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Detailed modelling of contact line motion in oscillatory
wetting
Gustav Amberg 1,2✉

The experimental results of Xia and Steen for the contact line dynamics of a drop placed on a vertically oscillating surface are
analyzed by numerical phase field simulations. The concept of contact line mobility or friction is discussed, and an angle-dependent
model is formulated. The results of numerical simulations based on this model are compared to the detailed experimental results of
Xia and Steen with good general agreement. The total energy input in terms of work done by the oscillating support, and the
dissipation at the contact line, are calculated from the simulated results. It is found that the contact line dissipation is almost
entirely responsible for the dissipation that sets the amplitude of the response. It is argued that angle-dependent line friction may
be a fruitful interpretation of the relations between contact line speed and dynamic contact angle that are often used in practical
computational fluid dynamics.
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INTRODUCTION
A liquid spreading over a dry surface is a phenomenon that is
crucial to many natural processes and important in technology.
However, the detailed description and understanding of dynamic
wetting is still a complex and challenging problem1,2. The fact that
the continuum equations of fluid mechanics exhibit a non-
integrable singularity3 of the viscous stress at the contact line (CL)
shows that the detailed microscopic and nanoscopic features of
the liquid and the surface will be important for the macroscopic
flow. This introduces a host of different processes and phenomena
that need to be understood to predict and control wetting
processes.
In technology, in addition to such examples as spray painting,

coating, etc., one particularly important field is microfluidics4. A
common challenge is to handle small volumes of liquid, often in
the form of small droplets, and one means for achieving this is to
use wetting phenomena. Another area where surface tension and
wetting become dominant is microgravity5. In the absence of
gravity, surface tension becomes dominant, and wetting will be
important in any fluid handling, from liquid fuel to many daily
activities and needs of the astronauts.
Dynamic wetting driven by vibration is both of practical

importance and a convenient way to study the phenomenon.
The dynamic wetting on a glass plate dipping into a tank and
oscillated vertically was studied in ref. 6, and damping of surface
waves in a rectangular tank was investigated in ref. 7, revealing
complex dependencies of damping rates on oscillation amplitude.
The dynamics of a sessile droplet on a vertically oscillating surface
will be sensitive to the detailed conditions at the CL, such as
the presence of hysteresis or CL dissipation8–10. Xia and Steen9

made careful experiments using droplets on a polydimethylsilox-
ane (PDMS)-covered substrate, which was oscillated vertically at
frequencies near drop resonance. The resulting dynamics was
examined through phase plots of the dynamic contact angle, the
CL position, and the CL speed. In particular, Xia and Steen used
this information to measure the CL mobility.

On earth, the size of droplets that can be used is limited to a
radius in the order of millimeters, but in microgravity, a larger
parameter space can be investigated. In microgravity a droplet
size in the order of centimeters can be used instead, which will be
advantageous in several respects; one is that spatial dimensions
are larger, and the resonance frequency much lower, allowing for
higher both spatial and temporal resolution. The larger droplet
size also implies that the droplet and CL dynamics are even more
dominated by inertia than in a millimeter-sized droplet on earth. It
was the intention of Paul Steen to perform such experiments11,
and these have now been carried out.
From a strictly thermodynamic point of view, a moving CL

should be associated with energetic losses of some kind12. The
idea of a localized dissipation at the CL has been invoked in
different ways over the years. Following Hocking13, Xia and Steen
introduce the concept of a CL mobility M as a phenomenological
parameter that relates the deviation of the dynamic contact angle
from equilibrium θ− θe to the CL speed UCL,

UCL ¼ M θ� θeð Þ; (1)

see also refs. 8,13. In computational fluid dynamics, more elaborate
phenomenological relations between contact angle and CL speed
have been devised14, which take the form θ ¼ f ðUCL; θe; ::Þ.
In Molecular Kinetic Theory (MKT)15,16, dynamic wetting is

described as an activated process on the molecular scale, and the
line friction ζ is given a phenomenological interpretation on the
molecular scale. In its simplest linearized form, this can be written
as

UCL ¼ γ=ζð Þ cosθe � cosθð Þ � sinθe
γ

ζ

� �
θ� θeð Þ; (2)

where γ is the surface tension and ζ is the coefficient of wetting-
line friction, which in MKT is estimated in terms of molecular
quantities and thermal fluctuations.
In the phase field method, the fluid is viewed as a mixture of

two immiscible species. The governing equations are derived from
the thermodynamic potentials of such a system to yield typically
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the Cahn–Hilliard equations17,18. The interface now becomes a
diffuse region separating the two species, which has a definite
width ε. The line friction appears as an energy dissipation
associated with the CL displacement. Yue and Feng18 derive the
resulting equivalent condition relating CL speed and dynamic
contact angle as

UCL ¼ γ

2
ffiffi
2

p
3Γε

� �
0
@

1
A cosθe � cosθ

sinθ
� γ

2
ffiffi
2

p
3Γε

� �
0
@

1
A θ� θeð Þ (3)

here Γ is introduced as a rate parameter in the relaxation of the
dynamic contact angle boundary condition.
It is noted that the parameters in Eqs. (1)–(3) in the

approximation of θ� θe � 1 can be identified by setting

M ¼ sinθe
γ

ζ
¼ γ

2
ffiffi
2

p
3Γε

� � ¼ γ

μf (4)

In the last equality, we have introduced the line friction μf,
which is essentially the same as the coefficient of wetting-line
friction used in ref. 16, except that it also absorbs the factor sinθe.
We note that ζ and μf have the dimensions of viscosity and that γ/
μf is a velocity.
In many classical treatments, notably the Cox–Voinov law2, it is

presumed that the static contact angle applies right at the solid
boundary and that the angle variations with the speed that are
often observed are an “apparent” contact angle, which is attained
a short distance away from the wall. It is also often assumed that
there is a fluid slip on the wall at the CL, which helps regularize the
singularity in stresses. In MKT, and inherent in the introduction of a
CL mobility, the contact angle is assumed to be different from the
static value right at the wall, when viewed on molecular length
scales. In the phase field model, mass diffusion will help regularize
the CL and there is no need for a fluid slip. The introduction of
dissipation related to CL movement will cause the contact angle at
the wall to deviate from the static value.
It is far from clear what the actual conditions are for a given

liquid spreading on a particular surface. For a system of decane
spreading on a surface covered with a thin layer of PDMS, it was
demonstrated experimentally19 that the microscopic dynamic
contact angle is velocity dependent and deviates substantially
from the equilibrium value also at very small but nonzero capillary
numbers. In ref. 20, a theoretical model is developed that links the
distribution of assumed nanoscopic geometrical surface defects to
the line friction dissipation. Recent molecular dynamics (MD)
simulations have also shown that for water molecules and a wall
with hydrogen bonds with the water molecules, the first layer of
water molecules are effectively bound to the surface, a no-slip
condition is appropriate, and the contact angle deviates from the
equilibrium value21,22. It is known that the local molecular
arrangements will be different in electrowetting and that this will
alter the line friction23,24. Also, a microscopic geometrical structure
on the surface will change the dynamic wetting and can be
described through an effective line friction25. In an oil–water
system, Rondepierre et al.26 demonstrated that CL friction was
responsible for a decrease in CL speed of three orders of
magnitude, as a certain surfactant was added.
The actual nanoscopic cause of local dissipation at the CL can

thus be very different depending on the properties of the surface,
surface roughness and structure, the liquid properties, the surface
chemistry of the wet surface, etc. We conclude that we should not
expect any universal answer to the question of what is causing CL
friction. Many different nanoscopic or microscopic processes can
no doubt have this effect. However, whatever the origin, the effect
can be described as a single parameter, the CL friction.
So far, the dependence of line friction on the contact angle has

received limited attention, but there is clearly every reason for line

friction to vary with the dynamic contact angle. The nonlinear MKT
theory gives one possibility and based on MD simulations
Johansson and Hess22 formulated an expression for the angle
dependence of line friction for water molecules on a surface with
hydrogen bonds to the water. Other surfaces and liquids may
certainly show different behavior.
On this note, we evaluate the detailed experimental results of

Xia and Steen9, using phase field simulations, with the aim of
determining precisely what is required in the mathematical model,
in order to faithfully reproduce the experiments. We will study
how the angle dependence of the CL friction should be chosen.
The model and the simulation are then used to draw conclusions
on the source of the dissipation that is evident in the experiment.

METHODS
The simulations are made using the Navier–Stokes–Cahn–Hilliard
equations18,27,28. These describe the two-phase system as two
immiscible species and are motivated by the thermodynamics of
such a mixture. A phase field variable is introduced that has
different values in the two species, and the fluid interface is
identified as the steep but continuous transition between those
values.

ρ
Du
Dt

¼ �∇Sþ μ∇2u� C∇ϕþ ρ€aez (5)

∇ � u ¼ 0 (6)

DC
Dt

¼ κ∇2ϕ (7)

ϕ ¼ σ

ε
f 0 Cð Þ � σε∇2C (8)

with the standard choices: f Cð Þ ¼ 1� Cð Þ2 1þ Cð Þ2=4, and
g Cð Þ ¼ 2þ 3C � C3ð Þ=4.
Here u, C, and ϕ are the fluid velocity, the phase field variable,

and the associated chemical potential, respectively. C is +1 in the
liquid and −1 outside the droplet. S is a reduced pressure such
that p ¼ Sþ Cϕ is the actual pressure. μ and ρ are the local
viscosity and density, respectively, and κ is the phase field
mobility. σ and ε are the phase field parameters, where ε denotes
the interface thickness, and σ gives the surface tension γ through
γ ¼ σð2p2Þ=3. The function f Cð Þ ¼ 1� Cð Þ2 1þ Cð Þ2=4 represents
the standard choice in phase field methods and gives a
qualitatively reasonable thermodynamic behavior representative
of an immiscible mixture.
The simulations are performed in a cylindrical coordinate

system that follows the oscillating substrate, giving rise to the
acceleration term on the right-hand side of the momentum
equation, with a tð Þ ¼ Ad sin 2πft denoting the vertical position of
the substrate.
The boundary conditions on the solid wall express that the fluid

cannot penetrate through the wall and does not slip on the wall.

∇ϕ � n ¼ 0 (9)

us ¼ 0 (10)

One additional boundary condition is needed for the phase
field variable, which expresses the wetting conditions.

εμf
∂C
∂t

¼ �σε∇C � nþ γ1 � γ0ð Þg0 Cð Þ (11)

Here σ and ε are the phase field parameters as above, giving
surface tension as γ ¼ σð2p2Þ=3. γ1 and γ0 are the surface
energies of the dry and wet solid surface, respectively, so that the
equilibrium contact angle θe is given by γ1 � γ0ð Þ=γ ¼ cos θe. The
form of the function g Cð Þ ¼ 2þ 3C � C3ð Þ=4 is chosen in relation
to the function f in Eq. (4).
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Yue29 developed a phase field treatment of contact angle
hysteresis, where advancing and receding contact angels are
introduced in a piecewise continuous function on the right-hand
side of the equation corresponding to Eq. (11). The CL is then
allowed to move according to whether the value of the dynamic
contact angle exceeds (subceeds) the advancing (receding) angle. A
treatment inspired by this is also developed for level-set methods30.
The left-hand side represents the dissipation associated with CL

motion, quantified by the parameter μf, which we will call CL
friction. This has dimensions of viscosity.
By considering solutions to the Cahn–Hilliard equations near

equilibrium at the CL, an explicit relation between CL speed UCL

and dynamic contact angle θ can be derived from Eq. (11), see
ref. 18 and Eq. (3):

μfUCL

γ
¼ cosθe � cosθ

sinθ
� θ� θe (12)

The dynamic contact angle is equal to the equilibrium angle if
μf= 0, in which case there is also no dissipation at the CL. The last
approximate equality holds if θ is near θe.
The above equations are made nondimensional using R as

length reference, the radius of the half-sphere (approximately the
initial wet footprint radius), and an inertial capillary velocity
U ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ= ρRð Þp
.

The nondimensional parameters that appear are

Oh ¼ μffiffiffiffiffiffi
ργR

p Ohnesorge number

Ohf ¼ μfffiffiffiffiffiffi
ργR

p Line friction Ohnesorge number

Bo ¼ ρgR2

γ Bond number, g ¼ 9:81m=s2<?tpb5pt?>

ω ¼ 2πf
ffiffiffiffiffiffi
ρR3

γ

q
Nondimensional oscillation angular frequency. f is the
oscillation frequency in Hertz

A= Ad/R Nondimensional oscillation amplitude

In addition to these, the Cahn–Hilliard equations use the
following parameters:

Pe ¼ UR
D ¼

ffiffiffiffi
γ
ρR

q
R

2
ffiffi
2

p
3

κγ
ε

Peclet number related to phase field mobility. Set to
100 in the simulations. Reported here

Cn ¼ ε
R Cahn number, nondimensional interface width. Kept at

0.01 in the simulations. Reported here
ρair
ρliq

Ratio between air and liquid density. Set to 0.01 here,
for computational convenience

μair
μliq

Ratio between air and liquid viscosity. Set to 0.03 here,
for computational convenience

The simulations are carried out using an adaptive finite element
solver, as in ref. 31. The adaptive grid is automatically refined as
needed down to an element size of 0.001. The air viscosity and
density are taken larger than those of air but much smaller than
the values for the liquid. They are deemed small enough for the air
to have a negligible influence on the flow inside the droplet.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

RESULTS
Flow fields
Xia and Steen report the most detailed results for their experiment
labeled M00, using a 20 µl water droplet oscillated at f= 61 Hz,
with an amplitude of Ad= 0.1 mm. The substrate is a slightly
hydrophobic PDMS-covered silicon surface, with a static contact

angle of θe= 101°. This will be the reference case for the
simulations shown here.
The nondimensional numbers for this case are Oh= 0.00256,

amplitude A= 0.047, and angular velocity of the driving ω= 4.41.
The low value of the Ohnesorge number indicates that the droplet
dynamics are inertial and that viscosity plays a minor role. Near
the solid surface, we should expect a viscous Stokes layer of
thickness � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ=ðρπf Þp
, which is approximately 0.07 mm for the

experimental parameters, i.e., much less than the initial droplet
radius of 2.1 mm.
The order unity value of the angular velocity shows that the

oscillations are reasonably matched with the inertial timescale, as is
expected since the experiment aims at being near resonance. The
value of the line friction Ohnesorge number Ohf is set to unity, which
makes the reference value of the line friction μf ;ref ¼

ffiffiffiffiffiffiffiffi
ργR

p
. We will

return to the more detailed modeling of the line friction below.
Figure 1 shows the simulation results over one cycle for the M00

case. In Fig. 1a, the first frame shows the position near the lower
turning point when the droplet is compressed towards the
substrate. In the second frame, it is extending upwards and is near
its most elongated state in the third frame. In the fourth frame, it is
being again compressed as the substrate is moving upwards.
A Weber number based on the oscillation amplitude Ad and

frequency f can be expressed as A2ω2, giving the value
0:04724:412 ¼ 0:043. We thus expect the flow to be dominated
by the surface tension.
Figure 1b shows the corresponding pressure fields, always

reflecting the curvature of the interface. The pressure is elevated
in the droplet due to the capillary pressure and fluctuates as the
interface curvature varies. In the most compressed state in the first
frame of Fig. 1b, there is a concave shape at the top of the droplet,
which causes a local low pressure there. The pressure in the air is
almost constant, due to the low air density. Figure 1c shows the
velocity fields for the points where the droplet is extending
upwards and being compressed (corresponding to frames two
and four of Fig. 1a, b).
In Fig. 2 are shown the time signals for the vertical substrate

position, together with the CL position and the droplet height. It is
noticed that the amplitude of the droplet height is about three
times that of the substrate amplitude, as expected for a near
resonance situation. All signals quickly go into a periodic motion,
with no sign of period-doubling or other more complex dynamics.
The responses in both the droplet height and the CL position are
nonlinear, however, with shapes departing from sinusoidal.
The CL position signal deviates from a sinusoidal shape, and tends

towards a square wave, with flat peaks. This is a signature of a stick-
slip motion of the CL; it is rather stationary at its extreme values but
shifts quickly between them twice per cycle. We will see that this is
built into the simulation through angle-dependent line friction.

Model for angle-dependent line friction
In addition to the input data already discussed, angle-dependent line
friction has been implemented in this simulation. The line friction in
Eqs. (11) and (12) is computed from a regularized well function:

μf ¼ μf ;refμ
�
f θð Þ (13)

where the nondimensional μ�f θð Þ is
μ�f θð Þ ¼ μf0 1� H θð Þð Þ þ μf1H θð Þ (14)

and

H θð Þ ¼ 1þ 1=2 tanh
θ� θe þ dθð Þ

δ

� �
� tanh

θ� θe � dθð Þ
δ

� �� �

(15)

Equation (14) thus describes nondimensional line friction that
has a high value μf0 in the sticking region in the angle range θe ±
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dθ, and a low value μf1 outside of this range. δ smooths the
corners of the well function and μf,ref is a dimensional reference
value that is used in the line friction Ohnesorge number Ohf. In the
present case, Ohf= 1, and thus μf ;ref ¼

ffiffiffiffiffiffiffiffi
ργR

p
. In the simulation in

Figs. 1–6, these values are: θe= 101°, dθ= 7°, δ= 1°, μf0= 10,
μf1= 0.5 and Ohf= 1. We could interpret θe+ dθ= θa as
approximating the advancing contact angle and θe− dθ= θr as
the receding angle.
Inserting the line friction according to Eq. (14) into Eq. (12), we

readily obtain the dynamic contact angle as a function of CL speed
(see Fig. 3). As expected, the high line friction near the equilibrium
angle creates a region of near stick, with low velocities for angles
in a region ≈±7° around the equilibrium. In this region, the well
function H(θ) ≈ 0, and μ�f θð Þ will be constant and equal to the high
value μf0. For CL speeds up to about 0.3, the angle is
approximately constant, between 7 and 10 degrees, establishing
a “slip” region. For angles departing >10 degrees from equilibrium,
or speeds larger than approximately 0.4, the well function H(θ) is 1
and the line friction μ�f θð Þ becomes equal to the low value μf1. To

Fig. 2 Time signals for the contact line position rCL (blue), the
droplet height z (yellow), and the substrate position Asinωt
(gray). The substrate position is drawn around an equilibrium
position of 1, to facilitate comparison with the CL position and the
droplet height.

Fig. 3 Model of angle-dependent line friction, according to Eqs.
(12)–(15). a The deviation of the dynamic contact angle from the
equilibrium angle θ− θe as a function of contact line speed.
b Nondimensional line friction as a function of θ− θe. Parameter
values are the same as for the simulations in Figs. 1, 2, and 4: θe=
101°, dθ= 7°, δ= 1°, μf0= 10, and μf1= 0.5.

Fig. 1 One oscillation cycle for the M00 case. a The shape of the droplet at four instants. b The pressure field. c Velocity field at the instants
corresponding to frame two and four of a and b.

G. Amberg

4

npj Microgravity (2022)     1 Published in cooperation with the Biodesign Institute at Arizona State University, with the support of NASA



summarize: in the window θ� θej j<dθ, the line friction is
constant, equal to the high value μf0, and for angles distinctly
outside this window, θ� θej j>dθ, the line friction tends to the
constant value μf1. Connecting these two regions is a velocity
range where the dynamic angle is approximately constant, i.e. a
region of “free slip”.
As seen in Fig. 3a, there is still some variation of angle with CL

speed also in the region of “free slip”. The slope of the curve in
Fig. 3a in this region is related to δ, the width of the transition
region in line friction in Fig. 3b, and the line friction far from
equilibrium μf1. Approximating the contact angles and the CL
speeds at the ends of the transition region as θ0 ¼ θe þ dθþ δ,
θ1 ¼ θe þ dθ� δ, and U0 ¼ ðθ0 � θeÞ=μf0, U1 ¼ ðθ1 � θeÞ=μf1, and
assuming that μf1 � μf0, an estimate of the slope in Fig. 3a in the
transition or “free slip” region can be obtained as Δθ=ΔU �
2μf1= 1þ dθ

δ

� �
(angles in radians). For a very steep transition region

(δ � dθ) the slope will thus approach zero, while it becomes
comparable to μf1 for δ ~ dθ.
The model for line friction in Eqs. (13)–(15) was constructed to

be as conceptually simple as possible, characterized by a high
friction region around equilibrium, and low friction further from
equilibrium. In order to test this against the experiments of Xia
and Steen the simulated results are overlaid on their experimental
phase plots (their Figs. 4 and 5), see Fig. 4.
Figure 4a shows the graph of dynamic contact angle vs CL

speed, the “traditional diagram” (TD) as it is referred to by Xia and
Steen. The colored circles are the experiments of Xia and Steen,
and the black curve is obtained from the numerical simulation. If
the CL friction would be a constant this curve would always be a
straight line, thus the angle variation in the CL friction becomes
important. The parameters dθ, δ, μf0, and μf1 for the angle-
dependent line friction are chosen to give a fair approximation of
the TD, in the following manner. dθ is chosen to capture the

magnitude of the sticking region in Fig. 4a, and the sticking region
line friction, μf0, sets the slope of the curve at the origin in Fig. 4a.
The transition region width δ allows for the smooth curvature of
the TD at the end of the sticking region. The line friction far from
equilibrium μf1 is then chosen to approximate the slope of the TD
in the “free slip” region. It should be noted that the numerical
simulation accurately reproduces the theoretical curve in Fig. 3a
and that the CL velocities encountered in the experiment are
always below about 0.3, so that only the “sticking” and the “free
slip” regions are visited.
Figure 4b shows a phase plot in terms of the CL speed vs the CL

position. In addition to the experimental data shown as colored
circles, the black circles denote the position of the substrate. The
black line is the trajectory from the simulation. It captures both
the elongation and the slight inclination of the experimental loop.
The width of the simulated trajectory is slightly less than the
experimental one, but overall, the agreement is good.
Figure 4c shows the dynamic contact angle vs CL position. Here

the stick–slip character of the motions is evident; the shape of the
trajectory is a quadrilateral, where the horizontal upper and lower
parts show the rapid phase when the CL moves from one almost
steady position to another, at a fairly constant contact angle. The
vertical sides represent the “stick” phase where the CL is nearly
stationary and the angle changes.
Figure 4d was introduced by Xia and Steen to highlight the

“stick” and the “slip” parts of the motions and quantify those
separately. The graph shows dynamic contact angle departure
from the equilibrium angle multiplied by CL position
rCL � rrefð Þ θ� θeð Þ vs CL position multiplied by CL speed
rCL � rrefð ÞUCL. The nonlinearity that is introduced creates two
loops, one for the receding and one for the advancing motion of
the CL. The simulated trajectory is again in fair agreement with the
experiment, even though the experiment extends somewhat

Fig. 4 Comparison of phase plots with Xia and Steen experiments for the case M00. Colored dots are the experimental results of Xia and
Steen, and the black solid curves are the present simulations. a Dynamic contact angle departure from the equilibrium angle θ− θe as a
function of contact line speed. b Contact line speed vs contact line position, as a departure from the mean position. c Dynamic contact angle
θ− θe vs contact line position. d Contact line speed vs contact line position, as a departure from the mean position. Dynamic contact angle
departure from the equilibrium angle multiplied by contact line position rCL � rrefð Þ θ� θeð Þ vs contact line position multiplied by contact line
speed rCL � rrefð ÞUCL.
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further from the origin. In view of the scatter in the experimental
data the agreement in Fig. 4 was deemed sufficient for the present
discussion.
In terms of the model in Eqs. (13)–(15), we see that the sticking

phase is characterized by a high constant line friction μf0= 10. This
shows up in the central part of Fig. 4d, where the simulated
trajectory is steep and near the red experimental circles. The slope
of the curve here is proportional to μf0. The main source of CL
dissipation is at the slip phase, as the uncompensated Young’s
stress at the receding or advancing contact angle multiplies the CL
speed. Here the CL slip speed becomes rather independent of the
dynamic angle. In a macroscopic experiment where the overall CL
speed is measured along with the contact angle, an overall CL
friction for an advancing CL would be identified from Eq. (12) as
μf ¼ γ=UCLð Þ cosθe � cosθað Þ=sinθa. This would not be possible to
directly relate to material parameters, since UCL here would be
determined from the overall droplet dynamics, and the angle
would stay nearly constant, close to the advancing angle. To
predict the wetting behavior, the CL friction would need to be
modeled and the overall dynamics simulated. For angles further
away from the sticking region, μ�f θð Þ becomes μf1 and Eq. (12)
reduces to μf1UCLð Þ=γ ¼ cosθe � cosθð Þ=sinθ with a constant line
friction. We do not however have any experimental data to verify
if this is indeed the case.
The CL mobility parameter M (Eq. (1)), as identified by Xia and

Steen is the inverse of the slope of the line formed by the blue
circles in Fig. 4d. This is also approximately the same as the inverse
of the slope of the straight line obtained by connecting the two
regions of blue circles in the “wings” of Fig. 4a.
The agreement with the experiment in Fig. 4 is fair, but there

are some differences, so more precise modeling of the experi-
mental points in the TD in Fig. 4a was made. The model in Eqs.
(13)–(15) is symmetric around the equilibrium angle, while the

experimental points show some differences between the advan-
cing and receding curves. A more complex mathematical
expression for the angle dependence of the line friction was
designed so that the TD is approximated more closely, see Fig. 5a.
Overall the agreement in all four panels is somewhat improved
but not dramatically so. The conclusion is that the complexity of
Eqs. (13)–(15), with the four parameters dθ, δ, μf0, and μf1 is
sufficient to capture the essential features of the flow.

Energy dissipation
It may be asked what the nature is of the dissipation that limits the
response amplitude. In the simulation for the standard M00 case,
the input energy per cycle was determined from the pressure and
speed of the substrate integrated over a cycle. Figure 6b shows a
graph of the total vertical force Fv from the substrate, vs the
substrate position over a cycle. In the same manner, the
dissipation at the CL was determined from a graph of
2πrCL cos θe � cos θð Þ vs rCL graph, see Fig. 6a.
The total amount of work supplied to the drop by the oscillation

over a cycle is now the area inside the loop in Fig. 6b, which is
calculated as 0.132914. The area inside the loop in Fig. 6a giving
the CL dissipation is 0.131779. As expected, the work input is
slightly larger than the CL dissipation, with a relative difference of
0.8%. We should not overinterpret this small difference, in view of
other possible sources of inaccuracy, but this still shows that the
CL dissipation is the completely dominating cause of damping in
this case. There is an almost perfect match between the input
energy and the energy dissipated at the CL over a cycle. The other
source of dissipation by bulk viscous dissipation is indeed
expected to be quite small, given the small value of the
Ohnesorge number (Oh= 0.00256).

Fig. 5 Comparison of phase plots with Xia and Steen experiments for the case M00, using a closer fit for the TD. Colored dots are the
experimental results of Xia and Steen, and the black solid curves are simulations. a Dynamic contact angle departure from the equilibrium
angle θ− θe as a function of contact line speed. b Contact line speed vs contact line position, as a departure from the mean position.
c Dynamic contact angle θ− θe vs contact line position. d Contact line speed vs contact line position, as a departure from the mean position.
Dynamic contact angle departure from the equilibrium angle multiplied by contact line position rCL � rrefð Þ θ� θeð Þ vs contact line position
multiplied by contact line speed rCL � rrefð ÞUCL.
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DISCUSSION
The good qualitative and quantitative agreement between
simulation and experiment, in all the different aspects that can
be accessed through the phase plots presented by Xia and Steen,
indicates that the essential physical processes are well represented
in the mathematical model. The experiment is quite sensitive since
the response is amplified through the resonance of the droplet
motion, and the damping that is present in the system is
controlling the resulting periodic CL motion completely. As shown
in Fig. 6, the damping is almost entirely due to the CL dissipation.
Simulations were performed where the CL dissipation is removed,
either by enforcing the static angle (by setting μf= 0) or pinning
the CL position. The amplitude of the droplet motion then grows
quickly, and the droplet will break within a few periods.
The most important part of the mathematical model is the

angle-dependent line friction in Eqs. (13)–(15). This simple
function allows for a narrow high friction region near equilibrium,
and much lower friction outside this region, and this is sufficient
for capturing the essentials of the flow dynamics.
The simulations presented here only show results for an inertial

flow with a low Ohnesorge number. It may be asked if the behavior
of a viscous drop, with Oh ≥ 1 could be described in a similar way,
with hysteresis modeled as angle-dependent line friction. While
this has not been carried out here, I expect this to be the case since
the line friction is local to the CL and not directly dependent on the
internal bulk flow. It should be noted though that the experimental
arrangement of Xia and Steen would probably not be suitable for
very viscous drops, since the resonance is needed to have a large
enough amplitude of the CL motion.
This also exemplifies how empirical models that postulate a

relation between CL speed and dynamic contact angle can be
interpreted through Eq. (12) as revealing the angle dependence of
the line friction. As commented above, the line friction can have
many different micro- or nanoscopic causes, and thus may
depend on the dynamic angle in different ways. But in attributing
the CL variation to the line friction and hypothesizing it to be
reflecting processes that are local to the CL, we could hope to
decouple it from the macroscopic flow problem. It would then be
possible to restrict the problem to analyzing the micro- or nano-
specifics of a particular surface and a particular fluid to find the
line friction and its angle dependence22 and then hope that this
line friction could be used with accuracy for all flow situations, for
that particular combination of fluid and surface.
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