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Abstract

Monitoring subtle choroidal thickness changes in the human eye delivers insight into the

pathogenesis of various ocular diseases such as myopia and helps planning their treatment.

However, a thorough evaluation of detection-performance is challenging as a ground truth

for comparison is not available. Alternatively, an artificial ground truth can be generated by

averaging the manual expert segmentations. This makes the ground truth very sensitive to

ambiguities due to different interpretations by the experts. In order to circumvent this limita-

tion, we present a novel validation approach that operates independently from a ground

truth and is uniquely based on the common agreement between algorithm and experts. Uti-

lizing an appropriate index, we compare the joint agreement of several raters with the algo-

rithm and validate it against manual expert segmentation. To illustrate this, we conduct an

observational study and evaluate the results obtained using our previously published regis-

tration-based method. In addition, we present an adapted state-of-the-art evaluation

method, where a paired t-test is carried out after leaving out the results of one expert at the

time. Automated and manual detection were performed on a dataset of 90 OCT 3D-volume

stack pairs of healthy subjects between 8 and 18 years of age from Asian urban regions with

a high prevalence of myopia.

Introduction

The choroid is a vascular structure located at the posterior part of the uveal tract in the eye,

between the relative rigid sclera and the more flexible, light-sensitive retina. The choroid plays
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a crucial role in the ocular metabolism circulation providing oxygen and metabolites to the

outer retina [1, 2]. Its variable thickness depends on factors such as blood pressure, axial length

and age [3].

While in adults it has consistently been assessed that the choroidal thickness decreases with

advancing age [4–6], studies researching choroidal development during childhood and adoles-

cence led to contradictory conclusions. Subfoveal choroidal thickness was found to be posi-

tively correlated with age in Caucasian [7–10], but negatively in Asian children, where the

prevalence of myopia is significantly higher [5, 11]. The choroid plays an active role in emme-

tropization, both by modulation of its thickness to adjust the retina to the optical focus plane

(choroidal accommodation) and through the regulation of the scleral growth [12, 13]. Its com-

plex interaction with other tissues as well as its strong dependence on many other factors like

blood pressure or diurnal variations, demand a precise and reliable monitoring method [1,

14].

Longitudinal studies of teenagers who develop myopia documented an eye ball elongation.

This process is associated with significant thinning of the choroidal thickness in cases of high

myopia [15]. Therefore, choroidal thickness, but also choroidal structure, is considered to be

an important marker for monitoring myopic progression and for predicting myopia. The

main challenge for detecting disease progress is to recognize particular minute changes as

early as possible.

Based on optical coherence tomography (OCT) imaging [16] that unveils highly resolved

details of the retina and choroid, there are segmentation- and registration-based methods for

the detection of temporal changes in the thickness of the choroid (a detailed description of the

different state-of-the-art methods follows below). In most cases the evaluation of such methods

is performed by an artificially generated ground truth (usually the average of expert segmenta-

tions). A major drawback of such an approach is that differences between the manual segmen-

tations cannot be correctly taken into account, when equal weights are given to all expert

segmentations during averaging.

In this paper, our primary motivation is to show how to evaluate the performance of a

method for choroidal thickness changes detection without generating an artificial average

ground truth. We present a validation framework, purely based on common agreement, to

assess the detection-performance, using the Williams’ Index [17] as measure. As example of an

automatic detection method we use our recently proposed registration-based method CRAR

[18]. Additionally, we present an adapted state-of-the-art approach, where an artificial ground

truth is created by averaging the results of the remaining experts after leaving one out at the

time. In an observational study we examined long-term changes in the choroidal thickness of

90 OCT 3D-volume stack pairs of Chinese subjects between 8 and 18 years of age. For each

eye, measurements were collected twice within a period of at least 3 to maximum 14 months.

Our paper’s contributions are: 1) We present a statistical validation framework for auto-

mated choroidal thickness changes detection applicable in cases where a real ground truth is

not available. 2) We demonstrate the framework’s reliability by evaluating the results of our

registration-based algorithm CRAR against those obtained by the experts. 3) We extend the

commonly used power analysis approach by leave-one-out cross validation to become an ideal

component of our statistical framework. 4) Based on a clinical study with volunteers with a

high prevalence of juvenile myopia, we gain insight into possible correlations between time

interval (between the measurements) and the choroidal thickness changes measured.

To the best of our knowledge, this is the first time that a statistical validation framework for

automated choroidal thickness changes detection combines a method purely based on com-

mon agreement with an exhaustive power analysis approach.

Statistical framework for validation without ground truth of choroidal thickness changes detection
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Background and prior work

OCT has become the main contactless, non-invasive method to characterize changes in the

corneal, retinal and choroidal structures and to monitor eye growth [16]. Operating in the

near infrared range, OCT provides high resolution imaging within a micrometer range and is

well established in ophthalmology. Longitudinal studies using OCT imaging offer a unique

possibility to gain insight into the dynamics of anatomical changes in the retina and choroid.

This leads to an understanding of the mechanisms regulating such processes.

The commonly used representation of the thickness of the choroid is the choroidal thick-

ness map, see Fig 1(a), generated from the pre-segmented data of a 3D-volume stack (C-scans)

consisting of adjacent sagittal tomograms (B-scans). For every depth scan (A-scan) the differ-

ence between two segmentation-planes at this lateral location is calculated and represented.

The choroidal thickness is defined as the vertical distance (along the A-scans/in z-direction)

between the Bruch’s Membrane (BM) and the Choroid-Sclera Interface (CSI), see Fig 1(b).

Segmentation is frequently performed as a manual task to determine the ground truth from

OCT-measurements. Due to the lack of alternative high precision in-vivo measurement meth-

odologies, signals are typically compared to their histological equivalent. This proves to be

notoriously difficult, subjective, and unreliable in view of the large amount of data points and

the weak signals that are frequently hard to interpret for the human observer [14]. Even the

intra-observer reproducibility is relatively low and with novel algorithms that excel in this

regard a different approach to verify the reliability has to be taken. Automated detection of

noisy and speckled OCT-images at the low-signal-end of the depth scan already has a long his-

tory and usually focuses on segmentation by delineating borders that are associated with large

scale changes of the refractive index, or by determining tissue texture appearance.

Among the current approaches for detecting choroidal boundaries, graph search based seg-

mentation methods represent a state-of-the-art [19–21]. However, their performance is limited

by the low contrast of the choroidal boundaries, the inhomogeneity of the choroid’s texture

and great variation of the choroidal thickness [2]. Recently, a segmentation algorithm was pre-

sented, which combines a robust contour-detection method with a graph search, based on a

novel weighting scheme [22]. However, the reliability of this method depends strongly on the

choice of nodes and weights. In [23], CSI segmentation was performed using an improved

graph search algorithm with curve smooth constraints. However, this approach was especially

Fig 1. Choroidal thickness map and OCT B-scan with segmented layers. (a) Visualization of the choroidal thickness

(BM-CSI) including the choroid’s measured volume of a healthy right eye based on graph search algorithm. Circles

indicate the location of the macula. The BM-CSI volume of the whole C-scan is indicated in the bottom left. (b) B-scan, a

sagittal cross-section of the posterior eye segment through the retina, choroid and sclera, separated by the layers ILM, BM

and CSI (source: Hydra, HuCE-optoLab/BUAS). The image was cut off in the vertical/z-direction for better visualization.

The full A-scan length is 1.9 mm. The ILM is the Inner Limiting Membrane, while BM and CSI denote the Bruch’s

Membrane and Choroid-Sclera Interface, respectively.

https://doi.org/10.1371/journal.pone.0218776.g001
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developed for Cirrus HD-OCT (High Definition) and still needs to be extended to other OCT

devices. The use of a convolutional network architecture, where an optimal graph-edge weight

can be learned directly from raw pixels, was proposed in [24]. However, this approach requires

a huge amount of training data (approximately 1000 manually segmented B-scans) from the

experts. In [25] the authors presented a method for unsupervised learning to identify anoma-

lies in imaging data as candidates for pathological markers. However, it still has to be proven

that the method is really able to recognize very small changes, for example in an early stage of a

disease. Despite progress in image processing the use of single frame segmentation is inher-

ently difficult, especially in longitudinal clinical studies where successive imaging sessions can

strongly vary in signal quality.

In order to circumvent this limitation, we recently proposed CRAR, a method to detect

early Choroidal changes using piecewise rigid image Registration and eye-shape Adherent

Regularization [18]. Our method is a registration-based approach specifically developed for

longitudinal studies, allowing to overcome critical problems like low contrast, loss of signal

and the presence of artifacts, which are yet unsolved by most segmentation-based methods for

the detection of minute choroidal changes. It needs to be emphasized that the aim of CRAR is

not to localize the exact position of the CSI, i.e. the exact cutting line between choroid and

sclera, but to figure out the displacement in anterior-posterior/z-direction of its surrounding

area within a specific time interval. Based on the resulting distortion fields, the use of a roughly

localized CSI borderline is already sufficient to extract the corresponding volume changes.

In a previous paper [18] we already demonstrated CRAR’s robustness regarding noise by

testing the method on scan-rescans. As by scan-rescan no changes occur except the noise, the

detected displacement field must be close to zero. By inducing synthetic deformations in the

area of the CSI, we attested CRAR’s applicability on follow-ups as well as its ability to detect

changes as small as 5 μm in the thickness of the choroid [18]. For more details about CRAR

the reader is also referred to the S1 Appendix.

Method

To deal with the lack of valid ground truth information, we compare the results achieved by an

automatic technique with those of a group of human experts, see Fig 2. In this context, one

assumes that human raters hold some prior knowledge of a “mental” ground truth that is

reflected in their manual tracings [26, 27]. Human rater accuracy and variability is taken into

account by measuring the similarity between the expert and automatic segmentation [28].

Since a solid ground truth does not exist, the most natural solution is an evaluation based on

common agreement.

The key idea is the following: we define a method X to be at level with a group {Yi} of

experts if X agrees with each expert Yi at least as often as the experts {Yi} agree among them-

selves. In other words, with the help of an agreement index, we show that the agreement rate

between algorithm X and each expert is at least as high as within the expert group itself. First,

we apply the similarity measures commonly used for evaluations of segmentation results.

Since we are not looking for a surface but a contour (the CSI, the lower boundary of the cho-

roid), we need a more appropriate measure for contours. To show how to proceed when work-

ing with a registration approach, where the outcome is the displacement of the contour line

during the time interval between the two measurements (and not the contour itself), we use

our previously published algorithm CRAR as example for method X. In this case, the displace-

ment of the contour line is a very natural and intuitive metric to be used. The algorithm’s per-

formance is evaluated with an agreement test by comparing the displacements detected by

CRAR with those of the experts. As an agreement measure we opt for the Williams’ Index [29]

Statistical framework for validation without ground truth of choroidal thickness changes detection
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and demonstrate that the algorithm’s performance is independent of the chosen metric. In

addition, for comparison with a state-of-the-art evaluation procedure, we conduct a paired t-

test using an artificially generated ground truth.

Intra-rater coefficient

In order to quantify the reliability of each expert in segmenting the same image we introduce

the corresponding Intra-Rater Coefficient. Let us consider a set of S images, namely OCT B-

scans of size m × n pixels. Each image has to be segmented thrice by an expert. Considering

the sth image segmented by expert j, the deviation DEs
j ¼ Es

j �
�E s
j of any one of the three seg-

mentations Es
j from their average �E s

j is calculated. The number #counts(j, l) of all such devia-

tions, which are within a given tolerance interval [−l, l], i.e.

#countsðj; lÞ ¼ #fDEs
j j � l � DEs

j � lg; where s 2 f1; . . . ; Sg;

leads to the definition of the Intra-Rater Coefficient IRCj of expert j

IRCj ¼
#countsðj; lÞ

3nS
: ð1Þ

Here, 3nS denotes the total number of pixels to be segmented by each expert and l is the mar-

gin of tolerance set for the manual segmentation (in our case l = 20 μm or 5 pixels).

Now, we try to get a feeling for the value of this coefficient. It can be shown that a rater that

repeats the segmentation of the CSI at random will achieve an IRC of at most 0.2. Such a rater

can be simulated by inducing, in the manually annotated scans, synthetic B-spline deforma-

tions with randomly chosen coefficients for the linear combinations of their basis functions. In

order to attest reliability to the manual segmentations, we aim to achieve IRC values of at least

0.70. This value corresponds to a variance in the segmentations of one rater of approx. 25 μm.

Williams’ index

According to Williams [17] and [29] we propose an agreement index giving an answer to the

following question: given a group of r� 3 raters labeling a finite set of pixels, does rater j agree

Fig 2. Sample screen of our online tool for manual expert segmentation. According to the consensus between the

experts, interconnecting tissues and vessels inside the sclera were ignored while the yellow segmentation line was

continued on the side of the optical nerve horizontal. The pre-processing (filtering and histogram equalization) for

better contrast during the task was activated in this case by the expert.

https://doi.org/10.1371/journal.pone.0218776.g002
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with a group of experts in the same way as the group members agree among each other? If this

is the case, the index of agreement is set equal to 1.

Let E j; E j0 and E j@ be the results of all the manual segmentations by the experts j, j0 and j@, the

Williams’ agreement Index (WI) of expert j is defined as:

WIj ¼
ðr � 2Þ

Pr
j0 6¼j sðE j; E j0 Þ

2
Pr

j0 6¼j

Pj0 � 1

j@ 6¼j sðE j0 ; E j@Þ
; ð2Þ

where sðE j; E j0 Þ 2 ½0; 1� provides a quantification for the similarity between the predictions of

rater j and j0 for all pixels (for more details about sðE j; E j0 Þ see the next subsection). The ratio

derived is compared to the value of 1. If this index is greater than 1, it can be concluded that

rater j agrees with the other raters at least as often as they agree with each other [29]. Other-

wise, the rate of agreement obtained between rater j and the group of raters is smaller than the

rate of agreement within the group of raters.

Similarity measures

The main underlying principle of our evaluation is the definition of agreement between a

method X (here CRAR) for automated detection of choroidal thickness changes and a group

of experts doing manual segmentations. The agreement of two experts is defined as the

similarity between their respective segmentations. An intuitive similarity measure for the com-

parison between our algorithm and manual segmentations is the difference between the auto-

matically detected changes and the difference between manual segmentations by experts at

different times. The evaluation framework is established by first calculating the WI using the

common similarity measures for segmentation, i.e. the Dice Coefficient (DC) and the Jaccard

Similarity Coefficient (JC). Such similarity measures are typically applied to survey the seg-

mentation of surfaces.

As our task is to recognize the CSI, the lower contour of the choroid, we need a more

appropriate similarity measure. For this reason we opt for the Bidirectional Local Distance

(BLD, see Fig 3, for more detail see [30]), a more robust and conclusive similarity measure for

surfaces than the DC and JC, as shown in Fig 4.

Fig 3. The calculation of the similarity measure BLD. First, the minimum “forward” distance dminðp; E
s
j0 Þ between the

point p 2 Es
j and the contour Es

j0 is determined, here marked as (1). Second, among all the points q on Es
j0 with a

“inverse” minimum distance d� 1
minðq; E

s
jÞ, those are selected whose minimal distance is found at the point p. Here, q and

~q are the candidates, with the corresponding distances denoted by (2) and (3). Then, the maximum distance among

the candidates, in this case (2), is chosen as d� 1
maxðE

s
j0 ; pÞ. Finally, BLDðp; Es

j0 Þ is defined as the maximum between

dminðp; E
s
j0 Þ and d� 1

maxðE
s
j0 ; pÞ, in this example (2). For more details see [30].

https://doi.org/10.1371/journal.pone.0218776.g003
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Let S be the number of B-scans to be segmented by each expert and let E j ¼ fE
s
jg

S

s¼1
and

E j0 ¼ fE
s
j0 g

S

s¼1
denote the segmentations done by the experts j and j0 respectively. We define

BLDðE j; E j0 Þ ¼
XS

s¼1

X

p2Esj

BLDðp; Es
j0 Þ

nmax
p2Esj
fBLDðp; Es

j0 Þg
; ð3Þ

where

BLDðp; Es
j0 Þ ¼ maxfdminðp; E

s
j0 Þ; d

� 1

maxðE
s
j0 ; pÞg;

and dminðp; E
s
j0 Þ corresponds to the minimum distance from a point p on the reference E j to the

test contour Es
j0 , while

d� 1

maxðE
s
j0 ; pÞ ¼ max

q2Es
j0

fdminðq; E
s
jÞ j d

� 1

minðq; E
s
jÞ ¼ jjq � pjj2g

denotes the maximum inverse distance at p on Es
j , as illustrated in Fig 3.

Although BLD is more robust than Dice and Jaccard for the detection of contours, (see Fig

4) it is, like Dice and Jaccard, not suited for the algorithm we present. As mentioned above,

this algorithm is registration- but not segmentation-based, and its result is the displacement

field over time of the entire border area between sclera and choroid (including the exact CSI,

which is very difficult to localize). Therefore, the algorithm does not provide contours and

thus, BLD, Jaccard, and Dice are not suitable as metric because we compare neither overlap-

ping surfaces nor contours.

Consequently, we need to introduce an appropriate metric for our task, as of now diffZ (see

Eq (4)) consisting of the difference between the detected displacements of the algorithm and

the differences between the expert segmentations at different times, i.e.

diffZðDE j;DE j0 Þ ¼

PS
s¼1

Pn
i¼1
jDE s

jðiÞ � DEs
j0 ðiÞj

mnS
; ð4Þ

where DE j ¼ fDEs
jg

S

s¼1
and DE j0 ¼ fDEs

j0 g
S

s¼1
represent the displacements in anterior-poste-

rior/z-direction detected by the expert j and j0 respectively, and are computed as the difference

between the segmentations of the second measurement and those of the first one. The metric

diffZ provides a value between 0 and 1, denoting the normalized difference (or, in other

words, the amount of disagreement) between the detected displacements of algorithm and one

expert, or, between any two experts, respectively. As a result, 0 means “no difference” (or, max-

imal agreement at each point) and 1 “maximum difference” (or, complete disagreement),

Fig 4. The robustness of the BLD in comparison to the DC for contour recognition. Here, the value of the surface

delimited by the green contour is the same in both cases: (a) The region which should be recognized is an ellipse

(black). (b) While the original contour was not recognized well at all, the DC for such a segmentation has yet the same

high value as in (a). Using the BLD, we achieve a fairer evaluation of the segmentation, as the bad contour detection is

taken into account and penalized with a higher value of the BLD (which corresponds to a minor similarity).

https://doi.org/10.1371/journal.pone.0218776.g004
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respectively. The metric diffZ is especially suitable for the evaluation of registration-based

algorithms such as CRAR, in which no contours are shown. At the same time, it can also be

applied in longitudinal studies to evaluate segmentation-based algorithms, which aim at the

segmentation of the CSI. In this case, diffZ can be defined for the algorithm as the difference

between the segmentations of two measurements performed within a time interval.

Power analysis (paired t-test)

As an additional component to the presented validation framework, we now perform an

extended power analysis. Let DE ¼ fDEs
jg

r;S

j¼1;s¼1
denote the total of all displacements detected

by all experts. For each j 2 {1, . . ., r} the artificial ground truth

�G j ¼
1

r � 1

Xr

j0 6¼j

DE j0 ; for all DE j0 2 DE n fDE jg; ð5Þ

is defined by leaving out the results of expert j and calculating the average of the displacements

detected by the remaining experts.

Let X denote the displacements detected by the algorithm. For each expert j a paired t-test is

done to compare the errors Xj ¼ X � �G j and Yj ¼ DE j �
�G j. In other words, after defining an

artificial ground truth, we compare the difference in the errors of both algorithm and experts

in their detection of choroidal thickness changes. Thus, we test the null hypothesis that the

pairwise differences Xj − Yj come from a normal distribution with mean equal to 0 at the α =

0.01 significant level. In order to reject the null hypothesis, the result of the p-value must be

smaller than α. While a p-value shows whether an effect exists, it will not reveal the size of the

effect (it might be, that a smaller p-value has occurred only on the basis of a large sample size

[31]). This is why, we report both statistical (the p-value) and substantive significance (effect

size). Using the Cohen’s distance d between both datasets, the effect size can be determined by

calculating the mean difference between the two groups Xj and Yj, and then dividing the result

by the pooled standard deviation
ffiffiffiffi
S
p

, i.e.

Cohen0s dj ¼
mðXjÞ � mðYjÞ

ffiffiffiffi
S
p ; where S ¼

ðjXjj � 1Þ � s2ðXjÞ þ ðjYjj � 1Þ � s2ðYjÞ

jXjj þ jYjj � 2
; ð6Þ

where |Xj| and |Yj| denote the sample sizes of Xj and Yj respectively, while σ(Xj) and σ(Yj) are

their standard deviations. The necessity of this “leave-one-out” power analysis lies in the fact

that, in our case, an artificially generated ground truth can only be represented in the form of a

matrix, as to every OCT B-scan pair a corresponding ground truth for comparison has to be

generated. This results for �G j in a matrix of size n × S corresponding to the ground truth for

the entire dataset. As a result, the values of the standard deviations for X � �G j vs. DE j �
�G j are

different from those for X vs. DE j. Consequently, the values of the effect size, quantified by

Cohen’s d, change as well.

Material

Subjects

Ninety OCT 3D-volume stack pairs of Chinese subjects, aged 8-18 and stemming from urban

regions with a high prevalence of myopia, have been analyzed. Healthy subjects with good dis-

tant and near vision (monocular corrected visual acuity was equal or better than LogMAR

0.00), but no systemic and ocular diseases, ocular trauma or surgery, were recruited. For the
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subjects aged 8-13, the spherical refractive errors were -1.00D to -5.00D and cylindrical power

was not more than -1.50D. For the others, the spherical refractive errors were +0.75D to

-3.00D and the cylindrical power was not more than -1.00D. Written consent was obtained

from both volunteers and, when necessary, their parents. The study protocol was approved by

the Human Subjects Ethics Sub-committee of The Hong Kong Polytechnic University and was

conducted in adherence to the tenets of the Declaration of Helsinki.

Data acquisition

The volunteers were measured twice at different times: half of them their left eye, the other

half their right one. This resulted in 180 OCT volume stacks, each consisting of 25 B-scans of

500 × 768 pixels. The pixel spacing in nasal-temporal/x- and superior-inferior/y-direction

were set to 11.46 μm/pixel and to 245 μm/pixel respectively, the one in anterior-posterior/z-

direction was set to 3.87 μm/pixel. The volunteers were divided into three groups: the first

group was measured a second time after 3 months, the second after 8 months, the third after

14 months.

The images were acquired by an eye-tracking dual-wavelength OCT system operating

simultaneously at the 870 and 1075 nm bands. This system was developed at the HuCE-opto-

Lab at the Bern University of Applied Sciences in Biel before it was transferred and setup at the

Hong Kong Polytechnic University’s School of Optometry. For technical details on the OCT

system used we refer to the S2 Appendix.

Manual expert segmentation

Six ophthalmologists were recruited as experts. The experts received access to a Java-based

online tool with which they could draw the CSI line, using either the mouse (PC) or a pen (tab-

let), see Fig 2. The experts could chose to segment the CSI without processing or to activate a

pre-processing consisting of a histogram equalization and an average filtering. In this evalua-

tion step the focus lay on both the intra-rater reliability of each individual expert and the agree-

ment among the experts.

The 90 volume stack pairs were randomly distributed among the six experts, in such a way

that each expert got exactly 50 volume stack pairs and each pair was assigned to at least three

different experts for CSI segmentation. This allowed to test the agreement between the experts.

From each volume stack pair, eight B-scan pairs were chosen for manual expert segmentation

of the CSI, three in the lower (no. 1, 3 and 6), three in the middle (no. 11, 13 and 16) and two

in the upper region (no. 21 and 23). To test the intra-rater reliability, each expert unknowingly

received three times the same scan pair. The number of lines to be segmented by each expert

was 2400 (8 scan positions per volume stack × 2 measurements per volunteer × 50 volume

stacks × 3 repetitions). Calculating a time of approx. 9 sec per line, this adds up to 6 h per

expert.

Manual segmentation (consensus)

Manual segmentation was done according to the following mutual consensus: the lower border

of the choroid was drawn without taking into account the interconnecting tissues that appear

as humps on top of the slowly varying baseline. Also the shadow artifacts that are cast by the

retinal and choroidal vasculature were ignored. Vessels inside the sclera were also disregarded.

It was agreed that once the CSI came to an end near the optical nerve, the segmentation line

would be continued in the same direction and with the same slope, as depicted in Fig 2.
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Results and discussion

Fig 5 shows the intra-rater reliability (repeatability) of the results of each expert by having the

same image segmented thrice. The six experts together show an averaged standard deviation of

±24.73 μm in rating the same image. It is remarkable, that the experts are often inconclusive

about the position of the CSI in the temporal para- and perifoveal region opposite to the ocular

nerve, see later Fig 6(c) and 6(d). This is due to the low contrast in the image acquisition in

this area of the choroid which makes a clear identification of the CSI difficult. The mean IRC

value achieved by the experts was 0.807, which is to be considered as a good result. It has to be

pointed out that the lowest scores were reached by those experts who probably had experi-

enced difficulties in handling the tool. The first version of our online tool has been continu-

ously optimized based on the feedback of the raters. Despite the challenges, the IRC scores

were almost as good as we wished for.

Fig 7 presents the values of the WI calculated between each individual expert and the other

members of the group for all the images (using DC, JC, BLD and diffZ as metric). When we

compare the segmentations performed by the experts, the results show an average WI of

0.9992 ± 0.0221. The weak scattering of the WI demonstrates that its value does not depend on

the choice of the similarity measure. Fig 7 shows that there are no relevant differences between

the values of the WI whether they are calculated on the base of diffZ or the other three metrics,

so Dice, Jaccard and BLD are not indispensable to this kind of evaluation, and therefore no

longer needed. This justifies the use of diffZ for our case even more. The comparison between

Fig 5. The representations of the intra-rater reliability of experts 1–6 ordered from (a)–(f). At every pixel position,

the difference to the average value of the three available segmentations per rater is calculated. If its absolute value is

smaller than a predefined threshold (here set to 20 μm represented by the grey area) then it is counted, i.e. the

prediction is considered reliable. Therefore, the narrower and higher the curve, the more reliable the segmentation by

the corresponding expert is. The number of counts found within this range is divided by the total number of

segmentation points graded by the corresponding expert. By the obtained normalized value IRCj we define the Intra-

Rater Coefficient to quantify the reliability of the jth expert.

https://doi.org/10.1371/journal.pone.0218776.g005
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CRAR and the experts group shows that CRAR’s predictions match those of the experts (the

WI is greater than 1). To exclude that one expert influences the value of the WI much more

than another, the WI is recalculated by omitting one expert at a time. The calculation of the

WI between CRAR and the remaining five experts after leaving-one-out gives values in the

range of [1.0126, 1.0393].

Fig 8 shows the variability at each scan position grouped by expert. As expected, the dis-

placements detected by CRAR (4.29 ± 23.73 μm, see the far right hand side of Fig 8) are within

the range of those detected by the experts (5.47 ± 39.45 μm) but with a smaller variance. This is

Fig 6. Examples of manual expert segmentation (consistent and less consistent with each other). Top: Repeatability

of (a) expert 2 and (b) expert 5 when segmenting the CSI. Bottom: Comparison of segmentations by (c) experts 3, 4

and 5 and (d) experts 1, 3 and 4. The choroidal area is subdivided in nasal (N)-temporal (T)/x-direction into five

equidistant regions (patches) symmetrically around the foveal center: A (foveal region), B (parafoveal region), and C

(perifoveal region). Here only cases of right eyes are depicted.

https://doi.org/10.1371/journal.pone.0218776.g006

Fig 7. The values of the WI calculated for the algorithm and the experts group. As similarity measures Jaccard,

Dice, BLD and diffZ are used.

https://doi.org/10.1371/journal.pone.0218776.g007
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due to the fact that our automated algorithm guarantees perfect repeatability (IRC = 1), unlike

the human rater.

Fig 9(a) and 9(b) show the total variability of all displacements detected by the experts and

the algorithm, respectively, grouped by time interval between the two measurements. The

average displacements measured using CRAR are 1.41 ± 16.23 μm in the case of images cap-

tured within a time interval of 3 months. For the other two time intervals of 8 and 14 months,

the average changes are 4.88 ± 22.63 μm and 6.12 ± 29.32 μm, respectively. These results are

still consistent with those of the experts, i.e. 1.76 ± 26.72 μm, 5.67 ± 32.48 μm and 7.62 ±
39.15 μm but with smaller variations. These results are also summarized in Table 1 for better

data visualization. During each time interval between measurements the choroidal thickness

increases, as is to be expected for growing tissue. This finding supports the hypothesis which

several studies [7–10] formulate: the increase in thickness of the choroid is a normal feature of

eye growth from early childhood to adolescence. Such a thickening of the choroid could relate

to changes in the structure and associated physiological demands of the outer retina occurring

during the eye’s natural development, and/or to its role as sclera growth regulator [13].

On the other hand, the thickening of the choroid seems to slow down as time goes by, while

the scattering of the data increases. The slower progress in thickening could be related to the

high prevalence of Chinese children to become myopic (� 80% in the age 13–15). It could also

be a sign that a disproportionate elongation of the eye-ball is taking place and must be com-

pensated by slowing down the growth or, in case of myopia, even an actual thinning of the

choroidal thickness at a relatively earlier age. The slowing down process of the thickening

could also be the result of the natural “plateau” effect of the growth [10] in thickness of the cho-

roid, in analogy to that of the body size. In other words, it appears that the thickness of the cho-

roid increases in early childhood, reaching a peak between 10 and 20, and then exhibits a

gradual decrease into older adulthood [8, 10]. However, it has to be noted that these assump-

tions are based on cross-sectional studies and, thus, the same subjects have not been observed

regularly during longer periods of time. Therefore, before it can be generalized that the thick-

ness of the choroid increases from early childhood to adolescence, further longitudinal

research is ongoing, in which the subjects are being measured regularly and more frequently.

Fig 8. The average displacements of the CSI grouped by experts and algorithm. The results are obtained by manual

segmentation by the six experts and by CRAR (subdivided into the B-scan positions 1, 3, 6, 11, 13, 16, 21 and 23).

https://doi.org/10.1371/journal.pone.0218776.g008
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The time interval related increase in scattering of the detected displacements is a natural con-

sequence of the diversity in choroidal changes, which, most likely, vary from subject to subject.

As mentioned above the results of CRAR are in line with those of other clinical studies:

according to [9, 10] changes in the choroidal thickness appear to rapidly increase in early

childhood (age 4–7, mean increase of 30 ± 15 μm within a time interval of 18 months), fol-

lowed by a plateau in thickness change in the older age groups examined (age 10–13, mean

change 13 ± 22 μm in 18 months). These aspects are reflected in our results and can be

explained by the fact that the subjects that took part in this study are in an age phase, in which

the choroid is still growing, but not as intensively as in early childhood (4–6 years old).

Fig 9(c) and 9(d) show the detected temporal changes grouped by time intervals and subdi-

vided in nasal-temporal/x-direction into five equidistant regions C-B-A-B-C (patches) sym-

metrically distributed around the foveal center: A (foveal region), B (parafoveal region), and C

(perifoveal region), see Fig 6. Here the mean changes detected by CRAR in the regions C-B-

A-B-C (from the temporal (T) to the nasal (N) location in the case of a right eye, as shown in

Fig 6, and in the opposite direction in the case of a left eye): 6.75 ± 27.12 μm (C), 4.07 ±
19.23 μm (B), 1.21 ± 13.57 μm (A), 4.23 ± 17.01 μm (B) and 5.18 ± 20.38 μm (C), respectively.

These values are in the range of those detected by the experts: 9.95 ± 37.18 μm (C),

Fig 9. The average displacements of the CSI grouped by time intervals. Above: The average displacements of the

CSI detected by the expert group (a) and by CRAR (b) grouped by time intervals between the two measurements and

subdivided into eight scan positions. Below: The average displacements of the CSI detected by the expert group (c) and

by CRAR (d) grouped by time interval and subdivided in nasal-temporal/x-direction into five equidistant regions

C-B-A-B-C (patches) symmetrically distributed around the foveal center, see Fig 6.

https://doi.org/10.1371/journal.pone.0218776.g009
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5.13 ± 28.53 μm (B), 1.81 ± 16.21 μm (A), 4.17 ± 22.37 μm (B) and 6.27 ± 26.01 μm (C), respec-

tively. These results are also summarized in Table 2 for better data visualization.

According to [32, 33], the results show a prominent choroidal thickening in more periph-

eral regions and, in general, it can also be concluded that the first changes occur in the periph-

ery rather than in the center. The error of CRAR is significantly lower than for the remaining

five experts after leaving out one expert segmentation E j at a time (p-value<0.01) with medium

effect size (Cohen’s d in the range of 0.41 and 0.49). This emphasizes the superior performance

of CRAR in detecting choroidal thickness changes in comparison to those of the experts

group.

The power analysis for different time intervals showed a small but not irrelevant effect size,

and thus a change in the thickness of the choroid, which cannot be neglected. This supports

the tendency mentioned above. For example, comparing the results for the time intervals of 3

and 14 months, we obtained a Cohen’s d of 0.20 for the experts and 0.25 for the algorithm.

Conclusion

In this paper, we presented a statistical framework for validation of choroidal thickness

changes detection without ground truth. Using the William’s Index, we evaluated the agree-

ment of experts’ segmentations and illustrated, with CRAR as example, how to assess their per-

formance in absence of a ground truth for comparison. With the help of the developed

framework we demonstrated that our method CRAR provides results which are in the range of

those of the experts, but with a lower variability. In addition, we confirmed this outcome using

a modified state-of-the-art evaluation procedure: based on the results of a paired t-test, we

could attest a higher precision of CRAR for detecting minute thickness changes of the choroid.

It can be concluded that CRAR provides a consistent, automated, expert-level performance

in recognizing and monitoring subtle choroidal changes before a disease can actually manifest

itself. Thus, we want to further develop CRAR so that it can be applied in the prevention and

observation of several diseases and their respective treatments. In the ongoing research we

plan to add children between 4–6 years to our test group and to verify the algorithm’s perfor-

mance for a time span of three years, in order to gather more information about the influence

Table 1. The averaged vertical displacements Δz measured at different time intervals.

mean Δz in [μm] grouped by time interval

3 months 8 months 14 months

Experts 1.76 ± 26.72 5.67 ± 32.48 7.62 ± 39.15

CRAR 1.41 ± 16.23 4.88 ± 22.63 6.12 ± 29.32

The table notes the detected temporal changes depicted in Fig 9(a) and 9(b) averaged per time interval between the two measurements.

https://doi.org/10.1371/journal.pone.0218776.t001

Table 2. The vertical displacements Δz averaged per choroidal subregion.

Δz in [μm] averaged per choroidal subregion C-B-A-B-C

C(perifoveal) B(parafoveal) A (foveal) B (parafoveal) C(perifoveal)

Experts 9.95 ± 37.18 5.13 ± 28.53 1.81 ± 16.21 4.17 ± 22.37 6.27 ± 26.01

CRAR 6.75 ± 27.12 4.07 ± 19.23 1.21 ± 13.57 4.23 ± 17.01 5.18 ± 20.38

The table notes the detected temporal changes depicted in Fig 9(c) and 9(d) averaged per choroidal subregion C-B-A-B-C (i.e. the five equidistant patches symmetrically

distributed around the foveal center).

https://doi.org/10.1371/journal.pone.0218776.t002
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of age, height, refractive error and axial length on the thickness of the choroid and to exhaus-

tively discuss the results based on our new framework.

All things considered, the proposed validation framework is suitable for analyzing auto-

matic detection algorithms for choroidal thickness changes, but might also be used for other

applications, where a ground truth is not available.
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16. Považay B, Hermann B, Unterhuber A, Hofer B, et al. Three-dimensional optical coherence tomography

at 1050nm versus 800nm in retinal pathologies: enhanced performance and choroidal penetration in

cataract patients. Journal of biomedical optics. 2007; 12(4):041211–041211. https://doi.org/10.1117/1.

2773728 PMID: 17867800

Statistical framework for validation without ground truth of choroidal thickness changes detection

PLOS ONE | https://doi.org/10.1371/journal.pone.0218776 June 28, 2019 16 / 17

https://doi.org/10.1016/j.preteyeres.2009.12.002
http://www.ncbi.nlm.nih.gov/pubmed/20044062
https://doi.org/10.1016/j.sjopt.2014.03.004
http://www.ncbi.nlm.nih.gov/pubmed/24843305
https://doi.org/10.1167/iovs.11-7364
https://doi.org/10.1167/iovs.09-4383
https://doi.org/10.1097/IAE.0b013e3182923477
https://doi.org/10.1097/IAE.0b013e3182923477
http://www.ncbi.nlm.nih.gov/pubmed/23644561
https://doi.org/10.1097/OPX.0000000000000229
https://doi.org/10.1097/OPX.0000000000000229
http://www.ncbi.nlm.nih.gov/pubmed/24727822
https://doi.org/10.1167/iovs.13-12761
https://doi.org/10.1167/iovs.13-12761
https://doi.org/10.1167/iovs.13-11732
https://doi.org/10.1097/IAE.0b013e3182a487a4
https://doi.org/10.1097/IAE.0b013e3182a487a4
http://www.ncbi.nlm.nih.gov/pubmed/24013259
https://doi.org/10.1167/iovs.15-16446
https://doi.org/10.1167/iovs.15-16446
https://doi.org/10.1097/IAE.0000000000001168
https://doi.org/10.1097/IAE.0000000000001168
http://www.ncbi.nlm.nih.gov/pubmed/27429378
https://doi.org/10.1371/journal.pone.0161535
https://doi.org/10.1371/journal.pone.0161535
http://www.ncbi.nlm.nih.gov/pubmed/27537606
https://doi.org/10.1016/j.exer.2013.03.008
http://www.ncbi.nlm.nih.gov/pubmed/23528534
https://doi.org/10.1016/j.ajo.2016.06.023
https://doi.org/10.1016/j.ajo.2016.06.023
http://www.ncbi.nlm.nih.gov/pubmed/27345731
https://doi.org/10.1016/j.ophtha.2013.02.005
https://doi.org/10.1016/j.ophtha.2013.02.005
http://www.ncbi.nlm.nih.gov/pubmed/23683921
https://doi.org/10.1117/1.2773728
https://doi.org/10.1117/1.2773728
http://www.ncbi.nlm.nih.gov/pubmed/17867800
https://doi.org/10.1371/journal.pone.0218776


17. Williams GW. Comparing the joint agreement of several raters with another rater. Biometrics. 1976; p.

619–627. https://doi.org/10.2307/2529750 PMID: 963175

18. Ronchetti T, Maloca P, Jud C, Meier C, Orgül S, Scholl HP, et al. Detecting Early Choroidal Changes

Using Piecewise Rigid Image Registration and Eye-Shape Adherent Regularization. In: Fetal, Infant

and Ophthalmic Medical Image Analysis. Springer; 2017. p. 92–100.
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