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Abstract
Background: Protein-protein interactions play vital roles in nearly all cellular processes and are
involved in the construction of biological pathways such as metabolic and signal transduction
pathways. Although large-scale experiments have enabled the discovery of thousands of previously
unknown linkages among proteins in many organisms, the high-throughput interaction data is often
associated with high error rates. Since protein interaction networks have been utilized in numerous
biological inferences, the inclusive experimental errors inevitably affect the quality of such
prediction. Thus, it is essential to assess the quality of the protein interaction data.

Results: In this paper, a novel Bayesian network-based integrative framework is proposed to
assess the reliability of protein-protein interactions. We develop a cross-species in silico model that
assigns likelihood scores to individual protein pairs based on the information entirely extracted
from model organisms. Our proposed approach integrates multiple microarray datasets and novel
features derived from gene ontology. Furthermore, the confidence scores for cross-species protein
mappings are explicitly incorporated into our model. Applying our model to predict protein
interactions in the human genome, we are able to achieve 80% in sensitivity and 70% in specificity.
Finally, we assess the overall quality of the experimentally determined yeast protein-protein
interaction dataset. We observe that the more high-throughput experiments confirming an
interaction, the higher the likelihood score, which confirms the effectiveness of our approach.

Conclusion: This study demonstrates that model organisms certainly provide important
information for protein-protein interaction inference and assessment. The proposed method is
able to assess not only the overall quality of an interaction dataset, but also the quality of individual
protein-protein interactions. We expect the method to continually improve as more high quality
interaction data from more model organisms becomes available and is readily scalable to a genome-
wide application.
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Background
Protein-protein interactions (PPI) are the foundation of
most biological mechanisms such as DNA replication and
transcription, enzyme-mediated metabolism, signal trans-
duction, and cell cycle control [1,2]. Therefore, informa-
tion on the physiological interactions of proteins is
perhaps one of the most valuable resources from which
annotations of genes and proteins can be discovered. Tra-
ditional biology approach studies protein-protein interac-
tions individually by low-throughput technologies [3,4].
In more recent "high-throughput" view, protein interac-
tions are visualized as a sophisticated network and stud-
ied globally with technologies such as yeast two-hybrid
system [5], affinity purification followed by mass spec-
trometry [6,7], protein chips [8], gel-filtration chromatog-
raphy [9], and phase display [10]. These high-throughput
genome-wide protein interaction screens have been car-
ried out in many organisms and produced thousands of
experimentally identified protein-protein interactions.
One major issue, however, is the prevalence of spurious
interactions in the high-throughput interaction data.
Errors may arise from a wide range of affinities and times-
cales by which proteins interact with one another. Analy-
sis by Deane et al. [11] suggests that only 30–50% of the
high-throughput interactions are biologically relevant. In
an independent study, Mrowka et al. [12] observed signif-
icant difference in individually identified interactions
from those by genome-wide scans, and estimated that
some whole-genome scans may contain 44–91% of false
positives. These false positives, i.e. interactions that are
detected in the experiment but never take place in the cell,
may connect unrelated proteins in the interaction net-
work, create unnecessary interaction clusters, and incor-
rect biological conclusions may be drawn as a
consequence. Hence, to effectively use the high-through-
put data in biological inferences, it is critical to evaluate
the quality of the data and remove as many false positive
interactions as possible.

Various approaches have been proposed to analyze the
proteomics data by extracting the subset of valid interac-
tions from their background noise. In some original high-
throughput experiments [6,7,13,14], promiscuity criteria
are employed to remove proteins having many interaction
partners. One limitation of this method is that it can only
be applied ad hoc because there is no clear separation
between the 'sticky' (highly connected) and 'non-sticky'
(sparsely connected) proteins. Moreover, biological net-
works are scale-free in nature [15-19], which implies that
the highly connected proteins may as well be a real feature
of the protein interaction networks. On the other hand,
two independent analyses by von Mering et al. [20] and
Bader and Hogue [21] studied intersections between dif-
ferent high-throughput datasets and demonstrated that
interaction pairs identified by multiple experiments are

enriched in true interactions. A shortcoming of this
method is the lack of overlap between datasets. Not only
data from different technologies do not overlap signifi-
cantly, but also data from different labs using the same
technology differ substantially. This suggests that the cur-
rent data are far from saturating, and data from different
resources are complementary to each other.

It is also possible to explore the relationship between pro-
tein-protein interaction data and other types of data to
assess the quality. Mrowka et al. [12] compared distribu-
tions of transcription correlations between the interaction
data from many single hypothesis-driven experiments
and genome-wide scans. Using data from the Munich
Information Center for Protein Sequences (MIPS) [22] as
the reference set of true interactions, they described a
bootstrap method to count how many random pairs
needed to be inserted in order to create the same statistical
behaviour of the expression correlation as in the putative
interaction data. Other colleagues applied microarray and
mRNA expression data to assess the quality of protein-
protein interaction data [11,23,24]. Nevertheless, inter-
acting proteins do not necessarily display correlation in
mRNA levels. In fact, proteins in a permanent complex
may even show low transcriptional correlation due to dif-
ferences in degradation rates [25]. Even worse, Bader et al.
[26] noticed that for the data from mass spectrometry of
coimmunoprecipitated protein complexes (Co-IP), the
correlated coexpression may be negatively correlated with
predicted interaction confidence.

Besides expression data, sequence homology between two
proteins and their corresponding interaction partners has
been adopted to verify high-throughput protein-protein
interactions [11]. However, the verification process is
restricted to interaction pairs with both proteins having
homologs, and even for these applicable interaction pairs,
only half are identified as high confident under the
homology criterion [11]. Moreover, other groups made
use of cellular localization and cellular-role properties to
assess the reliability of high-throughput experimental
data [20,24,27]. Furthermore, Saito et al. [28] and Gold-
berg and Roth [29] exploited network topological descrip-
tors to determine how well an edge (interaction) fits the
expected topology of protein-protein interaction network.
Altogether, the aforementioned methods apply threshold
values to assess the quality of interactions by classifying
them as either high or low confidence. Likewise, a number
of computational approaches for protein interaction pre-
diction have been developed to designate two proteins as
either interacting or not interacting based on genomic
context [30-37] and protein domain [38-43]. Despite
their varying successes, it is much more beneficial to esti-
mate the probability that a pair of proteins may form a
true interaction rather than producing a binary outcome.
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Recently, there has been a growing interest in data integra-
tion. In a study on the yeast signal transduction pathway
for amino acid transport, Chen and Xu [44] demonstrated
that integration of high-throughput data with other biol-
ogy resources can transform the noisy protein interaction
data into useful knowledge. Many probabilistic methods
have explored the integration of complementary data
sources for protein interaction inference, which turned
out to improve both accuracy and coverage. Integrating
diverse types of evidences such as gene expression, gene
ontology (GO) [45], and enriched domain pairs, research
groups have proposed probabilistic decision tree [46],
logistic regression [26,47], naïve Bayes [48,49], and Baye-
sian network [29,50] models.

In this study, we describe a novel Bayesian network-based
integrative model that assigns a likelihood score to every
interaction. The main contributions we make are as fol-
lows. First, we establish a cross-species in silico model to
assess confidence of two proteins to interact in a target
organism (e.g. human) on the basis of information
entirely extracted from other model organisms (e.g. Sac-
charomyces cerevisiae, C. elegans, and Drosophila mela-
nogaster). A cross-organism computational system for
protein interaction prediction is attractive and needed,
mainly because model organisms are well studied and
have a tremendous amount of experimental data, while
there may be little information about the target organism,
especially with newly sequenced proteins (thus, predic-
tion based on the target organism may be impossible or
inaccurate due to data scarcity). Among protein interac-
tion studies using data from model organisms, data from
target organism is employed in addition to data from
other organisms [47,49]. In existing integrative models,
data from model organisms may not even play a signifi-
cant role. For instance, Rhodes et al. [49] showed that
information from model organisms alone is only moder-
ately predictive. Thus, there is an essential need for better
probabilistic models that can effectively integrate hetero-
geneous data sources from model organisms. Our pro-
posed model demonstrates that a carefully designed
system is capable of making accurate assessment utilizing
information solely from model organisms. Second, we
introduce a novel Bayesian network-based approach to
integrate multiple microarray datasets and GO informa-
tion. In contrary to commonly used naïve Bayes model,
we do not make conditional independence assumption
among multiple microarray datasets and new features
extracted from GO biological processes, molecular func-
tions, and cellular components. Furthermore, the confi-
dence scores for orthologous mappings are explicitly
incorporated into our model. Finally, applying our cross-
species in silico model, we assess the overall quality of the
protein-protein interaction data obtained from high-
throughput screens for yeast.

Results and discussion
System overview
The proposed cross-organism predictive system is illus-
trated in Figure 1. For a pair of proteins (P1, P2) in a target
organism, genome-wide orthologous mapping between
the target organism and model organisms can be obtained
from the InParanoid database [51]. The InParanoid pro-
gram uses NCBI-BLAST to calculate the pairwise similarity
scores between two complete proteomes. A confidence
value C is then provided to evaluate how closely related
two orthologs are.

Our strategy is as follows. First, for a pair of proteins (P1,
P2), we determine their orthologs in the model organisms.
Second, features are extracted for each ortholog pair from
gene expression profiles and GO annotations of model
organisms (details are discussed in next section). Finally,
the heterogeneous data features are integrated to describe
the protein pair (P1, P2) of the target organism using a
Bayesian network-based model (details are in Methods)
that assigns likelihood ratios for interaction.

Novel feature extraction
To determine how likely two proteins will interact, several
features are derived from gene expression profiles and GO
annotations. For each protein pair (P1, P2) in the target
organism, we identify its ortholog pairs (R(i)1, R(i)2) in
three model organisms (i = 1, 2, 3). From each model
organism, we download three microarray datasets. For
each ortholog pair (R(i)1, R(i)2), Pearson correlation coeffi-
cients (PCC) are calculated from the gene expression pro-
files. A 4-level uniform quantization is used and each PCC
is discretized into one of four states: high, medium high,
medium low, and low. Rather than assuming the PCCs
extracted from different microarray data are independent,
we model the three PCCs from individual model organ-
ism jointly with one node in our Bayesian network model
(Figure 2). This is very different from the commonly-used
naïve Bayes method in which every feature is assumed to
be independent of each other.

Moreover, we derive novel features from GO annotations
for each identified ortholog pair (R(i)1, R(i)2) of the protein
pair (P1, P2). Three unique features are derived from each
of the "molecular function", "biological process", and
"cellular component" annotations in GO. The first feature
checks whether two proteins share annotation terms: if
the two proteins share at least one common term, the fea-
ture value is one; otherwise, it is zero. The second feature
is called correlation ratio. In GO, gene products can be
associated with more than one term. Therefore, the corre-
lation between two GO terms is defined as the number of
gene products in common. The larger the correlation
value is, the closer the two GO terms are. We examine all
possible pairs of GO terms between the two proteins and 
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Bayesian network-based frameworkFigure 2
Bayesian network-based framework. Integrates heterogeneous data sources from model organisms (S. cerevisiae, D. mela-
nogaster, and C. elegans) to predict protein-protein interactions in a target organism (H. sapiens).

System overviewFigure 1
System overview. Predict protein-protein interactions in a target organism using information extracted from model organ-
isms. Heterogeneous data are integrated by a Bayesian network-based method.
Page 4 of 14
(page number not for citation purposes)



BMC Bioinformatics 2009, 10(Suppl 4):S5 http://www.biomedcentral.com/1471-2105/10/S4/S5
identify two GO terms (we refer them as "term_1" and
"term_2") with the largest correlation value. The correla-
tion ratio is then defined as n/(n1+ n2- n), where n is the
correlation between term_1 and term_2, n1 and n2 are the
numbers of gene products with term_1 and term_2,
respectively. The correlation ratio is also quantized into
two levels with a threshold of 0.5: high and low. The third
feature is based on the minimum GO distance d between
two proteins. Since GO is organized as a directed acyclic
graph where each node represents a GO term, distance
between two terms is described as the least number of
nodes separating them in the graph. Again, to identify the
two GO terms ("term_3" and "term_4") with the mini-
mum distance, we examine all possible pairs of GO terms
between the two proteins. For the third feature, incorpo-
rating the graph structures, we define eight states: 0 if d is
zero; 1 if d is one (Figure 3a); 2 if d is two and term_3 and
term_4 have a grandparent-children relationship (Figure
3b); 3 if d is two and term_3 and term_4 are siblings with
a common parent term (Figure 3c); 4 if d is three and
term_3 is term_4's great grandparent or vice versa (Figure
3d); 5 if d is three and term_3's parent and term_4 are sib-
lings with a common parent term (Figure 3e); 6 if d is
three with all remaining graph structural cases; and 7 if d
is larger than three. Apparently, the three features are not
independent to each other. In our integrative system, we

model the three features from each model organism
jointly with one node.

Human protein-protein interaction prediction
It is important to investigate how widely applicable our
approach is for automatic verification of large sets of inter-
actions. If a method is sufficient, its predicted protein-pro-
tein interactions (PPIs) should have higher overlap with
the previously established interactions. To evaluate our
integrative method, we use both specificity and sensitivity.
The specificity is defined as the percentage of matched
non-interactions between the predicted set and the
observed set over the total number of observed non-inter-
actions. The sensitivity is defined as the percentage of
matched interactions over the total number of observed
interactions.

First of all, with a specificity of 95%, our method can
achieve a sensitivity of about 44%, and if the specificity
reduces to 50%, the sensitivity increases to 80%. These
results clearly demonstrate that model organisms cer-
tainly provide significant information for the prediction
of PPIs in the target organisms. Secondly, we compare our
method to the commonly-used naïve Bayesian method
[48,49]. In the naïve Bayesian model, all the features are
assumed to be conditionally independent, i.e., features
extracted from three microarray data sets and three novel

GO distance structuresFigure 3
GO distance structures. The GO terms in blue circles represent the terms under consideration (i.e. term_3 and term_4 in 
text) that are the closest in terms of GO distance d. (a) d = 1 and feature value = 1, GO term_3 is parent of term_4; (b) d = 2 
and feature value = 2, term_3 is term_4's grandparent or ancestor; (c) d = 2 and feature value = 3, term_3 and term_4 share a 
common parent; (d) d = 3 and feature value = 4, term_3 is term_4's great grandparent or ancestor (e) d = 3 and feature value 
= 5, term_3's parent and term_4 are siblings sharing the same parent.
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features from GO in each model organism are condition-
ally independent given PPI. Table 1 contains results of our
method and the naïve Bayesian method over the test data-
set. With comparable specificities fixed at approximately
the same level 70%, our method can achieve 73% in sen-
sitivity and the naïve Bayesian can only reach 65% in sen-
sitivity.

Figure 4 illustrates the ROC curves for the test data with
mapping orthologs from one, two, and three model
organisms. As expected, the system performance increases
as more evidence is available. With mapping information
available from three organisms, we can achieve 70% in
specificity with a sensitivity of 80% (Table 1). Thus, the
method will continue to improve as more interaction data
from more model organisms becomes available.

Assessment of yeast protein-protein interaction data
While high-throughput technologies generate thousands
of protein-protein interactions (PPI) data and allow for
genome-wide analysis, they tend to produce a large
number of false positives. On the other hand, low-
throughput methods can yield reliable results but are typ-
ically labor intensive, time consuming, and on a small
scale basis. Computational methods provide an ideal tool

for evaluating experimentally detected PPIs, as in silico
methods can (1) utilize existing biological knowledge; (2)
predict large-scale PPIs; and (3) produce the confidence
levels of interactions for each protein pairs.

We apply our cross-organism integrative in silico model to
evaluate high-throughput yeast PPI data and detect the
spurious interactions. Our model is ideal for this type of
application, as we do not use the direct PPI data from
model organisms in our training process (features are
extracted from microarray data and GO only). The current
available yeast interaction pairs in databases may be deter-
mined by various experiments; therefore, the more exper-
iments confirming it, the more confident we are in the
interaction.

We collected the yeast interaction data from the General
Repository for Interaction Datasets (BioGRID) [52]. The
deposited interactions are determined through a number
of methods, but we mainly focus on four: synthetic
lethality, affinity capture-MS, two-hybrid, and phenotypic
enhancement. Total number of PPIs detected by each of
the experimental methods are 9378, 24154, 7157, and
15815 for synthetic lethality, affinity capture-MS, two-
hybrid, and phenotypic enhancement, respectively.
Among the four datasets, total number of unique pairs is
52783. Therefore, there are 3739 overlapping pairs
between the datasets. Because our goal is to analyze the
system on PPIs determined by different number of exper-
iments, four data files are generated, in which one con-
tains interaction pairs identified by only one experiment,
another contains pairs from only two experiments, etc.
Finally, there are 49260, 3333, 182, and 8 PPIs identified
by one, two, three, and four different experiments, respec-
tively.

Each PPI pair can be ranked by the likelihood ratio (posi-
tive versus negative). The larger the ratio is, the higher
confidence we have in the interactions. We consider a pro-
tein pair as interacting if its likelihood ratio is larger than
one (i.e., the likelihood of "interaction" is larger than that
of "non-interaction"). Figure 5 shows the percentage of
PPIs detected by high-throughput methods that are also
predicted by our cross-organism model. As can be seen, all
the PPIs that are supported by four different experiments
are also predicted as positives by our model. We also pre-
dict 44%, 64%, and 97% of PPIs detected by one, two, and

ROC curves with different number of model organismsFigure 4
ROC curves with different number of model organ-
isms. Illustrates the ROC curves for test data with mapping 
orthologs from one, two, and three model organisms.

Table 1: Accuracy comparison. Our method (I): results on all test data (with at least one model organism). Our method (II): results on 
test data with orthologous mapping from three model organisms

Naïve Bayesian Our method (I) Our method (II)

Sensitivity 65% 73% 80%
Specificity 70% 70% 70%
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three biological experiments as interacting protein pairs,
respectively. Notably, the percent of true positives (as ver-
ified by our model) for PPIs with only one experimental

evidence is similar to the positive rate estimated by Sprin-
zak et al. [27].

Moreover, we analyze some PPIs detected by high-
throughput experiments but predicted as negatives by our
model. To assess the data, we consider the shortest dis-
tance of two proteins in GO cellular components, molec-
ular function, and biological process. As discussed by
Sprinzak et al. [27], for true interactions, the interacting
proteins should be localized in the same cellular compart-
ment or participate in the same cellular process. The pro-
tein pair, YJL179W and YBR258C, is identified by one
high-throughput experiment but predicted as non-inter-
acting by our method. The closest cellular component
terms between YJL179W and YBR258C are GO:0016272
(a multisubunit chaperone that acts to deliver unfolded
proteins to cytosolic chaperonin that resides in the cell
cytoplasm) and GO: 0048188 (a conserved protein com-
plex that catalyzes methylation of histone H3, which
belongs to the nucleoplasm part). As can be seen in Figure
6, these two proteins are not localized to the same com-
partment. We can also observe that the two proteins do
not participate in the same cellular process (Figure 7) nor
execute the same function (Figure 8).

YJL179W & YBR258C closest cellular componentFigure 6
YJL179W & YBR258C closest cellular component. Closest GO cellular component terms for protein pair YJL179W – 
YBR258C. Highlighted GO terms in dashed boxes are annotations for the first protein and ones in solid boxes are for the sec-
ond protein.

Percentage of PPIs detected by our methodFigure 5
Percentage of PPIs detected by our method. Shows 
the percentage of PPIs detected by different number of high-
throughput experiments that are also predicted by our 
cross-organism integrative model.
Page 7 of 14
(page number not for citation purposes)



BMC Bioinformatics 2009, 10(Suppl 4):S5 http://www.biomedcentral.com/1471-2105/10/S4/S5
Similar observation can be made regarding protein pairs
supported by two biological experiments but predicted as
non-interacting. For example, the protein pair, YEL061C
and YNL147W, has several pairs of GO cellular compo-
nent terms that are closest to each other between the two
proteins: (GO:0000778, GO:00005732), (GO:0000778,
GO:0005688), (GO:0000778, GO:0046540), and
(GO:0005739, GO:0005732) (Figure 9). GO:0000778
refers to a multisubunit complex that is located at the peri-
centric region of a condensed chromosome in the nucleus
and provides an attachment point for the spindle micro-
tubules. GO:0005739 describes a semiautonomous, self
replicating organelle that occurs in varying numbers,
shapes, and sizes in the cytoplasm of virtually all eukary-
otic cells. It is notably the site of tissue respiration.
GO:0005732 represents a complex composed of RNA of
the small nucleolar RNA (snoRNa) and protein, found in
the nucleolus of a eukaryotic cell. GO:0005688 refers to
the ribonucleoprotein complex containing small nuclear
RNA U6; a component of the major spliceosome complex.
GO:0046540 refers to a complex composed of three small
nuclear ribonucleoproteins, snRNP U4, snRNP U6, and
snRNP U5. Figures 10 and 11 illustrate the closest biolog-
ical process and molecular function terms, respectively.

Conclusion
The advent of high-throughput technologies has signifi-
cantly enlarged the collection of protein-protein interac-
tions. On one hand, it has provided a rich source of
information for new biological discoveries. On the other
hand, it has introduced a technical challenge due to its
high error rates. It has been shown by many researchers
that the reliability of high-throughput screens is only
about 50%. The large number of false positives may result
in false biological conclusions. It is thus essential to assess
the quality of the interactions.

In this paper, we develop a novel Bayesian network-based
model that integrates heterogeneous data sources from
model organisms to determine the probability of two pro-
teins to interact in a target organism. Cross-species predic-
tion is attractive as normally we do not have much
information about newly sequenced proteins. By map-
ping them to well studied model organisms; however, we
are able to utilize the existing biological knowledge of the
model organisms to make accurate predictions. Our
model is successfully applied to predict protein-protein
interactions in human. For the protein pairs with ortholo-
gous mappings in all three model organisms, our model

YJL179W & YBR258C closest biological processFigure 7
YJL179W & YBR258C closest biological process. Closest GO biological process terms for protein pair YJL179W – 
YBR258C. Highlighted GO terms in dashed boxes are annotations for the first protein and ones in solid boxes are for the sec-
ond protein.
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can achieve 80% in sensitivity and 70% in specificity. The
method is also successfully applied to assess the quality of
the high-throughput interaction data. We observed that
the more high-throughput experiments confirming an
interaction, the higher the confidence score is assigned by
our method. For the protein pairs confirmed by four dif-
ferent biological experiments, we predicted all of them as
interacting. For the pairs supported by only one experi-
ment, the percentage of true positives we determined is
similar to the positive rate estimated by Sprinzak et al
[27].

The above results demonstrate that model organisms
indeed provide important information for protein-pro-
tein interaction inference and assessment. The method is
able to assess not only the overall quality of an interaction
dataset, but also the quality of individual protein-protein
interactions. We expect the method to continually
improve as more high quality interaction data from more
model organisms becomes available and is readily scala-
ble to a genome-wide application.

Methods
Data collection
The interaction data for S. cerevisiae, C. elegans, and D. mel-
anogaster are collected from the General Repository for

Interaction Datasets (BioGRID) [52]. In total, we gathered
4,433 C. elegans, 33,518 D. melanogaster, and 111,611 S.
cerevisiae interaction pairs. The human interacting protein
pairs are obtained from the Human Protein Reference
Database (HPRD) [53,54] where the data is manually
curated by expert biologists. From the HPRD, we acquired
total 30,819 human interaction pairs. As our model is a
cross-species model, protein pairs without orthologous
mappings in any model organisms need to be excluded.
Finally, we end up with 10,163 human interaction pairs as
our positive data. Since the negative or non-interacting
protein data is not available, we randomly generate the
negative samples. A protein pair is considered to be a neg-
ative sample if the pair does not appear in the existing
interaction dataset. Total of 209,761 negative samples are
generated. The ratio of negatives and positives is about
20:1. About 2/3 of positive and negative data are reserved
as training data and the remaining samples are used as
testing data. The final training set has 6,766 positive pairs
and 139,864 negative pairs, and the testing set contains
3,397 positives and 69,897 negatives.

Genome-wide orthologous mapping between the target
organism and model organisms is obtained from the
InParanoid database [51]. InParanoid determines protein
mappings by constructing a protein cluster using a recip-

YJL179W & YBR258C closest molecular functionFigure 8
YJL179W & YBR258C closest molecular function. Closest GO molecular function terms for protein pair YJL179W – 
YBR258C. Highlighted GO terms in dashed boxes are annotations for the first protein and ones in solid boxes are for the sec-
ond protein.
Page 9 of 14
(page number not for citation purposes)



BMC Bioinformatics 2009, 10(Suppl 4):S5 http://www.biomedcentral.com/1471-2105/10/S4/S5
rocally best-matching ortholog pair as seed, and inpara-
logs are gathered independently around the seed ortholog
pair. Each member of the cluster receives an inparalog
score between 0 and 1.0, which reflects the relative dis-
tance to the seed-inparalog. This inparalog score is
regarded as the orthologous mapping confidence score in
this paper. For each protein pair in human, our target
organism, we form a list of ortholog pairs in the model
organisms. Then, for each of those ortholog pairs, we
combine microarray gene expression data and Gene
Ontology (GO) information to estimate the probability
that two proteins interact in the target organism. From
GO, we retrieve 'molecular function', 'biological process',
and 'cellular component' annotations for each protein
under consideration.

Microarray gene expression data are collected from NCBI
Gene Expression Omnibus (GEO) [55,56]. Only datasets
with more than 20 samples are selected. We downloaded
three microarray datasets for each model organism as
shown in Table 2 (yeast [57-59]; worm [60-62]; fruit fly
[63,64]).

Integrative model
The heterogeneous data from different organisms are inte-
grated using a Bayesian network (BN) model as shown in
Figure 2. Bayesian network is a graphical model that
encodes the probabilistic dependencies among a set of
variables [65]. It consists of two important components: a
directed acyclic graph (DAG) representing the depend-
ency structure among the variables in the network and a
conditional probability table or a distribution for each
variable in the network given its parent set [66]. Our first
application is to predict protein-protein interactions (PPI)
of H. sapiens by integrating information from three model
organisms (S. cerevisiae, C. elegans, and D. melanogaster) as
shown in Figure 2. The node PPI is a binary variable rep-
resenting the class membership: two human proteins will
be predicted to interact with each other if PPI = 1 or form
non-interaction if PPI = 0. Variables S1, S2, and S3 repre-
sent three model organisms and are ternary: 2, 1, and 0
indicate a strong, medium, or weak confidence of the
orthologous mapping in terms of the confidence value C
from the InParanoid, respectively. Thus, the confidence
scores of mapping for each ortholog set are explicitly
incorporated into our model.

YEL061C & YNL147W closest cellular componentFigure 9
YEL061C & YNL147W closest cellular component. Closest GO cellular component terms for protein pair YEL061C – 
YNL147W. Highlighted GO terms in dashed boxes are annotations for the first protein and ones in solid boxes are for the sec-
ond protein.
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From each model organism, we extract microarray fea-
tures and GO features as discussed above. The nodes Mi,
Fi, Pi, and Ci represent features extracted from Microarray
data, molecular Function, biological Process, and cellular
Component from model organism i (i = 1 yeast, 2 fruit fly,
3 worm), respectively. For each model organism, we com-
pute Pearson Correlation Coefficient (PCC) from three
microarray datasets and each PCC is discretized into 4 lev-

els (high, medium high, medium low, and low). Unlike
the commonly used naïve Bayes model, we do not assume
that microarray datasets are conditionally independent.
We model them jointly using the node Mi, a node with 20
states. For example, Mi = 1 or (low, low, low) indicates
that the PCC values calculated from the three microarray
data sets are all low; Mi = 2 or (low, low, medium low)
means that PCC values are low in two microarray data sets

YEL061C & YNL147W closest molecular functionFigure 11
YEL061C & YNL147W closest molecular function. Closest GO molecular function terms for protein pair YEL061C – 
YNL147W. Highlighted GO terms in dashed boxes are annotations for the first protein and ones in solid boxes are for the sec-
ond protein.

YEL061C & YNL147W closest biological processFigure 10
YEL061C & YNL147W closest biological process. Closest GO biological process terms for protein pair YEL061C – 
YNL147W. Highlighted GO terms in dashed boxes are annotations for the first protein and ones in solid boxes are for the sec-
ond protein.
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and medium low in one microarray data set. Note that
high-high-low, low-high-high and high-low-high etc. are
considered as the same state. In other words, we only con-
sider the PCC levels regardless of which microarray data
set is used.

Similarly, Fi, Pi, and Ci represent the combination of three
features extracted from GO for each organism. For exam-
ple, the variable F1 is a vector of (feature 1: shared func-
tion terms, feature 2: correlation ratio, feature 3: GO
distance) and has 32 states (two states for features 1 and 2
and eight states for feature 3; refer to the 'Novel Feature
Extraction' section for details). We summarize the infor-
mation for each node in Table 3.

The BN model integrates heterogeneous data from three
model organisms to predict PPIs in a target organism. For
each model organism, features extracted from multiple
microarray data or GO terms are modelled jointly without
assuming conditional independence. Features of different
model organisms are conditionally independent giving
the interaction information of a protein pair in the target
organism and model organisms. This cross-organism con-
ditional independence allows us to derive a simple solu-
tion for PPI prediction, as we detail next.

The Bayesian approach to classify a test sample is to assign
the most probable class or the class with a larger posterior
probability for a two-class problem. Based on Bayes theo-
rem, we can write the posterior probability of PPI given all
the evidence Ei = (Si, Mi, Fi, Pi, Ci), i = 1, 2, 3 as

For the model shown in Figure 2, we have

The ratio of the posterior probability for two classes is

where (based on conditional independence shown in Fig-
ure 2)

The prior P(PPI = 1) and P(PPI = 0) can be computed
empirically. In application, we compute probability ratio
L for a pair of proteins and predict the two proteins as an
interacting pair if L > 1 and non-interacting pair other-
wise. ROC curves are created by varying this decision
threshold, which is equivalent to adjusting the priors. The
individual likelihood can be computed from training
data.

List of abbreviations used
PPI: Protein-Protein Interactions; GO: Gene Ontology;
MIPS: Munich Information Center for Protein Sequences;
Co-IP: coimmunoprecipitated protein complex; ROC:
Receiver Operating Characteristic; BioGRID: General
Repository for Interaction Datasets; HPRD: Human Pro-
tein Reference Database; DAG: Directed Acyclic Graph;
PCC: Pearson Correlation Coefficient; BN: Bayesian Net-
work
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Table 3: Information of nodes in Figure 2

Nodes # of states Description

PPI 2 PPI interaction in a target organism
1 – interaction; 0 – non-interaction

S1, S2, S3 3 High/medium/low mapping confidence for the three model organisms
M1, M2, M3 20 PCC levels from three microarray data sets for each model organism
F1, F2, F3 32 Each node is a combination of three features extracted from GO molecular function
P1, P2, P3 32 Each node is a combination of three features extracted from GO biological process
C1, C2, C3 32 Each node is a combination of three features extracted from GO cellular component

Table 2: Microarray datasets used in our experiment. N is the 
number of samples in each data set.

Organism Dataset (N) Dataset (N) Dataset (N)

Yeast GDS1115 (131) GDS465 (90) GDS92 (40)
Worm GDS1319 (123) GDS770 (20) GDS6 (29)
Fruit fly GDS2272 (36) GDS516 (26) GDS2673 (27)
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