a,
bottom).

We next analyzed the cell-cycle evolution of different
phosphorylation markers in response to TNFα stimulation. This
analysis exposed cell-cycle-specific phosphorylation responses to
stimulation. For example, in THP-1 cells, phosphorylation of p38
(Thr180/Tyr182) in response to TNFα stimulation was twofold
stronger in G2/M phases compared to G0/G1 phase (Fig. 2b, left).
The cell-cycle dependency of p38 phosphorylation was confirmed
by flow cytometry analysis where a similar fold change across the
cell-cycle phases was observed (Supplementary Fig. 12). It was
reported previously that TNFα induces histone H3

phosphorylation that peaks at 30 min post-stimulation; this
contributes to chromatin remodeling and enhances accessibility
of DNA to transcriptional factor NFκB37. Analysis of the TNFα-
stimulated THP-1 data using CellCycleTRACER revealed that
this effect was cell-cycle dependent, as levels of phosphorylated
histone H3 (Ser28) in the build up to the S phase were twice as
high as in early G0/G1 or G2 phases of the cell cycle (Fig. 2b,
right). The application of CellCycleTRACER aligned the
trajectories and removed the bias introduced by the cell-cycle
stage (Supplementary Fig. 13).

We next assessed the performance of CellCycleTRACER by
comparing data before and after cell-volume and cell-cycle
correction. First, Pearson correlation, Spearman correlation, and
DREMI (a mutual information based metric)15 were used to
quantify the relationship strength between measured markers in
the unstimulated THP-1 cell data. As expected, after cell-volume
and cell-cycle correction, Pearson correlation, Spearman correla-
tion, and DREMI values for two cell-volume markers,
ASCQ_102Ru and ASCQ_104Ru decreased significantly (Fig. 2c).
For the signaling relationship between p-PDK1 and p-AMPKα,
which is also affected by cell-cycle stage (Fig. 1a), Pearson
correlation, Spearman correlation, and DREMI values were
reduced from 0.88, 0.58, and 0.60 to 0.49, 0.34, and 0.34,
respectively, upon application of CellCycleTRACER (Fig. 2c).
Importantly, CellCycleTRACER correction had a smaller
effect on the known direct signaling relationship of p-ERK
(Thr202/p-Tyr-204) to p-p90RSK (Ser380), with a Pearson
correlation slightly reduced from 0.77 to 0.69, Spearman
correlation reduced from 0.75 to 0.67, and DREMI value
reduced from 0.55 to 0.45 upon CellCycleTRACER application
indicating that our method preserves real signaling relationships
(Fig. 2c).

Second, we quantified the extent of cell-cycle-induced bias
removed by CellCycleTRACER using an approach based on
principal component analysis on a mixture of unstimulated (t = 0)
and stimulated (t = 15 min) THP-1 cells (Fig. 2d). Specifically,
after estimating the principal components of the data before and
after cell-cycle correction, we fitted a linear model of the principal
components on the cell-cycle-state index (i.e., G1, S, G2, and M
phase) and the stimulation state and computed the variance
explained by the fit (R2) in all cases. Before correction, a large
percentage of the variance in the first principal component was
explained by the cell-cycle state; the effect was virtually
eliminated by cell-cycle correction using CellCycleTRACER
(Fig. 2d, left). Conversely, when the cell-cycle effect was
eliminated, the increase of R2 for components 2 and 3 indicates
that a larger percentage of the variance in the data was explained
by the stimulation.

Third, we used CellCycleTRACER to assess the impact of
correction on signaling network reconstruction with DREMI.
Pairwise DREMI analysis on unstimulated THP-1 cells indicated
that before cell-volume and cell-cycle corrections, phosphoryla-
tion sites known to be elevated in the M phase, such as Ser529 on
NFκB, Thr172 on AMPKα, Thr334 on MAPKAPK2, and Ser241
on PDK1, were clustered together (Fig. 2e, left). After
CellCycleTRACER was used to correct for heterogeneity in cell
volume and cell cycle, DREMI scores were reduced in general, but
a clear pattern consistent with MAPK/ERK and the AKT pathway
activation appeared (Fig. 2e, right). Without correction for cell-
volume and cell-cycle effects, signaling networks reconstructed
with the top 10 signaling relationships as identified with DREMI
in unstimulated THP-1 cells did not agree completely with
commonly accepted signaling knowledge (Fig. 2f, left), whereas
with the correction canonical relationships were seen (Fig. 2f,
right)38–40. Thus, pre-processing to correct mass cytometry data
for cell-volume and cell-cycle heterogeneity is necessary for
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accurate analyses of correlation and variance, mutual
information-based signaling relationship analysis (performed
here with DREMI), and signaling network reconstruction.

Finally, we assessed how the cell-volume and cell-cycle
corrections performed with CellCycleTRACER influenced the

dimensionality reduction of a heterogeneous population of single
cells with tSNE. Before the correction, the cell cycle confounded
the separation of the cells in the tSNE plot (Fig. 2g, left),
obscuring the cell line identities of the individual cells. The M
phase cells from all analyzed cell lines were clustered, whereas
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cells from all other cell-cycle phases were mixed, and MDA-MB-
231 cells were separated into three clusters. After cell-cycle
correction, three clusters corresponding to the three different cell
lines were observed in the tSNE plot, and the cell-cycle origin of
each cell in each cluster appeared random (Fig. 2g, right).

Discussion
In summary, cell volume and cell cycle can confound downstream
mass cytometry data analysis. The presented experimental and
computational approach, which we call CellCycleTRACER, cor-
rects for the influences of volume and cell-cycle phase on mass
cytometry data. CellCycleTRACER is a supervised manifold
learning method that, in contrast to existing methods, exploits the
cell-cycle phase labels to guarantee that the known ordering will
be preserved in inferred embedding. With CellCycleTRACER we
provide the mass cytometry community with a method for
supervised comprehensive analysis of cellular transitions. We
expect that use of CellCycleTRACER will be particularly impor-
tant when highly heterogeneous cell populations with deregulated
cellular processes, as typically found in tumors, are analyzed.

Methods
Cell culture. HEK293T, MDA-MB-231, and THP-1 cells were obtained from
ATCC. HEK293T cells were cultured in Dulbecco's Modified Eagle's Medium
(DMEM, D5671, Sigma) supplemented with 10% fetal bovine serum (FBS), 2 mM

L-glutamine, 100 U/ml penicillin, and 100 µg/ml streptomycin. MDA-MB-231 and
THP-1 cells were cultured in Leibovitz’s L-15 Medium (11415064, Gibco) and
RPMI-1640 Medium (52400025, Gibco), respectively, both supplemented with 10%
FBS, 100 U/ml penicillin, and 100 µg/ml streptomycin. For passaging or harvesting,
HEK293T and MDA-MB-231 cells were first detached by incubating with 1X
TrypLE™ Express (Life Technologies) for 2 min at 37 °C.

TNFα stimulation. HEK293T, MDA-MB-231, and THP-1 cells were seeded in six-
well plates at densities of 0.7 million cells, 0.5 million cells, and 1 million cells per
well, respectively. After 2 days, cells were stimulated with TNFα (R&D Systems) at
10 ng/ml. Aliquots were collected for analysis at 0, 5, 10, 15, 30, and 60 min
(stimulation was performed in reverse order to enable simultaneous harvesting of
all conditions). At 20 min before harvesting, IdU was added to the medium at the
final concentration of 10 μM. At 2 min before harvesting HEK293T and MDA-MB-
231 media were replaced with 1X TrypLE to induce detachment. At the time of
harvest, paraformaldehyde (PFA, Electron Microscopy Sciences) was added to the
cell suspension at a final percentage of 1.6%, and samples were incubated at room
temperature for 10 min. Crosslinked cells were washed twice with cell staining
media (CSM, PBS with 0.5% BSA, 0.02% NaN3). After removal of supernatant, ice-
cold methanol was used to resuspend the cells, followed by a 10 min permeabili-
zation on ice or long-term storage at −80 °C.

Immunofluorescence and three-dimensional reconstruction. CultureWell™
chambered coverglass wells (16-well, Thermo Fisher Scientific) were pre-coated by
incubation with 10 μg/ml bovine plasma fibronectin (Thermo Fisher Scientific) at
37 °C for 1 h. MDA-MB-231 cells were then seeded at a density of 1500 cells per
well. On the second day, 4% PFA was used to crosslink the cells at room tem-
perature for 20 min. The slide was then washed with PBST (0.5% Tween 20 in PBS)
three times, and cells were subsequently permeabilized for 5 min with 0.1%
TritonX-100 (diluted in PBS) at room temperature. After washing with PBST three

times, cells were incubated in blocking buffer (10% goat serum diluted in PBST) for
30 min at room temperature. Primary antibody (anti-GAPDH, 6C5, Thermo Fisher
Scientific, 1 μg/ml; anti-Rab7, D95F2, Cell Signaling Technology, 1:100; or anti-β-
actin, D6A8, Cell Signaling Technology, 1:200) was added, and slides were incu-
bated overnight at 4 °C. Secondary antibody (goat anti-mouse Alexa Fluor® 488,
1:200 or goat anti-rabbit Alexa Fluor® 555, 1:200), supplemented with Hoechst
33342 at a final concentration of 100 μg/ml, was applied, and slides were incubated
for 1 h at room temperature. Antibodies were diluted in the blocking buffer. Slides
were washed three times with PBST after each incubation step. For cell-volume
analyses, cells were stained for total proteins with Alexa Fluor® 647 NHS ester
(Thermo Fisher Scientific) for 10 min at a final concentration of 1 μg/ml. Slides
were then mounted with ProLong Gold Antifade Reagent (Life Technologies)
before imaging with a CLSM Leica SP5 microscope. Stacks were imaged every 0.5
μm, and the three-dimensional reconstruction and quantification of the total cell
volume was performed with Imaris 7.7.2.

Antibody conjugation. Isotope-labeled antibodies were generated with MaxPAR
antibody conjugation kit (Fluidigm) using the manufacturer’s standard protocol.
The antibody yield was determined based on absorbance of 280 nm. Candor PBS
antibody stabilization solution (Candor Bioscience GmbH) was used to dilute
antibodies for long-term storage at 4 °C.

Barcoding and staining protocol. Formalin-crosslinked and methanol-
permeabilized cells were washed three times with CSM and once with PBS. Cells
were incubated in PBS containing barcoding reagents (105Pd, 106Pd, 108Pd, 110Pd,
113In, 115In, and 139La) at a final concentration of 50 nM for 30 min at room
temperature and then were washed three times with CSM16. Barcoded cells were
pooled and stained with the metal-conjugated antibody mix (Supplementary
Table 1) at room temperature for 1 h. The antibody mix was removed by washing
cells three times with CSM and once with PBS. For DNA staining, iridium-
containing intercalator (Fluidigm) was diluted in PBS with 1.6% PFA and incu-
bated with the cells at 4 °C overnight. On the day before measurement, the
intercalator solution was removed, and cells were washed with CSM, PBS, and
doubly distilled H2O sequentially. Total protein staining was performed with 25 μg/
ml ASCQ_Ru (96631, Sigma) in 0.1 M NaHCO3 solution for 10 min at room
temperature. Cells were then washed with CSM, PBS, and doubly distilled H2O
sequentially. After the last wash, cells were resuspended in doubly distilled H2O
and filtered through a 70 μm strainer.

Mass cytometry analysis. EQTM Four Element Calibration Beads (Fluidigm) were
added to the cell suspension at a 1:10 ratio (v/v). Samples were analyzed on a
Helios mass cytometer (Fluidigm). The manufacturer’s standard operation pro-
cedures were used for acquisition at a rate of ~200 cells per second. After data
acquisition, all .fcs files from the same barcoded sample were concatenated. Data
were then normalized, and bead events were removed41. Doublets were removed,
and cells were de-barcoded into their corresponding wells using a doublet-filtering
scheme and single-cell deconvolution algorithm42. Subsequently, data were pro-
cessed using Cytobank (http://www.cytobank.org/). Additional gating on the DNA
channels (191Ir and 193Ir) was used to remove remained doublets, debris, and
contaminating particulates. Manual gating was performed on IdU, cyclin B1,
p-HH3, and p-RB to identify cell-cycle stages32.

CellCycleTRACER workflow. CellCycleTRACER requires as an input measure-
ments of the four cell-cycle markers (namely p-HH3, p-RB, cyclin B1, and IdU) as
well as measurements of cell volume, ideally using the ASCQ_Ru markers.

Data processing and cell-volume correction. To determine cell volume at a
single cell level, we initially experimented with three housekeeping proteins,
namely GAPDH, actin, and RAB7 in HEK293T, MDA-MB-231, and THP-1 cells.

Fig. 2 CellCycleTRACER corrects for cell-volume and cell-cycle heterogeneity enabling unbiased data visualization and downstream analysis. a Overlaid
histograms reveal differential data observations before and after cell-volume correction. Bar charts show that cell-volume correction also reduces intra-
sample variation as coefficients of variation of measured markers decrease. b Abundance of p-p38 (Thr180/Tyr182) and p-HH3 (Ser28) plotted on the
cell-cycle pseudotime based on data from TNFα-stimulated THP-1 cells. Stimulation time points are indicated by different colors. c Biaxial plots show
signaling relationships between measured markers before and after cell-volume and cell-cycle correction. Relationship strengths quantified by Pearson
correlation, Spearman correlation, and DREMI are indicated in the corresponding barplots. d Principal component analysis of data originating from a mixed
population of unstimulated (t= 0min) and stimulated (t= 15 min) THP-1 cells. After computing the principal components of the data before and after cell-
cycle correction, the variances explained by fitting a linear model of the principal components on the cell-cycle state index (left) and the stimulation state
(right) were estimated, indicating removal of cell-cycle confounding effects. e Clustergrams of pairwise DREMI analyses of unstimulated THP-1 cells before
and after cell-volume and cell-cycle corrections. After the removal of cell-volume and cell-cycle variability, DREMI scores of non-interactive pairs are
reduced, and AKT and MAPK/ERK signaling pathways become apparent. f Network reconstruction using the top 10 DREMI scorers in unstimulated THP-1
cells before and after cell-volume and cell-cycle corrections. Network reconstructed after correction recapitulates key regulatory interactions in the AKT
and MAPK/ERK pathways. g tSNE maps of THP-1, MDA-MB-231, and HEK293T cell lines before and after cell-volume and cell-cycle correction. Cell-cycle
and cell-volume markers were not included in the tSNE analysis
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Although all three proteins highly correlate with the total cell volume
(Supplementary Fig. 14), single-cell measurements from a mixed population of
three different cell lines revealed a large degree of cell-line-specific variability that
surprisingly involved these housekeeping proteins (Supplementary Fig. 15). This
indicated that these housekeeping proteins cannot be used for cell-volume cor-
rection when heterogeneous populations are analyzed.

ASCQ_Ru (Supplementary Fig. 3a) is conventionally used in electrophoresis for
the determination of protein abundance and has been reported to outperform other
staining reagents with high sensitivity and large linear dynamic range of protein
binding. Taking advantage of its additional fluorescent property, we validated
ASCQ_Ru as a precise cell volume indicator using three-dimensional
reconstruction of confocal images (Supplementary Fig. 3b−d)). Measurements
across the three cell lines showed reduced cell line variability in comparison to
housekeeping protein measurements (Supplementary Fig. 16).

CellCycleTRACER corrects the data (uploaded as.fcs files) on ASCQ_Ru to
enable correction for cell-volume heterogeneity. Let j ¼ 1; ¼ ;m be the quantified
protein marker in the i ¼ 1; ¼ ; n single cell. Let yi;j denote the abundance of
marker j in cell i in raw experimental data. At the same time, let v ¼ 1; ¼ ; l denote
the subset of the protein markers vf g � jf gð Þ that contain information on the total
cell volume—in our case the ASCQ_Ru markers. During the cell-volume
correction step, CellCycleTRACER first normalizes the raw cell-volume
measurements yi;v by dividing each marker by its mean value:

ynormi;v ¼ yi;v
1
n

Pn
i¼1 yi;v

:

The raw measurements of all j ¼ 1; ¼ ;m markers are then corrected for cell-
volume variations by dividing yi;j by the mean value of ynormi;v :

ycorri;j ¼ yi;j
1
l

Pl
v¼1 y

norm
i;v

: ð1Þ

Results of this process are shown in Supplementary Fig. 17. Comparison of
measurements of the phosphorylated vs. total amount of proteins MEK1/2 and
ERK1/2 before and after cell-volume correction indicated that the correction
process was equally effective for both activated and total amounts of proteins
(Supplementary Fig. 18). To avoid dividing by zero, CellCycleTRACER checks the
data for zero values and, if found, substitutes zeros with the respective mean value.
For more details on volume correction see Supplementary Note 2.

After cell-volume correction, selected channels of the raw measurements are
transformed using the inverse hyperbolic sine function (asinh):

ytransi;j ¼ asinh ycorri;j

� �
¼ ln

ycorri;j

c
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ycorri;j

c

� �2

þ1

s0

@

1

A; ð2Þ

where the constant c, commonly referred to as the cofactor, is set to 5 according to
the CyTOF community’s standard practice. Unlike the standard logarithmic
function that is undetermined at zero values, asinh is linear around zero and
becomes logarithmic beyond a threshold determined by the cofactor value. The
overall effect of this transformation is to selectively compress large values,
eliminating the typical long tails found in raw cytometry measurements. This
results in a more symmetrical distribution that facilitates clustering and other
machine learning analyses.

Cell-cycle phase prediction. After the volume correction, CellCycleTRACER
classifies the single cells into discrete cell-cycle phases. To achieve this, we exploit the
measurements of the four above-mentioned cell-cycle markers (IdU, p-HH3, cyclin
B1, and p-RB) that are typically used in mass cytometry for manual cell-cycle gating.
To eliminate possible biases introduced by variations in antibody concentrations and
affinities, the data are standardized and set to have zero mean and unit variance. The
prediction process is based on a hybrid approach that consists of two steps: (i) a
classification step in which single-cell measurements of the four cell-cycle markers
are given as input into a decision tree classifier to automatically predict the cell-cycle
phase and (ii) a clustering step in which a Gaussian mixture model (GMM) is used to
fit the data into clusters that represent the cell-cycle phases. The GMM is initialized
using the predictions of the decision tree as prior knowledge.

Detailed descriptions of the implementation and performance on different data
sets are given in Supplementary Note 3. In brief, we first used the four cell-cycle
marker measurements from an experiment using THP-1 cells together with their
class labels derived by manual gating (Supplementary Fig. 5a) to train a decision
tree classifier. The resulting decision tree and the class proportions at the terminal
nodes are shown in Supplementary Fig. 5b. We observed four pure terminal nodes,
equal to the number of classes, indicating 100% classification accuracy in the
training set. The order of the splits was identical to the order in the classification
performed manually, indicating that the model faithfully captures the manual
gating process. The decision tree accuracy in the independent test set was also
100%, meaning that all cells were correctly classified. After classification
performance was validated, new experimental measurements were given as inputs

and were automatically classified. The results on a HEK293T test set are shown in
Supplementary Fig. 7a.

Second, the measurements were clustered using a GMM where the
number of components was set to four, equal to the number of cell-cycle phases in
our model. The parameters of the GMMs (mean vectors, covariance matrices,
and class proportions) were initialized using the decision tree predictions and
iteratively refined until convergence using an expectation-maximization (EM)
algorithm (Supplementary Fig. 6). After convergence, posterior probabilities of
each of the four GMM components were computed, and the single cells were
assigned to the component with the maximal posterior (results in Supplementary
Fig. 7b).

This hybrid approach combines the intrinsic interpretability of decision trees,
which enable extraction of a set of comprehensive if−else rules from the training
data, with the probabilistic capabilities of the GMM framework. Specifically, decision
trees are ideal for partitioning of a space using training data as prior knowledge, but
they lack the notion of distribution and suffer from rigid boundaries. Since mass
cytometry data are produced from different cell lines and possibly on different days,
these data exhibit inter-experimental variability that makes the algorithm prone to
misclassifying the points at the tails of the distribution. GMMs, on the other hand,
allow flexible treatment of outliers. Shortcomings of GMMs—and other
unsupervised clustering methods—are an inability to match the clusters to the
known labels and no guarantee of convergence to the optimal solution. These
limitations are especially acute when the classes are significantly imbalanced, as in
the case of cell-cycle fractions which differ by an order of magnitude (e.g., G0/G1:
40–60%; M phase: 3–5% of the total cell population). By combining decision tree and
GMM approaches we benefit from the advantages of decision trees to provide an
initial guess close to the optimal solution and of GMMs to allow for a probabilistic
interpretation of the class assignments. This refinement translates into better
assignments for outliers and captures the classification uncertainty of cells
transitioning between phases, a subtlety that is entirely missed by the decision tree.

Trajectory reconstruction, alignment, and correction. Cells progress along the
cell cycle in a continuous way, gradually transitioning across consecutive phases
whose boundaries are not always clearly defined, and exhibiting intra-phase
variability (e.g., cells at early S and late S are drastically different). To better
represent these pseudo-temporal fluctuations, we devised a method that
reconstructs trajectories of biological cell-cycle time (pseudotime) from a
population of unsynchronized single cells, ordering them according to cell-cycle
progression. The details of the reconstruction method are given in Supplementary
Note 4.

We assume that n single cells are classified in four cell-cycle phases. Let yi
denote a four-dimensional vector of cell-cycle marker abundances in each cell. We
seek to construct a one-dimensional embedding function of the four-dimensional
vectorsyi, denoted as fα yð Þ, that represents pseudotime. One possible choice is to
define faðyÞ as a linear combination of yi :

fα yið Þ ¼
X4

j¼1

αjyi;j;

where the coefficients αj take values in R4
�0. Under this formulation, our problem

reduces to identifying a vector of coefficients α ¼ α1 α2 α3 α4ð Þ that optimally maps
the cell-cycle marker measurements to pseudotime. Since the ordering of the
discrete classes is known a priori (G1→S→G2→M), we follow an optimization
process that aims to guarantee this ordering in the desired embedding by
minimizing the difference across cells that belong to adjacent classes (see also
Supplementary Fig. 8). More specifically, for all cells ip; iq belonging to adjacent
classes p,q, we estimate α such that fα yip

� �
<fα yiq

� �
, a constraint that translates into

preserving the ordering in the embedding.
Collapsing the four-dimensional measurements into a lower-dimensional space

may not result in fully separated clusters, with the implication that the ordering
constraints might not be satisfied for all cells. To tackle this problem, we
introduced slack variables into all constraints; these non-negative variables
represent a degree of violation of the ordering constraint. We then minimize over a
weighted sum of all slack variables, which leads to a mathematically well posed
linear programming (LP) problem. Even though degenerate LPs can have multiple
equivalent optima (convex set of optimal solutions), due to the presence of
extrinsic and intrinsic variability in CyTOF data this does not occur in practice.
Thus, the LP results in a single, optimal ordering. Since the solution time of the
resulting LP grows substantially with the number of cells (Supplementary Fig. 19a)
and can thus be computationally intensive, we randomly picked a fixed percentage
of cells from each class and computed an optimal set of weights. A numerical
investigation (Supplementary Fig. 19b) indicated that the solution of the LP, which
yields the values of parameters α, is robust to the sampling of cells even when a
small percentage of cells is considered.

Once the values of parameters α are estimated, CellCycleTRACER visualizes the
results by ordering the single cells based on their pseudotime values, resulting in
single-cell trajectories for each marker. Additionally, CellCycleTRACER computes
the mean trajectory of each marker by applying a mean filter on the single-cell
trajectory, where the value for each cell is replaced by the mean of the neighboring
cells in a sliding window of fixed size. Since different samples (e.g., different cell
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lines) can exhibit strong variations in the relative duration of the cell-cycle phases,
CellCycleTRACER permits multi-sample analysis by either aligning the relative
cell-cycle phase proportions across individual samples to the mean vector of cell-
cycle phase proportions or, alternatively, aligning them to one sample (e.g., one cell
line) of interest (Fig. 1f, Supplementary Note 5). To remove the effect of the cell
cycle on the marker measurements, CellCycleTRACER exploits the
abovementioned mean trajectory, rescales it around 1 by dividing by the mean
abundance of the marker and then divides the single-cell trajectory by the rescaled
mean. This step removes cell-cycle-specific fluctuations and redistributes the single
cells independently of cell-cycle variation (Fig. 1g, Supplementary Note 6). After
every step of the analysis (e.g., cell-cycle classification, correction, alignment), data
can be exported as .fcs files for further analysis.

Implementation. All methods were implemented using the Statistical and Opti-
mization Toolboxes of MATLAB R2011b.

Software availability. CellCycleTRACER is implemented as a web application,
accessible using the following link: https://www.zurich.ibm.com/compsysbio/
publications.html.

Data availability. CyTOF data for the three cell lines at all stimulation time-points
are available on Cytobank under project 1129.
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