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Abstract
Hypoxia inducible factors, including HIF1A and HIF2A, play central roles in response to

high-altitude hypoxia and genetic variants of HIF1A or HIF2A were associated with high-alti-

tude sickness or adaptation. However, it remains to determine whether they are associated

with tolerance to different levels of high-altitude selection pressure among native Tibetans.

We recruited 189 Tibetan subjects living at 2,700 meters (Low level of high altitude, LHA),

197 at 3,200 meters (Middle level of high altitude of high altitude, MHA), 249 at 3,700 meters

(High level of high altitude, HHA) and 269 at 4,700 meters (Very high level of high altitude,

VHA) and performed association analysis of twelve tSNPs (tagging SNPs) in HIF1A and

HIF2A with high-altitude. We found (1) a increasing trend of HIF2A rs5621780-C(18.4%,

15.9%, 32.8% and 31.1%, respectively, in LHA, MHA, HHA and VHA)(P = 3.56E-9); (2)

increasing trends of HIF2A rs6756667-A(68.7%, 73.4%, 79.9% and 89.6%), rs7589621-

G(74.6%, 77.9%, 83.7%, and 92.1%) and rs1868092-A(64.1%, 67.3%, 75.1% and 84.4%)

(P = 3.56E-9, 4.68E-16, 1.17E-13 and 7.09E-14, respectively); (3) a increasing trend of

haplotype AG (68.7%, 73.1%, 79.9% and 89.6%) (P = 2.22E-7) which was constructed

by rs6756667 and rs7589621; (4) a strong linear correlation between major alleles of

rs6756667-A (R2 = 0.997, P = 0.002), rs7589621-G (R2 = 0.994, P = 0.003), rs1868092-A

(R2 = 0.985, P = 0.008) and altitude by linear correlation test. The associations between

HIF2A variants and different level of high altitude support that extremely high-altitude hyp-

oxia challenge imposes selective effects on HIF2A variants among native Tibetans.
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Introduction
Hypobaric hypoxia is a major geographic feature of high-altitude regions [1]. In high-altitude
environment, the decreased oxygen availability exerts a harsh survival challenge for human
beings [2]. This introduces the concept of high-altitude adaptation of irreversible long-term
physical responses to high-altitude environment associated with heritable behavior and genetic
changes. Tibetan is one of the major high-altitude dwellers. Since modern Tibetans immigrated
to the Qinghai-Tibet Plateau as early as Neolithic age [3, 4], long-term persistent and ongoing
selection has altered their genetic constitutions [5], which led to their phenotypic adaptation to
high-altitude hypoxia environment [6–9]. Unlike some other high-altitude populations [10],
Tibetans are less influenced by migrants and exotic cultures [11, 12]. They also have a relatively
uniform lifestyle and occupation [12]. Tibetan is an ideal population to understand the biologi-
cal adaptation of human beings to high-altitude environment.

Previous studies had shown that highlanders exhibited improved survival to high altitude
compared with lowlanders [13, 14]. Genetic evidences had been discovered to contribute to the
tolerance [15–17]. More recently, genome-wide (GW) studies, including ours, identified strong
signals of selective sweep in two hypoxia-related genes, HIF2A (also known as EPAS1) and
EGLN1 [18–25]. Compared with the non-Tibetan lowlanders, Tibetans showed highly-differ-
entiated allelic and haplotypic signals inHIF2A and EGLN1, suggesting that during the long-
term occupation of high-altitude areas, the functional sequence variations for acquiring biolog-
ical adaptation to high-altitude hypoxia have been enriched in Tibetan populations [5]. In
addition, a higher frequency of endothelial nitric oxide synthase (ENOS) gene homozygotes
(GG and BB) was found associated with a higher altitude and elevated level of plasma nitric
oxide [26]. However, the relationships between genetic variants and different levels of high
altitude among the same ethnic group were poorly understood. Moore L.G. et al. [27] com-
pared the frequency of myoglobin (MB) gene A79G and T109C polymorphisms among Tibet-
ans living at altitudes of 3,000, 3,700 and 4,500 meters and to lowlanders. They found higher
frequency of theMB 79A allele in highland Tibetans than in lowlanders, while unchanged with
increasing altitude from 3,000–4,500 meters among native Tibetans. Moore’s work inspired us
to continue searching for genetic variants in other hypoxia-related genes that were involved in
the processes of adaptations in Tibetans living in altitudes ranging from 2,700 meters to 4,700
meters.

Hypoxia inducible factors (HIFs) are transcription factors that directly or indirectly regulate
hundreds of genes involving in angiogenesis, cell growth, apoptosis, energy metabolism and
vasomotor regulation [28, 29]. HIFs comprise α subunit (HIF1A, HIF2A or HIF3A) and a con-
stitutively expressed β subunit [30, 31]. Among them, HIF1A and HIF2A play central roles in
response to hypoxia [32–34]. Genetic variants ofHIF1A orHIF2A were found associated with
high-altitude adaptation [24, 32], high-altitude sickness [35, 36] or tumor hypoxia [37]. Con-
sidering the roles of HIF1A andHIF2A variants in high-altitude physiological and pathological
process, here we aim to test the hypothesis that specific polymorphisms ofHIF1A orHIF2A
genes might be associated with either tolerance to different levels of high-altitude selection
pressure or physiological traits among native Tibetans.

Methods

Study subjects
The study included 904 healthy native Tibetans with DNA sample and demographic data.
Among them, 189 subjects were recruited from Bomi County (95°75E/ 29°920N, 2,700 meters
high), 197 from Qamdo County (97°170E/ 31°140N, 3,200 meters high), 249 from Lhasa City
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(91°110E/ 29°970N, 3,700 meters high), and 269 from Amdo County (91°680E/ 32°290N, 4,700
meters high). The subjects were classified into four groups according to their living altitude:
low level of high altitude group (group LHA) for Bomi subjects, middle level of high altitude
group (group MHA) for Qamdo subjects, and high level of high altitude group (group HHA)
for Lhasa subjects and very high level of high altitude group (group VHA) for Amdo subjects.
About 45% of the subjects were male. Their age varied from 14 to 25 (Table 1). All subjects
were fully ethnically Tibetan for at least three preceding generations. None of the subjects had
known low-altitude progenitors.

Ethics statements
Written informed consent was obtained from each participant and their guardians of 18 years
old. All protocols were approved by the Human Ethics Committee of School of Life Sciences of
Fudan University.

Phenotypic measurements
All subjects were examined by field workers expertizing on high-altitude adaptation research.
Body weight (kg) and height (m) were measured to calculate body mass index (BMI, kg/ m2,
the body weight in kilograms divided by the square of height in meters). Blood specimens were
drawn after overnight fasting for complete blood count measurement by SYSME pocH-100i.
The blood count parameters included red blood cell count (RBC, ×1012/L), hemoglobin (HB,
g/L) and hematocrit (HCT, %). Left ventricular ejection fraction (LVEF, %) was measured by
Acuson CA94043 (USA). The detailed characteristics were shown in Table 1.

Selection of tagging SNPs
Haplotype-tagging SNPs (tSNPs) of HIF1A and HIF2A were selected using the Chinese Han
sample in Bejing, China, available at public data released on the International HapMap Data
Phase III/ Rel #3, May 10, on NCBI B36 assembly, dbSNP b126 (http://hapmap.ncbi.nlm.nih.
gov/cgi-perl/gbrowse/hapmap3r3_B36/). To identify common haplotype tSNPs, eligible SNPs
were entered into the tagger program that had been implemented in Haploview version
4.2 [38]. We defined common variants as those with a heterozygosity of>5% and set a thresh-
old of 0.8 for the linkage disequilibrium (LD) measure r2). Finally, seven tSNPs (rs2301104,
rs12434438, rs966824, rs2301112, rs2301113, rs11549465 and rs11549467) in HIF1A capturing
20 SNPs and five tSNPs (rs56721780, rs6756667, rs7589621, rs59901247 and rs1868092) in

Table 1. Clinical characteristics of the studied groups.

Bomi Qamdo Lhasa Amdo Total

N 189 197 249 269 904

Female (%) 54.5 55.3 75.9 33.8 54.4

Age (years) 18.7±1.4a 19.9±2.6 21.1±1.9 18.2±1.3 19.5±2.1

BMI (kg/m2) 20.1±1.9 21.5±2.1 20.3±2.1 19.6±1.9 20.3±2.1

RBC(×1012/L) 5.00±0.60 5.10±0.62 4.96±0.57 5.82±0.74 5.25±0.74

HB(g/L) 140.84±20.92 148.08±20.90 144.17±20.60 169.28±22.18 151.76±24.15

HCT(%) 42.24±5.19 43.44±5.42 43.27±5.32 48.80±6.05 44.73±6.14

LVEF(%) 77.25±2.92 75.09±3.58 75.69±5.26 72.40±3.67 61.00±4.38

Abbreviations: BMI, body mass index; RBC, red blood cell count, RBC; HB, hemoglobin; HCT, hematocrit; LVEF, left ventricular ejection fraction.
a Data are means ± SD.

doi:10.1371/journal.pone.0137956.t001

HIF2A Variants and Levels of High-Altitude

PLOS ONE | DOI:10.1371/journal.pone.0137956 September 14, 2015 3 / 13

http://hapmap.ncbi.nlm.nih.gov/cgi-perl/gbrowse/hapmap3r3_B36/
http://hapmap.ncbi.nlm.nih.gov/cgi-perl/gbrowse/hapmap3r3_B36/


HIF2A capturing 96 SNPs were selected. The chromosome position, gene position, potential
function significance and major/ minor allele of the selected tSNPs were summarized in
Table 2.

Genotyping
Laboratory personnel were blinded to clinical status. Blood of the subjects was taken into
EDTA-containing receptacles and genomic DNA was extracted using a standard phenol-chlo-
roform method. Genotyping of the selected 12 tSNPs was conducted using Taqman assays
(Applied Biosystems, Foster City). Sample DNA (10 ng) was amplified by PCR following the
recommendations of the manufacturer. Fluorescence was detected using an ABI 7900HT and
the alleles were scored using Sequence Detection Software (Applied Biosystems, Foster City).
The concordance rate of duplicate samples was above 99%. Sequencing was implemented to
test the validity of genotyping.

Statistical analysis
Descriptive statistics for continuous variables were summarized as mean ± standard deviation.
The deviation from Hardy-Weinberg expectation was tested by a chi-square statistic on SPSS
software version 19.0. Genotype and allele frequencies were established by genotype/allele
counting. Linear-by-linear association was evaluated by two-way contingency tables using
SPSS 19.0 or, if an expected value was less than five, by Fisher’s exact test (by R software with
the package “stats”). Physiological traits were analyzed by one-way ANOVA (analysis of vari-
ance) and GLM (general liner model), in which phenotype acted as the corresponding vari-
ables, and genotype as the grouping variable. To construct related haplotype, genotype data
were used to estimate inter-marker LD, measure pair-wise D’ and r2 and define LD blocks.
Haplotypes were inferred using PHASE [39] software. Haplotype association tests were esti-
mated using the Haploview version 4.2 [38]. Haplotypes within each LD block were tested for
association with altitude with 10,000 times of permutation. The traditional Bonferroni correc-
tion was used to exclude false positive results due to multiple testing. Linear correlations of
allele frequencies of genetic variants with altitude were conducted by SPSS 19.0.

Table 2. Characteristics of the studied tSNPs a.

Gene dbSNP ID Chr Position Allele Category Function Call rate

HIF1A rs2301104 14 62165028 G/C Intron 1 / 99.78%

rs12434438 14 62197298 A/G Intron 6 / 99.66%

rs966824 14 62200518 C/T Intron 7 / 99.78%

rs2301112 14 62206173 A/C Intron 10 / 99.10%

rs2301113 14 62206548 A/C Intron 10 / 99.78%

rs11549465 14 62207557 C/T Exon 12 P582S 99.89%

rs11549467 14 62207575 G/A Exon 12 A588T 99.78%

HIF2A rs56721780 2 46523655 G/C 5’-Up / 98.67%

rs6756667 2 46579409 A/G Intron 2 / 99.67%

rs7589621 2 46582382 G/A Intron 2 / 99.45%

rs59901247 2 46609572 A/C Exon 15 T766P 99.89%

rs1868092 2 46614202 A/G 3’-Down / 99.23%

Abbreviations: Chr: Chromosome.
a From dbSNP (release 137).

doi:10.1371/journal.pone.0137956.t002
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Results

Preliminary result
The call rates of the 12 genotyped tSNPs were listed in Table 2. All tSNPs were consistent with
Hardy-Weinberg expectations. Genotypes of 1% of the samples were confirmed by sequencing
and were found to be 100% concordant. The minor allele frequencies (MAF) of the genotyped
tSNPs ranged from 0.5% to 39.0%. The genotype and allele frequencies of the 12 tSNPs were
listed in Tables 3 and 4. Since minor homozygotes rates of rs2301104, rs2301112, rs11549465,
rs11549467 and rs59901247 were only 0–0.7%, the associations of them with altitudes were
conducted by combining rare homozygotes with heterozygote of the tSNPs.

Table 3. Association analysis betweenHIF1A tSNPs and levels of high altitude among native Tibetans.

SNP Genotype/Allele Level of high altitude P-valueb

Bomi Qamdo Lhasa Amdo Additive Dominant Allelic

rs2301104 GG 176(94.6%) 182(96.3%) 236(95.5%) 262(98.1%) 0.078a 0.078 0.080

CG 10(5.4%) 7(3.7%) 11(4.5%) 5(1.9%)

CC 0(0.0%) 0(0.0%) 0(0.0%) 0(0.0%)

C 10(2.7%) 7(1.9%) 11(2.3%) 5(0.9%)

rs12434438 AA 88(47.6%) 98(51.9%) 129(52.4%) 147(54.8%) 0.042 0.141 0.038

AG 77(41.6%) 71(37.6%) 94(38.2%) 106(39.6%)

GG 20(10.8%) 20(10.6%) 23(9.3%) 15(5.6%)

G 117(31.6%) 111(36.2%) 140(35.2%) 136(25.4%)

rs966824 CC 98(53.0%) 103(54.5%) 142(57.7%) 155(57.8%) 0.107 0.249 0.117

CT 76(41.1%) 74(39.2%) 91(36.8%) 106(39.6%)

TT 11(5.9%) 12(6.3%) 14(5.7%) 7(2.6%)

T 98(26.5%) 98(32.2%) 119(29.5%) 120(22.4%)

rs2301112 AA 174(95.1%) 175(93.6%) 235(95.5%) 254(95.1%) 0.739a 0.739 0.742

AC 9(4.9%) 12(6.4%) 11(4.5%) 13(4.9%)

CC 0(0.0%) 0(0.0%) 0(0.0%) 0(0.0%)

C 9(2.5%) 12(3.3%) 11(2.3%) 13(2.4%)

rs2301113 AA 62(33.3%) 62(32.8%) 96(39.0%) 115(42.9%) 0.032 0.014 0.037

AC 103(55.4%) 97(51.3%) 112(45.5%) 127(47.4%)

CC 21(11.3%) 30(15.9%) 38(15.4%) 26(9.7%)

C 145(39.0%) 157(55.9%) 188(49.5%) 179(33.4%)

rs11549465 CC 170(91.4%) 175(92.6%) 234(94.4%) 251(94.0%) 0.229a 0.222 0.222

CT 15(8.1%) 14(7.4%) 14(5.6%) 15(5.6%)

TT 1(0.5%) 0(0.0%) 0(0.0%) 1(0.4%)

T 17(4.6%) 14(3.8%) 14(2.9%) 17(3.2%)

rs11549467 GG 184(98.9%) 178(94.7%) 232(93.9%) 256(95.5%) 0.112a 0.112 0.116

GA 2(1.1%) 10(5.3%) 15(6.1%) 12(4.5%)

AA 0(0.0%) 0(0.0%) 0(0.0%) 0(0.0%)

A 2(0.5%) 10(2.7%) 15(3.1%) 12(2.2%)

Abbreviations: Additive, additive model; Dominant, dominant model.

P-values except the noted ones are calculated from χ2 test.
a P-values are calculated from Fisher exact test.
b Bold type denotes P<0.05.

doi:10.1371/journal.pone.0137956.t003
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Association between HIF2A tSNPs and levels of high altitude. Both genotype and allele
(Table 4) patterns distributed differently in LHA, MHA, HHA and VHA subjects. We detected
four HIF2A tSNPs (rs56721780, rs6756667, rs7589621 and rs1868092) significant associated
with level of high altitude among native Tibetans. The major allele of rs6756667, rs7589621
and rs1868092 was associated with a higher level of altitude. Moreover, the significance
remained after applying a Bonferroni correction for multiple testing and gender-wise compari-
son (Table A and B in S1 File).

For rs5621780, linear-by-linear association test revealed a significant increasing trend of
minor C allele frequency from LHA (18.4%), MHA (15.9%) and HHA (32.8%) to VHA
(31.1%) (P = 3.56E-9; adjusted P = 1.07E-8). For rs6756667, linear-by-linear association test
revealed a significant increasing trend of major A allele frequency from LHA (68.7%), MHA
(73.4%) and HHA (79.9%) to VHA (89.6%) (P = 4.68E-16; adjusted P = 5.62E-15). In addition,
the frequencies of major genotype AA (50.8%, 53.3%, 62.7% and 79.9%) also linearly increased
in LHA, MHA, HHA and VHA.

For rs7589621, linear-by-linear association test revealed a significant increasing trend of
major G allele frequency from LHA (74.6%), MHA (77.9%) and HHA (83.7%) to VHA
(92.1%) (P = 1.17E-13; adjusted P = 4.68E-12). In addition, the frequencies of major genotype
GG (57.7%, 60.4%, 69.4% and 84.5%) also linearly increased in LHA, MHA, HHA and VHA.
For rs1868092, linear-by-linear association test revealed a significant increasing trend of major

Table 4. Association analysis betweenHIF2A tSNPs and levels of high altitude among native Tibetans.

SNP Genotype/Allele Level of high altitude P-valueb

Bomi Qamdo Lhasa Amdo Additive Dominant Allelic

rs56721780 GG 124(66.0%) 132(68.8%) 110(44.5%) 126(47.5%) 3.06E-9a 1.53E-7 3.56E-9

CG 59(31.4%) 59(30.7%) 112(45.3%) 113(42.6%)

CC 5(2.7%) 1(0.5%) 25(10.1%) 26(9.8%)

C 69(18.4%) 61(15.9%) 162(32.8%) 165(31.1%)

rs6756667 AA 95(50.8%) 105(53.3%) 156(62.7%) 214(79.9%) 2.29E-15a 5.81E-12 4.68E-16

AG 67(35.8%) 79(40.1%) 86(34.5%) 52(19.4%)

GG 25(13.4%) 13(6.6%) 7(2.8%) 2(0.7%)

A 257(68.7%) 289(73.4%) 398(79.9%) 480(89.6%)

rs7589621 GG 109(57.7%) 119(60.4%) 172(69.4%) 224(84.5%) 3.41E-13a 2.96E-11 1.17E-13

AG 64(33.9%) 69(35.0%) 71(28.6%) 40(15.1%)

AA 16(8.5%) 9(4.6%) 5(2.0%) 1(0.4%)

G 282(74.6%) 307(77.9%) 415(83.7%) 488(92.1%)

rs59901247 AA 161(85.2%) 166(84.3%) 227(91.5%) 243(90.3%) 0.032a 0.020 0.033

AC 27(14.3%) 31(15.7%) 21(8.5%) 24(8.9%)

CC 1(0.5%) 0(0.0%) 0(0.0%) 2(0.7%)

A 349(92.3%) 363(92.1%) 475(95.8%) 510(94.8%)

rs1868092 AA 81(43.1%) 86(43.9%) 135(54.7%) 190(71.4%) 1.12E-13 3.54E-11 7.09E-14

AG 79(42.0%) 92(46.9%) 101(40.9%) 69(25.9%)

GG 28(14.9%) 18(9.2%) 11(4.5%) 7(2.6%)

A 241(64.1%) 264(67.3%) 371(75.1%) 449(84.4%)

Abbreviations: Additive, additive model; Dominant, dominant model.

P-values except the noted ones are calculated from χ2 test.
a P-values are calculated from Fisher exact test.
b Bold type denotes P<0.05.

doi:10.1371/journal.pone.0137956.t004
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A allele frequency from LHA (64.1%), MHA (67.3%) and HHA (75.1%) to VHA (84.4%)
(P = 7.09E-14; adjusted P = 4.25E-13). In addition, the frequencies of major genotype AA
(43.1%, 43.9%, 54.7% and 71.4%) also linearly increased in LHA, MHA, HHA and VHA.

Linear correlation analysis revealed that the major A allele of rs6756667 (R2 = 0.997,
P = 0.002), major G allele of rs7589621 (R2 = 0.994, P = 0.003) and major A allele of rs1868092
(R2 = 0.985, P = 0.008) were highly correlated with level of high altitude. The minor C allele of
rs5621780 (R2 = 0.593, P = 0.230) was in moderate correlation with level of high altitude.
(Fig 1)

LD analysis of the altitude-associated HIF2A tSNPs
Haplotype analysis revealed that rs6756667 was in moderate LD with rs7589621 (pair-wise r2 =
0.76) which are 2,973 bp apart (data not shown). A common haplotype AG defined by rs6756667
and rs758962 increased linearly in LHA, MHA, HHA and VHAwith frequencies of 68.7%,
73.1%, 79.9% and 89.6%, respectively (P = 2.22E-7). The pair-wise LDs constructed by other
tSNPs were weak among all altitude groups.

Association between HIF1A tSNPs and levels of high altitude. The HIF1A rs12434438
and rs2301113 showed marginal associations with level of high altitude at the significance level
of α = 0.05 (Table 3). However, the associations disappeared when adjusting for Bonferroni
correction. In addition, no associations of other HIF1A tSNPs with altitude were found.

Fig 1. Correlation of allele frequencies ofHIF2A variants in Tibetans and level of high altitude. solid circle, rs56721780-C; solid diamond,
rs6756667-A; solid square, rs7589621-G; solid triangle, rs1868092-A

doi:10.1371/journal.pone.0137956.g001
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Association between HIF tSNPs and physiological traits
The CG genotype of HIF2A rs1868092 was associated with a higher level of LVEF (76.80%),
compared with GG genotype (74.85%) (p = 0.011). The significance remained after controlling
for covariates of age, gender and altitude (p = 0.045). In addition, no significant association
was found between other tSNPs and RBC, HB, and HCT.

Discussion

Characteristics of the present study
The Qinghai-Tibet Plateau is a territory with a sparse population, especially at very high alti-
tudes. According to the Fourth National Census of China conducted in 1990, about 6.19% of
Tibetans (284,558 out of 4,594,188) lived in an altitude exceeding 4,500 meters and 1.02%
above 5,000 meters in the 240 square-kilometers Qinghai-Tibet Plateau [40]. The VHA sub-
jects recruited in the present study live at 4,700 meters height, an altitude few high altitude
researchers touched upon due to the harshness of the environment and inconvenience of
transportations.

Up to now, most high-altitude adaptation studies [18–24] focused on highlanders at lower
than 3,500 meters, comparing the physiological traits or genetic differences of highlanders with
those of sea level dwellers. These comparisons had discovered the selective signals towards hyp-
oxic stress. However, our aim was to elucidate whether highlanders were further genetically
selected among different levels of high altitude, even at an extreme altitude of 4,700 meters,
finding that extremely high-altitude hypoxia challenge imposed selective effects on polymor-
phisms and haplotypes ofHIF2A among native Tibetans.

Another characteristic of this study was the small probability of genetic admixture or genetic
drift, both inter-group (among four different high-altitude groups) and inter-population
(between the studied Tibetan natives and nearby lowlanders), which decreased the genetic het-
erogeneity of the studied population and the possibility of sampling error. No report of outside
contact or large-scale immigration was found in the studied regions in recent years [41]. In
addition, the harsh environment of the Qinghai-Tibet Plateau increased the difficulties for
Tibetans to move to higher or lower altitudes [42]. In fact, more than three preceding genera-
tions of the studied subjects were born and permanently lived at the same altitude.

Association between HIF2A variants and levels of high altitude
In a previous study [5], we proposed that both haplotype-based and allelic frequency-based
methods should be performed in detecting altitude selection signals in case natural selection
initiated long time ago (i.e., for Tibetans) and particularly in genomic regions with recombina-
tion hotspots. In this study, we found that not only a haplotype (AG haplotype constructed by
rs6756667 and rs7589621 that locate 2,973 bp apart), but also three allelic frequencies changed
linearly with altitude.

Since most of these alleles were Tibetan-dominated (i.e., rs6756667-A or rs1868092-A were
more than 84% for Tibetans living in a height of 4,700 meters while less than 14% for lowland
Japanese and Chinese Han), they may represent the alleles that increase fitness to high-altitude
hypoxia (Table 5). Rs1868092 is located in 3’-UTR of theHIF2A gene and 31,820 bp from
rs7589621 with weak pair-wise LD. The rare allele of rs1868092 that linearly increased with the
increase of altitude (LHA, MHA, HHA, and VHA), may represent a biological functional vari-
ant somewhere that increased the function ofHIF2A, and hence increased adaptive ability to
high-altitude hypoxia. Rs6756667-rs7589621 and rs1868092 may represent two haplotype
blocks of selective sweeps under high-altitude hypoxia conditions. However, the pleiotropic
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effects of multiple genetic variants, either in the same gene or other genes, may counteract the
increase of the fitness to high-altitude hypoxia. For example, the major G allele frequency of
HIF2A rs56721780, another SNP in the 5’-upstream ofHIF2A that is not in LD with both
rs6756667-rs7589621 haplotype block or rs1868092, decreased with altitude among our native
Tibetan samples. The variants rs56721780 [although only 18.4% in LHA, 15.9% in MHA,
32.8% in HHA and 31.1% in VHA, contrasting sharply with the extreme low frequencies of the
low altitude Chinese Han (1%)] (Table 5) may represent a haplotype that is suffering ongoing
selection by very high altitude of the Tibetans in this region, which is yet to be studied. To be
mentioned, genetic variants in the 5’-upstream of specific genes may be particularly important,
in that it may be located in a transcription promoter [43] or enhancer [44]. Further studies
need to be carried out to address this issue.

Consistent and novel findings compared with the genome-wide studies
The associations between HIF2A variants and high-altitude hypoxia stress we detected in
Tibetans were consistent with the previous GW discoveries, although theirs focused on the
comparison between high-altitude Tibetans and other sea level populations (i.e., Chinese Han
and Japanese) while ours on Tibetan ethnic groups in different levels of high altitude. In the
past three years, seven GW studies of high-altitude adaptation in Tibetan populations identi-
fied positive selection signals in genetic variants of HIF2A (EPAS1) gene [18–24], indicating
that nature selection at theHIF2A locus occurred frequently throughout the Qinghai-Tibetan
Plateau and therefore were liable to detect [45, 46]. Table 5 showed frequency differences of
selected tSNPs among populations living in different altitude.

For rs6756667, rs7589621 and rs1868092, dominant alleles of Tibetan populations in the
present study and studies of Xu’s and Simonson’s ranged from 64.1% to 92.1%, which sharply
decreased to 8.2%-27.3% in lowland Japanese and Chinese Han. For rs56721780, minor C
allele of Tibetan populations in our study ranged from 18.4% to 31.1%, which also decreased in
lowland Japanese (2.2%) and Chinese Han (1%). Therefore, rarely high divergences of variants
represent different haplotype blocks of HIF2A were observed between Tibetans and non-
Tibetan lowlanders, albeit in different direction. In addition, different haplotype blocks may be
further moderately selected within different levels of high altitude. According to previous stud-
ies, the high altitude selection of HIF2A is antique, long-term persistent and ongoing. Since the
selection pressure of hypoxia in high-altitude area has not relaxed, does this imply that these
variants will eventually be fixed?

Table 5. Allele Frequencies of the altitude-associatedHIF2A tSNPs between populations.

SNP Non-Tibetans Tibetan populations

JPTa CHBa 2700 m 3200 m 3700 m 4700 m TBTb TBQc

rs56721780(C) 2.2% 1.0% 18.4% 15.9% 32.8% 31.1% /d /d

rs6756667(A) 8.4% 13.9% 68.7% 73.4% 79.9% 89.6% 73.3% 72.6%

rs7589621(G) 23.0% 27.3% 74.6% 77.9% 83.7% 92.1% 75.0% 77.4%

rs1868092(A) 9.6% 8.2% 64.1% 67.3% 75.1% 84.4% 75.0% 67.7%

Abbreviations: TBT, Tibetan in Tibet; TBQ, Tibetan in Qinghai; CHB, Chinese Han in Beijing. Japanese in Tokyo, Japan.
a From 1000 GENOMES, phase 1.
b From Xu et al.2011.
c From Simonson et al.2010.
d No data.

doi:10.1371/journal.pone.0137956.t005
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Potential mechanisms of further genetic selection of HIF2A, instead of
HIF1A
Contrary toHIF2A,HIF1A variants revealed no significant association with level of high alti-
tude among native Tibetans. It was reported that HIF1A was an acute hypoxia responder,
while HIF2A responded more effectively to prolonged hypoxia [47]. Therefore, the ubiqui-
tously-expressed, conservatively-constituted and acutely-responded HIF1A is less likely to be
selected among native Tibetans living in different level of high altitude for generations. Unlike
HIF2A, HIF1A is highly conserved [48, 49] and often recognized as the “master regulator” of
cellular and systemic oxygen homeostasis [28] as it induces over 70 genes that respond to hyp-
oxia [50–52]. In addition, all known extant metazoan species haveHIF1A, while only verte-
brates haveHIF2A [36]. HIF1A is expressed ubiquitously, whereas HIF2A expression is limited
to endothelium, kidney, lung, heart, and small intestine [53].

Limitations, conclusions and prospective
The limitations of this study should be noted. We only genotyped 12 tSNPs of the selected
genes, instead of sequencing all of the genetic variants in our subjects and other lowlanders
(i.e., Chinese Han). Therefore, we cannot construct haplotype network of the suggestedHIF2A
gene to reveal the tolerances of the whole gene to different levels of high-altitude selection pres-
sure among native Tibetans and compared with those of the sea level populations. In addition,
we did not detect significant association between genetic variants and physiological traits. A
possible explanation was that the sample size of this study was not large, which decreased the
statistical power. However, our sample represents a relatively large proportion of population in
a relatively minor homogeneous ethnicity, especially for the extremely high-altitude Amdo
(4,700m) population.

In conclusion, we discovered that extremely high-altitude hypoxia challenges (different lev-
els of high altitude above 2,500 meters, especially 4,700 meters) imposed selective effects on
HIF2A variants among native Tibetans. Since this study was exploratory, the observations need
to be replicated in other highland populations.
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