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Abstract: Background and Objectives: At present, thyroid disorders have a great incidence in the
worldwide population, so the development of alternative methods for improving the diagnosis
process is necessary. Materials and Methods: For this purpose, we developed an ensemble method
that fused two deep learning models, one based on convolutional neural network and the other
based on transfer learning. For the first model, called 5-CNN, we developed an efficient end-to-end
trained model with five convolutional layers, while for the second model, the pre-trained VGG-19
architecture was repurposed, optimized and trained. We trained and validated our models using a
dataset of ultrasound images consisting of four types of thyroidal images: autoimmune, nodular,
micro-nodular, and normal. Results: Excellent results were obtained by the ensemble CNN-VGG
method, which outperformed the 5-CNN and VGG-19 models: 97.35% for the overall test accuracy
with an overall specificity of 98.43%, sensitivity of 95.75%, positive and negative predictive value of
95.41%, and 98.05%. The micro average areas under each receiver operating characteristic curves
was 0.96. The results were also validated by two physicians: an endocrinologist and a pediatrician.
Conclusions: We proposed a new deep learning study for classifying ultrasound thyroidal images to
assist physicians in the diagnosis process.

Keywords: thyroid disorders; ultrasound image; deep learning; neural networks

1. Introduction

Autoimmunity is related to the pathogenesis of many thyroid diseases, including
hyperthyroidism Graves’ disease, hypothyroidism with autoimmune or Hashimoto’s thy-
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roiditis, asymptomatic and postpartum thyroiditis, and some forms of neonatal thyroid
dysfunction [1]. The prevalence of AITD increases exponentially and is more frequent
in females. It’s the main cause of addressability to the doctor in the field of pediatric en-
docrinology and endocrinology [2]. Autoimmune hypothyroidism (AH) is usually divided
into goiter (Hashimoto’s thyroiditis (HT)) and non-thyroid primary edema. HT is charac-
terized by extensive lymphocytic infiltration of the thyroid gland, usually accompanied by
the formation of germinal centers, while in myxoedema, progressive fibrosis and gland
atrophy have almost no inflammatory infiltration.

Autoimmune hyperthyroidism or Graves disease (GD) affects approximately 2%
of women and 0.2% of men. The disease is characterized by the presence of thyroid-
stimulating antibodies (TSAb) that target the thyroid-stimulating hormone receptor (TSHR)
and act as agonists, leading to chronic hyperstimulation and thyrotoxicosis [3].

Increasingly, ultrasound has been used for thyroid structure assessment. It is a valu-
able addition to the clinical test to determine the size and anatomy of the thyroid and
to identify nodules. Diffuse echogenicity reduction (hypoechoic) or the presence of mi-
cronodules are frequently observed results in AITD and are considered to be accurate
AITD predictors [4]. Higher thyrotropin (TSH) values were observed in pediatric patients
with abnormal US findings [5], indicating that the ultrasound may also be beneficial as a
non-invasive method to evaluate children for thyroid dysfunction. The ultrasound (US)
is far more sensitive to the identification of nodules than physical examination [6]. The
diagnosis and treatment of thyroid disease have become significant because of its vital role
within the human body.

The nodule was characterized as a distinct hypo-, hyper-, or isoechoic focal area within
the thyroid gland described in the US, with different vascularity from the surrounding
parenchyma. Lesions with irregular margins often are identified as nodules if they were
sonographically differentiated from the adjacent parenchyma. Pseudonodule was charac-
terized as an imprecise hypo-or hyper-echoic focal region [7]. A cyst was described as an
anechoic focal area with no solid element.

The conventional diagnostic method, based on the professional expertise of the physi-
cians, has a major deficiency in that the performance of the diagnosis relies primarily on the
personal skill and understanding of the physician. Therefore, the accuracy of the diagnosis
is limited and depends on the experience of the doctor [8].

The rapid development of ultrasound techniques determined their use as an alterna-
tive method for the diagnosis and follow-up of thyroid nodules due to their real-time and
noninvasive features. The diagnosis performance can be improved using computer-aided
tools for the automatic classification of thyroid nodules.

Deep learning as a subdomain of machine learning tool rapidly evolved in medical
imaging analysis and computer vision [9–11] and is often considered an alternative tool
for analyzing and classifying US images. Previous researchers have demonstrated various
approaches to detect nodules in ultrasound images [12].

In [13], it was proposed a method for kidney diagnosing based on convolutional
neural networks used to extract instance-level features from 2D US kidney images and
graph convolutional networks used to improve them by exploring their correlations.

A comparison between diagnosis performances of deep learning methods and ra-
diologists for differentiating thyroid nodules in ultrasonography was proposed in [14].
Convolutional neural networks recorded comparable performances to radiologists.

In [15], the fusion of two pre-trained CNN was proposed on a large dataset of US
images of thyroid nodules. The study results demonstrated that the proposed deep learning
methods can diagnose thyroid nodules.

Liu et al. [16,17] proposed an alternative method by integrating high-level features
extracted from CNNs and hand-designed low-level features. A pre-trained convolutional
neural network with transfer learning was used to generate semantic deep features that
were combined with conventional features such as histogram of oriented gradient and
scale invariant feature transform.
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In [18], was proposed a study based on an ultrasound image-based diagnosis of
malignant thyroid nodule and artificial intelligence. The outputs of multiple CNN models
were mixed using bagging method rules to improve the classification performance.

In [19] was proposed a DCNN model for identifying thyroid cancer patients, which
showed a better performance than skilled radiologists.

The deep learning methods with transfer learning have become valuable tools in med-
ical applications because of their success in minimizing the training time [20]. Additionally,
they require fewer data to train, while enhancing the classification performance. However,
the question raised was how a pre-trained CNN network could be used to classify medical
images, which are very different from the original trained images. Therefore, in this paper,
we proposed a fusion between a pre-trained model fine-tuned with our train dataset and an
end-to-end trained CNN model. We analyzed their classification performance as separate
models and as an ensemble. The advantage of an ensemble method was the reduction of
variance by training two models instead of a single model and by combining the predictions
of the models.

The contributions of our research consist of:

• Designing, developing, training, optimizing, and evaluating a novel fusion method
(called CNN-VGG) based on two DL models, in order to increase the classification
accuracy.

• Fine-tuning of pre-trained models for feature extraction and image classification.
• Designing, developing, evaluating, and optimizing an efficient 5-CNN model with

five convolutional layers, in order to analyze its classification abilities.
• Collecting and curing a novel dataset of 2797 images, which included thyroidal US

images, classified into four diagnoses: autoimmune, micro-nodular, nodular, and
normal.

• A detailed experimental and statistical analysis of the proposed models was provided
to validate the performance of the proposed methods: accuracy, sensitivity, specificity,
positive and negative predictive values, ROC-AUC, and Precision/Recall were taken
into consideration.

2. Materials and Methods
2.1. Patients Data

This multicenter and retrospective research study was conducted at four tertiary
referral institutions of Craiova (Craiova Endocrinology Private Clinic, Pediatric Clinic of
County Hospital of Craiova, Endocrinology Clinic of the Municipal Hospital of Craiova
and Faculty of Automation, Computers and Electronics of Craiova) with study cohorts
made up of patients who visited each institution between 2018 and 2020. We had a total
of 230 patients of which 30 were children and 200 adults, who were screened for thyroid
disorders (ultrasound screening and blood tests).

Approval was obtained from the institutional review boards of all institutions, and
requirement for informed consent was obtained as the study design was based on a
prospective research of medical tests and ultrasound images (University of Medicine and
Pharmacy of Craiova, Craiova Endocrinology Private Clinic, Pediatric Clinic of County
Hospital of Craiova, Endocrinology Filantropia Clinic). Informed written consent was
obtained from all subjects. The study protocol was approved by the Research and Ethics
Committee of the University of Medicine and Pharmacy of Craiova (No.6/20.01.2021)
and carried out under the Code of Ethics of the World Medical Association (Declaration
of Helsinki) for experiments involving humans. All experiments were performed in
accordance with relevant guidelines and regulations. All images and pathologic data were
anonymized before being transferred between different hospitals.

Thyroid ultrasounds were performed by endocrinologists with more than 20 years of
significant experience, using a low-medium-resolution (7.5 MHz) ultrasound instrument
(Siemens SonoAce) with a linear transducer. The patient remains comfortable during the
test, which typically takes only a few minutes unless there is a need to evaluate the lateral
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neck, does not require discontinuation of any medication, or preparation of the patient.
The procedure is usually done with the patient reclining with the neck hyperextended but
it can be done in the seated position. For diagnostic purposes, multiple laboratory tests
were performed to assess thyroid function: TSH (thyroid-stimulating hormone), free T4
(thyroxine), presence of thyroid antibodies: thyroid peroxidase antibodies, thyroglobulin
antibodies, blood glucose levels, calcium, liver function, vitamin D dosage. Thyrotropin Re-
ceptor Antibodies (TRAb) were further dosed in patients diagnosed with hyperthyroidism.
Ultrasound features were noted such as thyroid volume, ultrasound pattern, heterogeneity,
nodule presence and size, the existence of pseudo-nodules and cysts.

For each patient, 4 ultrasound images were interpreted, in cross and longitudinal sec-
tions for each lobe. We collected 920 patients’ images split into four diagnosis: autoimmune
(260), micro-nodular (215), nodular (242), and normal (203) (Figure 1).
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Figure 1. Thyroidal US images with highlighted region of interest: (a) autoimmune; (b) micro-nodular; (c) nodular;
(d) normal.

2.2. Image Dataset

The initial dataset of 920 images collected from 230 patients was augmented by
the following transformations: vertical and horizontal translations, random shearing
and random zooming transformations. Therefore, the final augmented dataset contains
2797 grayscale thyroid images in gray-scale with an initial resolution of 500 × 500 pixels,
after cropping the images borders and patient information. We resized the images to a
resolution of 224 × 224 pixels. Of those, 185 patients with 2297 images were used for
training and 45 patients with 500 images for testing. The distribution of patients and
images among the diagnosis is described in Table 1.

Table 1. The distribution of images and patients in the training and testing augmented datasets.

Diagnosis Training Testing Totals

Autoimmune 619/67 148/16 767/83
Micro-nodular 552/37 120/9 672/46

Nodular 590/49 130/12 720/61
Normal 536/32 102/8 638/40

Total 2297/185 500/45 2797/230

2.3. Convolutional Neural Networks

Convolutional neural networks (CNNs) are a type of artificial neural network and one
of the most powerful tools for computer vision applications.

The base process of CNNs is a convolution operation where the input image is con-
volved using filters that detect important features of an image. The network is capable of
automatically learn the filter’s value that detects the patterns to match the wanted output,
such as the diagnosis of the input image. The learning process is realized through an
activation function that makes possible the back-propagation technique, by calculating
the error between the predicted and real values of the data. Then, this error is propagated
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throughout the network, changing the weights of the filters. Another input image is fed
to the network and the learning process is repeated iteratively improving the algorithm.
The activation function determines the output of each convolution process and reduces the
complexity of the neural network [21].

The operation of a convolutional layer is given by (1):

FM(i,j) = (I * F)(i,j) = ∑∑I(i + m, j + n)F(m, n) (1)

where I represents the input matrix, F refers to a 2D filter of size (m, n), I * F denoted the
convolutional operation and FM represents the output of a 2D feature map.

The convolutional layers are alternated with pooling, batch normalization and fully
connected layers (FC). A pooling layer follows a convolution layer to down-sample the
feature map of the convolution layer. The batch normalization layers are used to normalize
the input layers. In a dropout layer, the neurons are randomly disabled to reduce overfitting
and force the model to learn multiple independent representations of the same data [22].

2.4. Transfer Learning with Fine Tuning

Since most CNNs construct the convolution layers deeper and deeper to achieve
better performance, the pre-trained CNN models with transfer learning were a significant
milestone in the development of deep learning classifiers. Very deep CNN networks have
a risk of overfitting, while the pre-trained networks are complex architectures that use
improvements to obtain better efficiency.

Transfer learning is a method of training, which uses an existing pre-trained classifier
as a starting point for a new classification task [20]. Deep neural models (AlexNet, VGG,
ResNet, and Inception) trained on large-scale datasets such as ImageNet have recorded
very good results with transfer learning. These networks can learn a set of discriminating
features to recognize 1000 object classes.

Fine-tuning is a type of transfer learning. The fine-tuning is applied to DL models that
have already been trained on a given dataset. This method consists of removing the final
set of fully connected layers of the pre-trained network, and replace them with a new set of
fully connected layers with random initializations [20].

2.5. Deep Models Implementation
2.5.1. The 5-CNN Model

The first method we proposed, called 5-CNN, was an efficient lightweight architecture
based on CNN network and trained in an end-to-end manner on the train dataset of 2297 US
thyroidal images. The proposed network had 11 layers: 5 convolutional layers, 4 pooling
layers, one fully connected layer, and one output layer with the softmax function [21]. The
proposed 5-CNNs model was described in Figure 2.
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The algorithm steps for defining and training the 5-CNN model were described in
Algorithm 1:

Algorithm 1. The 5-CNN model description

Input: thyroidal images of dimension (500 px, 500 px) from the train dataset.
Output: CNN model weights
1. for each image in the dataset
2. Resize image to (224 px, 224 px)
3. Normalize the image pixels values between [0, 1].
4. end
5. Add a first convolutional layer with a RELU activation function.
6. Add a second convolutional layer with a RELU activation function.
7. Apply a max pooling layer for down-sampling feature map from the previous layer.
8. Repeat the steps 4 and 5 for three times.
9. Add a Flatten layer on the output obtained from the last max-pooling layer.
10. Add a fully connected layer with 256 hidden units.
11. Apply a dropout for inactivate neurons in the previous layer.
12. Add a fully connected layer with 4 hidden units and a softmax activation function.
13. Optimize the model with RMSProp optimizer with a learning rate of 0.0001.
14. Train the model for 100 epochs.
15. Save the final model.

2.5.2. The VGG-19 Model

The pre-trained models used in this study were VGG-19 [23], ResNet50 [24], Inception-
v3 [25], and EfficientNetB0 [26], which were all pre-trained on ImageNet dataset [23] that
includes non-medical images. Each model was fine-tuned with 2297 images from the
train dataset.

Based on the results of each pre-trained model on the test dataset, we chose the
VGG-19 model, which recorded the best classification performance. The other models had
weaker performance in classifying our US thyroidal images due to the small size of the
dataset and lower quality of the images.

VGG-19 is a variant of the VGG model composed of 19 layers from which, 16 layers
are convolution layers, 3 layers are fully connected, 5 layers are maximized pool and 1
layer is a softmax layer [23]. As we repurposed the pre-trained VGG-19 model for medical
diagnosis classification, we removed the original classifier, added a new classifier that fits
our purposes, and finally, we had to fine-tune our model. Our strategy for fine-tuning
was to freeze the convolutional base and then used its outputs to feed the diagnosis
classifier [27]. At the top of the network, we added one fully connected layer of 256 hidden
units and ReLU activation. The last layer was the softmax dense layer used for classification.
The model was optimized by using the Adam optimizer with a learning rate of 0.0001 [28].
The proposed VGG-19 model with transfer learning and fine-tuning was described in
Figure 3.
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The algorithm steps for defining and training the VGG-19 model were described in
Algorithm 2:

Algorithm 2. The VGG-19 model description

Input: thyroidal images of dimension (500 px, 500 px) from the train dataset.
Output: VGG model weights
1. for each image in the dataset
2. Resize image to (224 px, 224 px)
3. Normalize the image pixels values between [0, 1].
4. end
5. Load the VGG-19 model pre-trained on ImageNet dataset.
6. Remove the last layer of the model.
7. Make non-trainable all the layers of the model.
8. Add a Flatten layer on the model output to obtain a 1-D array of features.
9. Add a fully connected layer with 256 hidden units.
10. Apply a dropout for inactivate neurons in the previous layer.
11. Add a fully connected layer with 4 hidden units and a softmax activation function.
12. Optimize the model with Adam optimizer.
13. Train the model for 100 epochs.
14. Save the final model.

2.5.3. The CNN-VGG Ensemble Method

In order to increase the classification performance, we designed and implemented an
ensemble method called CNN-VGG, which fused the VGG-19 and 5-CNN models with
their output predictions using averaging to as in Figure 4.
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The probabilities of the two trained models (5-CNN and VGG-19) were averaged to
generate new probabilities (Pn) for the final diagnosis decision as in (2):

Pn = Average (P1n + P2n) (2)

where n = 1.4.
The Jensen’s inequality proves that the average ensemble will have the error less than

or equal to the average error of the individual models [29]. The combinations of predictions
from multiple convolutional neural networks added a bias, but also reduced the variance
of a single model. The resulting predictions were less sensitive to the particularities of the
training dataset.

The algorithm steps for the proposed ensemble were described in Algorithm 3:
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Algorithm 3. The VGG-CNN ensemble description.

Input: thyroidal images of dimension (500 px, 500 px) from the test dataset.
Output: prediction probabilities for each diagnosis class (autoimmune, micro-nodular, nodular,
normal).
1. for each image in the dataset
2. Resize image to (224 px, 224 px)
3. Normalize the image pixels values between [0, 1].
4. end
5. Load the trained 5-CNN model.
6. Load the trained VGG-19 model.
7. Predict the images with CNN resulting a list of probabilities (P11, P12, P13, P14)
8. Predict the images with VGG resulting a list of probabilities (P21, P22, P23, P24)
9. Average the two lists of predictions of the two models.
10. for each class in the set of diagnosis
11.Output prediction probabilities for the diagnosis class.
12. end

2.6. Evaluation Metrics

The performance metrics used to evaluate our methods were: specificity (Sp) (3),
sensitivity or recall (Se) (4), negative positive values (NPV) (5), positive predictive values
(PPV) (6), test accuracy (Accuracy) (7).

Sp = TrueNegatives/(TrueNegatives + FalsePositives) (3)

Se = TruePositives/(TruePositives + FalseNegatives) (4)

NPV = TrueNegatives/(TrueNegatives + FalseNegatives) (5)

PPV = TruePositives/(TruePositives + FalsePositives) (6)

Accuracy = CorrectlyClassifiedCases/TotalCases (7)

Other tools used to evaluate the quality of the classifier were the receiver operating
characteristic (ROC) and Precision/Recall (P/R) curves [30]. We also computed the micro
averaging area under the curve (ROC-AUC) and micro averaged precision to evaluate the
overall performance across all diagnosis classes. In micro-averaging, we computed the
average of the separate true positives, true negatives, false positives, and false negatives
of each diagnosis class. Having a multi-class classification problem, the micro-averaging
computation for metrics follows the one vs. rest approach. We defined our metrics for
each class as actual class (for example, normal class) vs. other classes (autoimmune, micro-
nodular, and nodular). For example, for the normal diagnosis class, TP is the number of
images correctly predicted as Normal, FP denotes the other cases that are misclassified
as Normal by the model, TN denotes the other cases that are correctly classified, and FN
denotes the Normal cases that are misclassified as other cases.

3. Results

The dataset contains images from 230 patients diagnosed with thyroid disorders of
which 30 were children aged between 17 days and 17 years old, and 200 adults aged
between 18 years and 75 years old, with a higher predominance of female gender. From
the total number of patients, 78 were from rural communities and 152 from metropolitan
centers. Hypothyroidism was confirmed in 75 patients, subclinical hypothyroidism in 15 pa-
tients, congenital hypothyroidism in 2, hyperthyroidism in 38, subclinical hyperthyroidism
in 10, and euthyroidism in 90 patients.
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3.1. Experimental Setup

The dataset is a 4-classes classification problem having 2797 US images. The dataset
was randomly divided into train dataset and test dataset (80% of images for training and
20% of images for testing), using the pattern train-validation-test. The dataset was divided
patient-wise. In this study, the validation and test sets are the same, but the images from
the test dataset are not used for training.

We designed three experiments:
1. Training and evaluating the 5-CNN model.
2. Training and evaluating the VGG-19 model.
3. Evaluating the CNN-VGG ensemble method.

3.2. Deep Models Evaluation and Statistical Analysis

Experiment 1: 5-CNNs model
The 5-CNNs model was trained for 100 epochs on the training dataset (2297 images)

with a computational time for an epoch of 80 s. The model was assessed on the test dataset
(500 images). From the experimental results summarized in Table 2, it could be observed
that the 5-CNNs model had a good ability to distinguish the autoimmune, and normal
images from the test dataset. The classification results for micro-nodular and nodular
images were under the average results.

Table 2. Evaluation metrics for classification of thyroid ultrasound images with 5-CNNs model.

Diagnostic Class Accuracy (%) ROC-AUC Sensitivity (%) Specificity (%) PPV (%) NPV (%)

Autoimmune 97.57 0.95 95.2 98.53 96.36 98.05
Micro-nodular 92.89 0.92 91.05 94.74 93.02 95.84

Nodular 92.2 0.92 91.93 92.99 91.70 96.36
Normal 96.88 0.93 95.24 100 100 96.19
Average 94.88 0.93 93.35 96.56 95.27 96.61

Experiment 2: VGG-19 model
We trained the VGG-19 model on the training dataset (2297 images) for 100 epochs.

The computational time for training the VGG-19 model was of 70 s per epoch. The results
were obtained on the test dataset (500 images) and showed an overall diagnosis accuracy
of 96.7% and an AUC of 0.95. The good performance in terms of sensitivity and specificity
for all diagnosis showed that the proposed VGG-19 method had a good generalization in
classifying thyroidal images.

The accurate results obtained using the VGG-19 model with transfer learning were
summarized in Table 3.

Table 3. Evaluation metrics for classification of thyroid ultrasound images with VGG-19 model.

Diagnostic Class Accuracy (%) ROCAUC Sensitivity (%) Specificity (%) PPV (%) NPV (%)

Autoimmune 97.2 0.95 90.5 98.71 99.3 96.17
Micro-nodular 95.8 0.97 91.16 94.47 89 99.73

Nodular 95.8 0.94 91.53 97.29 92.24 97.03
Normal 98 0.95 90.19 99.7 98.92 97.54
Average 96.7 0.95 90.84 97.54 94.86 97.62

Experiment 3: CNN-VGG ensemble method
The experimental results were obtained on the test dataset (500 images) and showed

that the CNN-VGG ensemble method outperformed each model with an increase of 1–5%
in all metrics. The results are summarized in Table 4.

When using the CNN-VGG ensemble method, the autoimmune diagnosis class was
classified with high sensitivity and specificity (97.6%, and 99.26%, respectively). The values
of sensitivity (97.6% for autoimmune cases, 92.8% for micro-nodular cases, 92.61% for
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nodular cases, and 100% for normal cases, respectively) mean that the sum of the false
negatives is low while the specificity values (99.26% for autoimmune cases, 96.57% for
micro-nodular cases, 97.89% for nodular cases and 100% for normal cases, respectively)
mean that the sum of the true negatives is high.

Table 4. Evaluation metrics for classification of thyroid ultrasound images with CNN-VGG method.

Diagnostic Class Accuracy (%) ROC-AUC Sensitivity (%) Specificity (%) PPV (%) NPV (%)

Autoimmune 98.78 0.98 97.6 99.26 98.19 99.02
Micro-nodular 95.66 0.95 92.8 96.57 89.58 97.69

Nodular 96.53 0.95 92.61 97.89 93.87 97.44
Normal 98.44 0.96 100 100 100 98.06
Average 97.35 0.96 95.75 98.43 95.41 98.05

The maximum PPV (100%) was achieved for the normal cases and a lower value of
PPV (93.87%) was obtained using nodular cases. The autoimmune diagnosis achieved the
maximum NPV (99.02%), while the minimum NPV was obtained using nodular image
cases. The performance of CNN-VGG method increased in recognising the micro-nodular
and nodular cases.

The ROC curves of the ensemble CNN-VGG method computed for each diagnosis
class showed the rate of false-positive was near zero while the rate of true positive was
between 0.9 and 1 (Figure 5).
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The Precision/Recall curves of the ensemble method showed good precision and recall
for all diagnosis classes of thyroidal images (Figure 6). However, as all metrics indicated,
the classification performance for micro-nodular and nodular images was weaker.
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The experimental results indicated that the proposed ensemble CNN-VGG method
can be a good and stable classifier for thyroidal images.

4. Discussion

The main purpose of this research was to achieve good results in detecting patterns of
thyroidal US images. By analyzing the results, our proposed ensemble method based on
CNN and fine-tuning had significant results in the classification of thyroid nodules images.
We tried to construct a stable and solid classifier that combined both the transfer learning
and training from scratch, balancing the training of a medium-size medical dataset, but also
different from the original ImageNet dataset. The better performance of a model averaging
ensemble is because the deep learning models will usually not make the same errors on
the test dataset [31].

Additionally, previous studies on diagnosing thyroidal images showed better perfor-
mance when using ensembles than using CNNs alone. For example, in the study [32] that
introduced very deep convolutional neural networks (AlexNet) for photo classification,
Alex Krizhevsky et al. used the model averaging of multiple well-performing CNNs. The
performance of one model was inferior to the predictions of an ensemble composed of two,
five, and seven models.

In his study, Ma et al. [15] proposed a hybrid method for thyroid nodule diagnosis
validated on 15,000 ultrasound images with an accuracy of 83.02% ± 0.72%. In the study
performed by Liu et al. [16], a feature extraction method was proposed based on the
convolution neural networks (CNNs) in order to discriminate benign and malignant
nodules in ultrasound images. The experimental results were realized based on 1037
images and recorded an accuracy of 93.1%. Zhu et al. [33] used the ResNet18-model with
transfer learning to classify the malignant and benign thyroid nodules and obtained an
accuracy of 93.75%. For the same problem, Chi et al. [34] used the Inception CNN model
on a public thyroid nodule dataset. The reported accuracies of diagnosing the thyroid
nodules were 99.13% and 96.34% for the used testing datasets. Song et al. [35] used the
pre-trained Inception v3 model to classify nodules as benign or malignant. They reported a
sensitivity of 94% and NPV of 90.3% on the test dataset. In another recent publication [36],
a computer-aided detection system was developed for the segmentation of nodules in
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thyroid US images and their classification as malign or benign. Their results were 93.88 ±
2.59% for Dice Coefficient and 91.18 ± 7.04 pixels for Overlap Metric.

The above-described studies classified the thyroid nodules as malign or benign. To the
best of our knowledge, the proposed study was the first attempt of using the deep learn-
ing methods in analyzing and classifying multiple classes (autoimmune, micro-nodular,
nodular and normal) of thyroidal images.

Our study was supposed a difficult task due to the number of diagnosis we had to
classify and the low contrast between the background and thyroid nodules. In order to
improve the resolution quality of thyroidal ultrasound images, the super-resolution deep
learning methods will be taken into consideration [37,38]. These methods are difficult to be
implemented in real time ultrasound due to many network parameters and convolution
operations in deep network layers. Therefore, the trade-off between complexity and
performance will be taken into consideration into the future.

We are aware that our study had some limitations. First, collecting some representative
images from each patient was dependent on the experience and skills of the endocrinologist.
It is obvious that the deep learning methods still need human intervention in the process
of image collection. In practice, physicians evaluate thyroid patterns using real-time US
information, not a specific image.

Second, the dataset known in advance was another issue, because there was a risk
of overfitting, even if the train and test datasets are image-independent. While this is an
appropriate accuracy rate, future research will evaluate and refine the algorithm on a larger
patient database to resolve the current small sample size and lack of an independent test
cohort. Third, we will take into consideration a more complex validation of our results in
real-time US practice.

In conclusion, the proposed methods showed comparable diagnostic performances
to expert endocrinologists in classifying specific patterns of thyroidal US images from the
test set.

5. Conclusions

In this study, we focused on finding a way to differentiate the features of thyroidal
disorders, in order to diagnose the US images. For this purpose, we developed a CNN-VGG
ensemble fused from two models: a pre-trained fined tuned model VGG-19 and an efficient
lightweight CNN model. The proposed ensemble method proved to be an excellent and
stable classifier with a good performance in terms of overall sensitivity (95.75%), specificity
(98.43%), accuracy (97.35%), AUC (0.96), positive predictive value (95.41%) and negative
predictive value (98.05%).

Although artificial intelligence is not ready to substitute physicians in the coming
years, clinical experts can learn both the fundamentals of artificial intelligence innovation
and how AI-based structures will help them provide greater benefits for their patients at
work. In clinical practice, our deep learning model could assist endocrinologists by offering
a second opinion in the process of diagnosis.
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Abbreviations

AITD Autoimmune thyroid disease
HT Hashimoto’s thyroiditis
GD Graves Disease
TSH Thyroid-Stimulating Hormone
FT4 Free T4 (thyroxine)
ATPO Thyroid Peroxidase Antibodies
ATG Thyroglobulin Antibodies
TRAb Thyrotropin Receptor Antibodies
TSAb Thyroid-stimulating antibodies
US Ultrasound
CAD Computer-Aided Diagnosis
ML Machine Learning
DL Deep Learning
CNN Convolutional Neural Network
PPV Predictive Positive Value
NPV Negative Predictive Value
AUC Area under the Curve
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